MIT EECS 6.837 Computer Graphics Part 2 - Rendering Today: Intro to Rendering, Ray Casting

© NVIDIA Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

$$
\text { MIT EECS 6.837 - Matusik }
$$

Cool Artifacts from Assignment 1

Cool Artifacts from Assignment 1

The Story So Far

- Modeling
- splines, hierarchies, transformations, meshes, etc.
- Animation
- skinning, ODEs, masses and springs
- Now we'll to see how to generate an image given a scene description!

The Remainder of the Term

- Ray Casting and Ray Tracing
- Intro to Global Illumination
- Monte Carlo techniques, photon mapping, etc.
- Shading, texture mapping
- What makes materials look like they do?
- Image-based Rendering
- Sampling and antialiasing
- Rasterization, z-buffering
- Shadow techniques
- Graphics Hardware

Today

- What does rendering mean?
- Basics of ray casting

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Scene

This image is in the public domain. Source: openclipart

Camera

Scene

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

Camera

This image is in the public domain. Source: openclipart

Scene

Rendering = Scene to Image

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

This image is in the public domain. Source: openclipart

Camera

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Scene

Rendering - Pinhole Camera

(C) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
 one ray. We need to figure out which scene point each one hits.

Rendering

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
Scene

What's the

 color you put in each pixel?
Rendering

unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Rendering

- "Rendering" refers to the entire process that produces color values for pixels, given a 3D representation of the scene
- Pixels correspond to rays; need to figure out the visible scene point along each ray
- Called "hidden surface problem" in older texts
- "Visibility" is a more modern term
- Also, we assume (for now) a single ray per pixel

Rendering

- "Rendering" refers to the entire process that produces color values for pixels
- Pixels correspond to rays; need to figure out the visible scene point along each ray
- Called "hidden surface problem" in older texts
- "Visibility" is a more modern term
- Also, we assume (for now) a single ray per pixel
- Major algorithms: Ray casting and rasterization
- Note: We are assuming a pinhole camera (for now)

Questions?

Ray Casting

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection
- Ray-Sphere Intersection

Ray Casting

For every pixel

Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest

Shading

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest Shade

Shading $=$ What Surfaces Look Like

- Surface/Scene Properties
- surface normal
- direction to light
- viewpoint
- Material Properties
- Diffuse (matte)
- Specular (shiny)
- Light properties
- Position
- Intensity, ...
- Much more!

Specular spheres

Ray Casting vs. Ray Tracing

- Let's think about shadows...

This image is in the public domain. Source: openclipart

Ray Casting vs. Ray Tracing

 are rays from the

This image is in the public domain. Source: openclipart camera to the
scene

Ray Casting vs. Ray Tracing

ray from light to hit point is blocked, i.e., point is in shadow

This image is in the public domain. Source: openclipart

Ray Casting vs. Ray Tracing

- Ray casting = eye rays only, tracing = also secondary

Secondary rays are used for testing shadows, doing reflections, refractions, etc.

This image is in the public domain. Source: openclipart

We'll do all this a little later!

Secondary Rays

Indirect illumination

Reflections
Refractions

Shadows

Ray Tracing

Reflections

Courtesy of Henrik Wann Jensen. Used with permission.

Reflections, refractions

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Ray Casting

```
For every pixel
    Construct a ray from the eye
    For every object in the scene
            Find intersection with the ray
            Keep if closest
    Shade depending on light and normal vector
```


Finding the intersection point and normal is the central part of ray casting

Ray Representation

- Origin - Point
- Direction - Vector
- normalized is better
- Parametric line
$-\mathrm{P}(\mathrm{t})=$ origin $+\mathrm{t} *$ direction
$P(t)$

How would you represent a ray?

Ray Representation

- Origin - Point
- Direction - Vector
- normalized is better
- Parametric line
$-\mathrm{P}(\mathrm{t})=$ origin $+\mathrm{t} *$ direction

Another way to put the ray casting problem statement: Find smallest t>0 such that $\mathrm{P}(\mathrm{t})$ lies on a surface in the scene

Dürer's Ray Casting Machine

- Albrecht Dürer, $16^{\text {th }}$ century

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dürer's Ray Casting Machine

- Albrecht Dürer, $16^{\text {th }}$ century

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Ray Casting

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection
- Ray-Sphere Intersection

Cameras

For every pixel

Construct a ray from the eye For every object in the scene Find intersection with ray Keep if closest

Abraham Bosse, Les Perspecteurs. Gravure extraite de la Manière

Pinhole Camera

- Box with a tiny hole
- Inverted image
- Similar triangles
- Perfect image if hole infinitely small
- Pure geometric optics
- No depth of field issue (everything in focus)

Oldest Illustration

- From Gemma Frisius, 1545

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Also Called "Camera Obscura"

Image courtesy of Wellcome Library, London. License: CC-BY-NC. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Camera Obscura Today

Images removed due to copyright restrictions -- please see
http://www.abelardomorell.net/photography/cameraobsc_01/cameraobsc_17.html http://www.abelardomorell.net/posts/camera-obscura/
http://www.abelardomorell.net/photography/cameraobsc_49/cameraobsc_63.html for further details.

Abelardo Morell

www. abelardomorell.net

Simplified Pinhole Camera

- Eye-image pyramid (view frustum)
- Note that the distance/size of image are arbitrary same image will result on this image plane

Camera Description?

Camera Description?

- Eye point \boldsymbol{e} (center)
- Orthobasis $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ (horizontal, up, direction)

Object coordinates World
coordinates
View
coordinates
Image
coordinates

Camera Description?

- Eye point \boldsymbol{e} (center)
- Orthobasis $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ (horizontal, up, direction)
- Field of view angle
- Image rectangle aspect ratio

Object

 coordinates Worldcoordinates
View
coordinates
Image
coordinates

Image Coordinates

Ray Generation in 2D

\mathbf{p} is point on image
plane at coordinate x,
we want to know the
direction of the ray \mathbf{r}
view direction w

right \mathbf{u}

Ray Generation in 2D

Ray Generation in 2D

This image is in the public domain. Source: openclipart

Ray Generation in 2D

Ray Generation in 2D

That was 2D, 3D is just as simple

- y coordinate is treated just like x, except accounting for aspect ratio
$-\mathbf{r}=\left(x^{*} \mathbf{u}\right.$, aspect* $\left.y^{*} \mathbf{v}, D^{*} \mathbf{w}\right)$
- Again, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are the basis vectors of the view coordinate system
- Aspect ratio handles non-square viewports
- Think of your 16:9 widescreen TV
- The point of the exercise with computing D was to allow us to use the $[-1,1]$ image coordinate system regardless of field of view.

Perspective vs. Orthographic

- Parallel projection
- No foreshortening
- No vanishing point

Orthographic Camera

- Ray Generation?
- Origin $=\mathbf{e}+x^{*}$ size* $\mathbf{u}+y^{*}$ size ${ }^{*} \mathbf{v}$
- Direction is constant: w

Other Weird Cameras

- E.g. fish eye, omnimax, parabolic

CAVE Columbia University
© CAVE Lab, Columbia University. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Even Funkier Multiperspective Imaging

Ray Casting

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection
- Ray-Sphere Intersection

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
First we will study ray-plane intersection

Recall: Ray Representation

- Parametric line
- $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Explicit representation

3D Plane Representation?

$$
H(p)=d>0
$$

- (Infinite) plane defined by

3D Plane Representation?

$$
H(p)=d>0
$$

- (Infinite) plane defined by

$$
\begin{aligned}
& -\mathrm{P}_{\mathrm{o}}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \\
& -\mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Implicit plane equation

$$
\begin{aligned}
-\mathrm{H}(\mathrm{P}) & =\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \\
& =\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0
\end{aligned}
$$

3D Plane Representation?

$$
H(p)=d>0
$$

- (Infinite) plane defined by

$$
\begin{aligned}
& -\mathrm{P}_{\mathrm{o}}=\left(\mathrm{x} 0, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \\
& -\mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Implicit plane equation

$$
\begin{aligned}
-\mathrm{H}(\mathrm{P}) & =\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \\
& =\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0
\end{aligned}
$$

- What is D ?

$$
\begin{aligned}
& A x_{0}+B y_{0}+C z_{0}+D=0 \quad \text { (Point Po must lie on plane) } \\
& \Rightarrow D=-A x_{0}-B y_{0}-C z_{0}
\end{aligned}
$$

3D Plane Representation?

$$
H(p)>0
$$

- (Infinite) plane defined by

$$
\begin{aligned}
& -\mathrm{P}_{\mathrm{o}}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \\
& -\mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Implicit plane equation

$$
\begin{aligned}
-\mathrm{H}(\mathrm{P}) & =\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0 \\
& =\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0
\end{aligned}
$$

- Point-Plane distance?
- If n is normalized, distance to plane is $\mathrm{H}(\mathrm{P})$
- it is a signed distance!

Explicit vs. Implicit?

- Ray equation is explicit $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Parametric
- Generates points
- Hard to verify that a point is on the ray
- Plane equation is implicit $\mathrm{H}(\mathrm{P})=\mathrm{n} \cdot \mathrm{P}+\mathrm{D}=0$
- Solution of an equation
- Does not generate points
- Verifies that a point is on the plane
- Exercise: Explicit plane and implicit ray?

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Additional Bookkeeping

- Verify that intersection is closer than previous $\mathrm{t}<\mathrm{t}_{\text {current }}$
- Verify that it is not out of range (behind eye)

Normal

- Also need surface normal for shading
- (Diffuse: dot product between light direction and normal, clamp to zero)
- Normal is gonstant over the plane

Questions?

Courtesy of Henrik Wann Jensen. Used with permission.
Image by Henrik Wann Jensen

Ray Casting

- Ray Casting Basics
- Camera and Ray Generation
- Ray-Plane Intersection
- Ray-Sphere Intersection

Sphere Representation?

- Implicit sphere equation
- Assume centered at origin (easy to translate)
$-\mathrm{H}(\mathrm{P})=\|\mathrm{P}\|^{2}-\mathrm{r}^{2}=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0$

Ray-Sphere Intersection

- Insert explicit equation of ray into implicit equation of sphere $\&$ solve for t

$$
\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t}^{*} \mathrm{R}_{\mathrm{d}} \quad ; \quad \mathrm{H}(\mathrm{P})=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0
$$

$$
\left(R_{o}+t R_{d}\right) \cdot\left(R_{o}+t R_{d}\right)-r^{2}=0
$$

Ray-Sphere Intersection

- Quadratic: $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0$
$-\mathrm{a}=1 \quad$ (remember, $\left\|\mathrm{R}_{\mathrm{d}}\right\|=1$)
$-\mathrm{b}=2 \mathrm{R}_{\mathrm{d}} \cdot \mathrm{R}_{\mathrm{o}}$
$-\mathrm{c}=\mathrm{R}_{\mathrm{o}} \cdot \mathrm{R}_{\mathrm{o}}-\mathrm{r}^{2}$
- with discriminant $d=\sqrt{b^{2}-4 a c}$
- and solutions $\quad t_{ \pm}=\frac{-b \pm d}{2 a}$

Ray-Sphere Intersection

- 3 cases, depending on the sign of $b^{2}-4 a c$
- What do these cases correspond to?
- Which root ($\mathrm{t}+$ or $\mathrm{t}-$) should you choose?
- Closest positive!

Ray-sphere Intersection

- It's so easy that all ray-tracing images
have spheres!

Sphere Normal

- Simply $\mathrm{Q} /||\mathrm{Q}||$
$-\mathrm{Q}=\mathrm{P}(\mathrm{t})$, intersection point
- (for spheres centered at origin)

Questions?

Courtesy of Henrik Wann Jensen. Used with permission.

That's All for Today

- But before we talk about the quiz, let's watch a cool video!
- Next time: Ray-triangle intersection, ray tracing

MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

