
MIT OpenCourseWare
http://ocw.mit.edu 

6.854J / 18.415J Advanced Algorithms 
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


18.415/6.854 Advanced Algorithms November 26, 2008 

Lecture 21: Convex Hull in R2 and Small-d LP’s 
Lecturer: Michel X. Goemans 

1 Introduction 

The first two thirds of this lecture serve as an introduction to this class’s coverage of computational 
geometry. The reader is referred to [1] for additional coverage. We’ll consider several approaches for 
finding the convex hull of a set of points. The first three algorithms discussed pertain to points in 
R

2 . Then, and more extensively in later lectures, we’ll generalize to consider the Rn case. 
In the final third of this lecture we will return to the previous topic of linear programming, this 
time considering programs relevant to computational geometry- dealing with a small fixed number 
of variables. In the general n-dimensional case, no strongly polynomial algorithm is known. For 
the case of a small fixed dimension, however, we will see a deterministic algorithm that runs in 
polynomial time without dependence on the size of the coefficients defining the problem. In the next 
lecture, we’ll see a randomized version that runs in linear time. 

2 Convex Hulls in 2-Dimensions 

Definition 1 A set of points, C, is convex if the line segment joining any pair of points of C lies 
entirely in C. The convex hull of a set of points, S, is the intersection of all convex sets containing 

S. 

We wish to find the convex hull of a given set of n points S = p1, p2, ...pn ∈ R2 . Representing a 
general convex hull is a nontrivial problem, but in two dimensions it is simple enough to come up 
with a convention. For purposes of this lecture, the convex hull H of S ∈ R

2 will be expressed 
non-uniquely as a clockwise ordered list of the vertices defining the boundary of the hull, and we 
will refer to this list as the convex hull. For example, given the points: 

the hull H would be an ordered list (p4, p1, p5, p7, p6). Alternatively, the list (p1, p5, p7, p6, p4) would 
also be a correct output. 

21-1 



2.1 The Gift Wrapping Algorithm 

The idea of the gift-wrapping algorithm is as follows: if we can start from some point on the 
boundary of the desired hull H , we can consider wrapping a string around all points in the set. 
This string (or wrapping paper in three dimensions) will contact only points on the boundary of the 
hull, one-by-one in order. The algorithm therefore starts with a point known to be in the hull. We 
can take, for example, the lowest point in the set (smallest y-coordinate)- if there are more than 
one, then the leftmost of these. In the example, this is the point p4. The algorithm then considers 
every edge (p4, pi) and calculates the angle between that edge and horizontal, and chooses the point 
corresponding to the edge with smallest angle. The motion of “sweeping around” continues by 
iterating this step, finding the edge forming with smallest angle with the previous previous edge in 
the list for each subsequent point. 

Algorithm 1 Gift Wrapping Algorithm 

i ← i0 with pi0 the lowest,leftmost point in the set S 
H ← {i0} 
repeat 

let j : (pi, pj ) be the edge forming the smallest angle with previous convex hull edge 
i ← j 
H ← prepend(H, pi) 

until i = i0 

return H 

Runtime Analysis. The initial “find min” runs in O(n) for each vertex in the hull, say there are 
h of them, the algorithm must calculate the angle of the line, an operation requiring constant time, 
O(1) thus, in total, O(n) for each vertex in the hull and therefore, O(nh) for the entire algorithm. 
This running time bound is output-sensitive. There exist 2d convex hull algorithms running in time 
O(n log h). 

2.2 Divide and Conquer Algorithm 

Given the convex hull A of the left half of a set of points, and B that of the right half, if one can 
easily compute the convex hull of the entire set, then this method can be used to recursively compute 
the convex hull of a set S with a divide-and-conquer approach. In the divide step we recursively 
partition our set using median search to divide sets into > and ≤ this median. The conquer step 
becomes trivial since the convex hull of a single point is just the point itself. Finally we recursively 
merge the hulls of left and right subsets. We now examine the MERGE procedure in detail. 
Our MERGE(A,B) merges (disjoint) left and right hulls by finding the lower and upper segments 
which connect the hulls to form the total convex hull. All points no longer on the boundary are 

21-2 



removed from the merged hull. In each case the key is for the lower segment to be lower tangent to 
both A and B and the upper segment to be upper tangent both A and B. 

Definition 2 A line segment is lower tangent to a set, S, if it intersects S at one point and if the 

remainder of S is above the line L formed by extending the segment to infinity in both directions. 

Similarly, a segment is upper tangent to a set, S, if it intersects S at one point and if the remainder 

of S is below L. 

The MERGE procedure (see Algorithm 2) finds these segments by beginning with the segment 
connecting the right-most point of A and the left-most point of B and then alternates between 
walking down B and A; it switches to walking down the other whenever the current segment becomes 
lower tangent to one of them. This continues until the segment is lower tangent to both A and B. 

Claim 1 The algorithm terminates. 

Lemma 2 At any time during the execution of the algorithm, the segment (ai, bj ) intersects neither 

the interior of A nor the interior of B. 

Proof: Clearly this is true initially, when ai is the right-most point of A and bj is the left most 
point of B. So the lemma is true iff either form of moving (taking a step clockwise around one 
hull or counterclockwise around the other) preserves the property. This is the case because, if we 
intersect the interior of say B for the first time by moving along B, in fact, we must have been at a 
lower tangent of B. The proves the lemma. � 
To prove the claim that the algorithm terminates, notice that the lemma implies that the algorithm 
will never consider a point in A past the leftmost point. Likewise for B and the rightmost point. 
This completes the proof that the algorithm must terminate. 

21-3 



Algorithm 2 MERGE left and right convex hulls. 

Given: the convex hulls A = (a0, a2, ...am−1) and B = (b1, b2, ...bn−1) 
Find: The convex hull H of A ∪ B 
(i) Find the upper connecting segment 

ai ← the right-most point ofA

bj ← the left-most point ofB

while (ai, bj ) is not a upper tangent of A and B do


while (ai, bj ) is not a upper tangent of B do

j ← j + 1


end while

while (ai, bj ) is not a upper tangent of A do


i ← i − 1

end while


end while{thus walking counterclockwise around A and clockwise around B}

(uA, uB)← (i, j)


(ii) Find lower connecting segment 

ai ← the right-most point of A 
bj ← the left-most point of B 
while (ai, bj ) is not a lower tangent of A and B do 

while (ai, bj ) is not a lower tangent of B do 
j ← j − 1 

end while

while (ai, bj ) is not a lower tangent of A do


i ← i + 1

end while 

end while{thus, the algorithm walks clockwise around A and walks counterclockwise around B}. 
(lA, lB )← (i, j) 

(iii) Merge hulls 

H ← (auA , bub , . . . , blb , ala , auA − 1) {taking a indices mod m and b indices mod n} 
return H 

21-4 



Runtime Analysis. Since MERGE(A,B) must terminate after at most n steps, where n is the 
total number of points in both hulls, MERGE(A,B) has runtime O(n). Considering the recursion 
used in the divide step (merge sort requiring only O(n) time), T (n) = 2T (n/2) + O(n) thus, the 
entire procedure’s runtime is O(n log n). 

2.3 Incremental Algorithm 

We now consider an algorithm based on the idea of efficiently adjusting a known convex hull H of 
′ a set S to obtain the convex hull H of S ∪ {p} whenever we add a single point p to S. 

One approach might be as follows: if the new point p lies inside H then ignore it; if it lies outside 
′ H , figure out how to add it to H to get H . However, constructing an entire convex hull this way 

can easily take quadratic time since it takes O(n) to check the position of each new pi+1 relative to 
each boundary segment of the hull Hi. 
This approach can be rescued in two different ways. One is to randomly order the points and one 
can then prove that the expected runtime of this randomized incremental algorithm is O(n log n). 
Or, and this is the approach we follow now, we can first sort the points by their x coordinate. Then 
at each iteration, we know that the point pi will be added to the hull, since it is the right-most point 
of the set {p1, . . . , pi}, and we just have to work outward from pi−1 in the hull Hi−1 to identify the 
vertices forming the upper and lower tangents of pi with Hi−1. Hence we use a procedure similar 
to the technique we saw in the MERGE step of the divide-and-conquer approach, testing edges first 
clockwise around Hi−1 to find a lower tangent, and then counterclockwise to find an upper tangent. 

21-5 



Edges and vertices are removed when they are between the intersections of the two tangent lines. 
The test for finding a tangent edge is simple: consider extending the current edge connecting pn+1 

with the hull of S to a full line. If all of S is above this line, the line is lower tangent. If all of S is 
below this line, the line is upper tangent. Thus, a simple test to decide whether or not to continue 
walking is to check if the next point which would be walked to is above or below the extended line 
of (pn+1, pi). If looking for an upper tangent, one stops when the next point is found to be below 
the line. If looking for a lower tangent, one stops when the next point is found to be above the line. 

Definition 3 Points in the hull of S above the left most point of S are said to comprise the upper 
envelope of S. Points in the hull of S below the left most point of S are said to comprise the lower 
envelope of S 

Algorithm 3 MERGE(H,p) incremental merge step 

(i) Find lower tangent segment of pn+1 and H 

pi ← the right-most point of H 
while (pi, pn+1) is not a lower tangent to S do 

Remove pi from S ′ 

pi ← pi+1 

end while 
lH ← i 

(ii) Similarly, find upper tangent segment (pn+1, puH ) between pn+1 and H . 
(iii) Compute hull 

′ H ← (puH , pn+1, plH , . . . , puH −1) {taking indices mod n where appropriate} 
′ return H 

Runtime Analysis. The initial sort of the points by their x coordinate takes O(n log n) time. 
For each addition of a new point, pn+1, the number of iterations performed equals the number 
of edges deleted from the hull of S in making the hull of S ′ . Therefore, since the total number of 
edges deleted is upper bounded by the total number of edges created and since at most two edges are 
created whenever we add a point, we derive that the entire algorithm performs O(n) iterations. Each 
iteration takes O(1) time, for a running time of O(n) over all iterations, and a total of O(n log n) 
taking into account the initial sort. 

21-6 



2.4 A Lower Bound on Two-Dimensional Comvex Hull Computations 

Theorem 3 Convex hull algorithms for n points in R2 is as hard as sorting. 

Proof: We reduce the problem of sorting n numbers x1, x2, ..., xn ∈ R to a convex hull computation. 
Consider the set of points S = ((x1, x1

2), (x2, x2
2), ..., (xn, xn

2 ) on a parabola in R2 . Knowing the 
ordering in which these points appear on their convex hull allows to easily sort the original numbers 
x1, · · · , xn as the orderings are the same (up to a possible cylic shift). � 
However, we have to be careful how we interpret that result. Indeed, the classical Ω(n log n) lower 
bound for sorting applies in the comparison model, but in the comparison model, one cannot even 
compute the convex hull. See Sedgewick and Wayne [2] for a more detailed discussion. Yao [3] 
has shown that in the quadratic decision tree model in which one can test the sign of a quadratic 
polynomial, the number of operations required for computing the convex hull of n points in R2 is 
Ω(n log n). 

3 Convex Hulls in Higher Dimensions 

In higher dimensions, we can no longer represent convex hulls as simple ordered lists. The boundary 
of a d-dimensional convex hull is a collection of d − 1-dimensional polytopes, which in turn are 
described by “faces” of dimension 0, . . . , d − 2. The terminology for faces is the following: 

dim name 
0 vertices 
1 edges 
d-2 ridges 
d-1 facets 

To describe such a hull, one typically constructs an incidence graph. The vertices of this graph may 
either correspond to all faces, or just to the ridges and facets. We connect a k-dimensional face F 

′ ′ with a k − 1-dimensional face F if F contains F . 
What is the complexity of the output? In 2 dimensions, the number of faces is O(n). In 3 dimensions, 
Euler’s formula says that h − e + f = 2 where h is number of vertices, e is number of edges, and f 
is number of faces, and this implies that e, f = O(n). In 3 dimensions, the gift wrapping algorithm 
as well as an incremental algorithm run in O(n2) time, while a more complex divide-and-conquer 
algorithm can be made to run in O(n log n) time. For higher dimension D, one can show that the 
number of facets is O(n⌊d/2⌋), so this is definitely a lower bound on the time required to construct a 
convex hull. Not surprisingly, in general, convex hull algorithms are considerably more complicated 
in higher dimensions. In the next lecture, we’ll see a simple randomized algorithm achieving the 
lower bound (for d > 3). 

4 Linear Programming in fixed dimension 

Consider a linear program: 
Max c T x 

Ax ≤ b, 

where A ∈ Rn×d , x ∈ Rd, and the dimension d is fixed (not part of the input). 
As said in earlier lectures, a strongly polynomial (i.e. not dependent on the size of the entries of 
the data) time algorithm for linear programming in the general case is not known. However, for 
fixed dimension, we’ll show that such algorithm exists, and we will present a simple randomized 
algorithm whose running time will be linear in n (for fixed d). This was sketched in this lecture, but 
the derivation will be formalized in the next lecture. 

21-7 



References 

[1] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, “Computational Geometry”, 3rd 
edition, Springer, 2008. 

[2] R. Sedgewick and K. Wayne, “Algorithms”, 4th Edition. 

[3] A. C.-C. Yao, “A Lower Bound to Finding Convex Hulls”, J. ACM, 28, 780–787, 1981. 

21-8 


