
New Verilog-2001 Techniques for Creating Parameterized Models
(or Down With `define and Death of a defparam!)

Clifford E. Cummings
Sunburst Design, Inc.

Abstract

Creating reusable models typically requires that
general-purpose models be written with re-definable
parameters such as SIZE, WIDTH and DEPTH.

With respect to coding parameterized Verilog models,
two Verilog constructs that are over-used and abused are
the global macro definition (`define) and the infinitely
abusable parameter redefinition statement (defparam).

This paper will detail techniques for coding proper
parameterized models, detail the differences between
parameters and macro definitions, present guidelines for
using macros, parameters and parameter definitions,
discourage the use of defparams, and detail Verilog-2001
enhancements to enhance coding and usage of
parameterized models.

1. Introduction

Two Verilog constructs that are overused and abused
are the Verilog macro definition statement (`define) and
the infinitely abusable defparam statement. It is the
author's opinion that macro definitions are largely over
used to avoid the potential abuse of the dangerous
defparam statement by design teams.

Respected Verilog and verification texts over-promote
the usage of the macro definition (`define) statement,
and those recommendations are being followed without
recognition of the dangers that these recommendations
introduce.

Note: even though multiple questionable parameter and
macro definition recommendations are cited from
Principles of Verifiable RTL Design by Bening and
Foster[13] and from Writing Testbenches, Functional
Verification of HDL Models by Bergeron[8], I still
recommend both texts for the other valuable material they
both contain, especially the text by Bening and Foster.

2. Verilog Constants

In Verilog-1995[6], there are two ways to define
constants: the parameter, a constant that is local to a
module and macro definitions, created using the `define
compiler directive.

A parameter, after it is declared, is referenced using
the parameter name.

A `define macro definition, after it is defined, is
referenced using the macro name with a preceding `
(back-tic) character.

It is easy to distinguish between parameters and
macros in a design because macros have a
`identifier_name while a parameter is just the
identifier_name without back-tic.

3. Parameters

Parameters must be defined within module boundaries
using the keyword parameter.

A parameter is a constant that is local to a module
that can optionally be redefined on an instance-by-
instance basis. For parameterized modules, one or more
parameter declarations typically precede the port
declarations in a Verilog-1995 style model, such as the
simple register model in Example 1.

module register (q, d, clk, rst_n);

 parameter SIZE=8;

 output [SIZE-1:0] q;

 input [SIZE-1:0] d;

 input clk, rst_n;

 reg [SIZE-1:0] q;

 always @(posedge clk or negedge rst_n)

 if (!rst_n) q <= 0;

 else q <= d;

endmodule

Example 1 - Parameterized register model - Verilog-1995
style

HDLCON 2002 1 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

The Verilog-2001[5] version of the same model can
take advantage of both the ANSI-C style ports and module
header parameter list, as shown in Example 2.

module register2001 #(parameter SIZE=8)

 (output reg [SIZE-1:0] q,

 input [SIZE-1:0] d,

 input clk, rst_n);

 always @(posedge clk, negedge rst_n)

 if (!rst_n) q <= 0;

 else q <= d;

endmodule

Example 2 - Parameterized register model - Verilog-2001
style

4. Parameters and Parameter Redefinition

When instantiating modules with parameters, in
Verilog-1995 there are two ways to change the parameters
for some or all of the instantiated modules; parameter
redefinition in the instantiation itself, or separate
defparam statements.

Verilog-2001 adds a third and superior method to
change the parameters on instantiated modules by using
named parameter passing in the instantiation itself (see
section 7).

5. Parameter redefinition using #

Parameter redefinition during instantiation of a module
uses the # character to indicate that the parameters of the
instantiated module are to be redefined.

In Example 3, two copies of the register from Example
1 are instantiated into the two_regs1 module. The SIZE
parameter for both instances is set to 16 by the #(16)
parameter redefinition values on the same lines as the
register instantiations themselves.

module two_regs1 (q, d, clk, rst_n);

 output [15:0] q;

 input [15:0] d;

 input clk, rst_n;

 wire [15:0] dx;

 register #(16) r1 (.q(q), .d(dx),

 .clk(clk), .rst_n(rst_n));

 register #(16) r2(.q(dx), .d(d),

 .clk(clk), .rst_n(rst_n));

endmodule

Example 3 - Instantiation using parameter redefinition

This form of parameter redefinition has been supported
by all synthesis tools for many years.

The biggest problem with this type of parameter
redefinition is that the parameters must be passed to the
instantiated module in the order that they appear in the
module being instantiated.

Consider the myreg module of Example 4.

module myreg (q, d, clk, rst_n);

 parameter Trst = 1,

 Tckq = 1,

 SIZE = 4,

 VERSION = "1.1";

 output [SIZE-1:0] q;

 input [SIZE-1:0] d;
 input clk, rst_n;
 reg [SIZE-1:0] q;

 always @(posedge clk or negedge rst_n)

 if (!rst_n) q <= #Trst 0;

 else q <= #Tckq d;

endmodule

Example 4 - Module with four parameters

The myreg module of Example 4 has four parameters,
and if the module, when instantiated, requires that just the
third parameter, (for example the SIZE parameter) be
changed, the module cannot be instantiated with a series
of commas followed by the new value for the SIZE
parameter as shown in Example 5. This would be a syntax
error.

module bad_wrapper (q, d, clk, rst_n);

 output [7:0] q;

 input [7:0] d;

 input clk, rst_n;

 // illegal parameter passing example

 myreg #(,,8) r1 (.q(q), .d(d),

 .clk(clk), .rst_n(rst_n));

endmodule

Example 5 - Parameter redefinition with #(,,8) syntax
error

In order to use the parameter redefinition syntax when
instantiating a module, all parameter values up to and
including all values that are changed, must be listed in the
instantiation. For the myreg module of Example 4, the
first two parameter values must be listed, even though
they do not change, followed by the new value for the
SIZE parameter, as shown in Example 6.

HDLCON 2002 2 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

module good_wrapper (q, d, clk, rst_n);

 output [7:0] q;

 input [7:0] d;

 input clk, rst_n;

 // the first two parameters must be

 // explicitly passed even though the

 // values did not change

 myreg #(1,1,8) r1 (.q(q), .d(d),

 .clk(clk), .rst_n(rst_n));

endmodule

Example 6 - Parameter redefinition with correct #(1,1,8)
syntax

Aware of this limitation, engineers have frequently
rearranged the order of the parameters to make sure that
the most frequently used parameters are placed first in a
module, similar to the technique described by Thomas and
Moorby[4].

Despite the limitations of Verilog-1995 parameter
redefinition, it is still the best supported and cleanest
method for modifying the parameters of an instantiated
module.

Verilog-2001 actually enhances the above parameter
redefinition capability by adding the ability to pass the
parameters by name, similar to passing port connections
by name. See section 7 for information on this new and
preferred way of passing parameters to instantiated
modules.

6. Death to defparams!

First impressions of defparam statements are very
favorable. In fact, many authors, like Bergeron, prefer
usage of the defparam statement because "it is self
documenting and robust to changes in parameter
declarations"[9].

The defparam statement explicitly identifies the
instance and the individual parameter that is to be
redefined by each defparam statement. The defparam
statement can be placed before the instance, after the
instance or anywhere else in the file.

Until the year 2000, Synopsys tools did not permit
parameter redefinition using defparam statements.
Synopsys was to be commended for this restriction.
Unfortunately, Synopsys developers bowed to pressure
from uninformed engineers and added the ability to use
defparam statements in recent versions of Synopsys
tools.

Unfortunately, the well-intentioned defparam

statement is easily abused by:

(1)	 using defparam to hierarchically change the
parameters of a module.

(2) placing the defparam statement in a separate file
from the instance being modified.

(3)	 using multiple defparam statements in the same
file to change the parameters of an instance.

(4)	 using multiple defparam statements in multiple
different files to change the parameters of an
instance.

6.1. Hierarchical defparams

It is legal to hierarchically change the values of
parameters using a defparam statement. This means that
any parameter in a design can be changed from any
input file in the design. Potentially, the abuse could extend
to changing the parameter value of the module that
instantiated the module with the defparam statement and
pass that parameter to the instantiated module that in
turn re-modifies the parameter of the instantiating
module again, etc.

In Example 7, the testbench module
(tb_defparam) instantiates a model and passes the SIZE
parameter to the register module (passed to the WIDTH
parameter), which passes the WIDTH parameter to the dff
module (passed to the N parameter). The dff module has
an erroneous hierarchical defparam statement that
changes the testbench SIZE parameter from 8 to 1 and
that value is again passed down the hierarchy to change
the register WIDTH and the dff N values again.

module tb_defparam;

 parameter SIZE=8;

 wire [SIZE-1:0] q;

 reg [SIZE-1:0] d;

 reg clk, rst_n;

 register2 #(SIZE) r1

 (.q(q), .d(d), .clk(clk),

 .rst_n(rst_n));

 // ...

endmodule

module register2 (q, d, clk, rst_n);

 parameter WIDTH=8;

 output [WIDTH-1:0] q;

 input [WIDTH-1:0] d;

 input 	 clk, rst_n;

 dff #(WIDTH) d1

 (.q(q), .d(d), .clk(clk),

 .rst_n(rst_n));

endmodule

Example 7 - Dangerous use of hierarchical defparam
(example continues on next page)

HDLCON 2002 3 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

module dff (q, d, clk, rst_n);

 parameter N=1;

 output [N-1:0] q;

 input [N-1:0] d;

 input clk, rst_n;

 reg [N-1:0] q;

 // dangerous, hierarchical defparam

 defparam tb_defparam.SIZE = 1;

 always @(posedge clk or negedge rst_n)

 if (!rst_n) q <= 0;

 else q <= d;

endmodule

Example 7 - Dangerous use of hierarchical defparam

All of the ports and variables in the designs in Example
7 are now just one bit wide, while synthesis of the
register2 and dff modules will be eight bits wide. This
type of defparam use can easily escape detection and
cause design and debug problems.

module register3 (q, d, clk, rst_n);

 parameter WIDTH=8;

 output [WIDTH-1:0] q;

 input [WIDTH-1:0] d;

 input clk, rst_n;

 dff3 #(WIDTH) d1

 (.q(q), .d(d), .clk(clk),

 .rst_n(rst_n));

endmodule

module dff3 (q, d, clk, rst_n);

 parameter N=1;

 output [N-1:0] q;

 input [N-1:0] d;

 input clk, rst_n;

 reg [N-1:0] q;

 // dangerous, hierarchical defparam

 defparam register3.WIDTH = 1;

 always @(posedge clk or negedge rst_n)

 if (!rst_n) q <= 0;

 else q <= d;

endmodule

Example 8 - Dangerous hierarchical defparams enclosed
within the register3/dff3 models

Example 8 is similar to Example 7 except that the
defparam redefines the bus widths of the register3
model and appears to be self-contained. Unfortunately,
even though this model will simulate like a 1-bit wide
model, it still synthesizes to an 8-bit wide model.

6.2. defparams in separate files

It is not uncommon to find defparams being abused
by placing them in a completely different file from the
instances being modified[10].

Unfortunately, this practice was semi-encouraged by
the following comment in section 12.2.1 of the Verilog-
1995[6] and Verilog-2001[5] Standards documents:

The defparam statement is particularly useful for
grouping all of the parameter value override
assignments together in one module.

The above text probably should have been deleted
from the Verilog-2001 Standard, but it was not.

It should be noted that the Verilog Standards Group
(VSG) introduced and encourages the use of the superior
capability of passing parameters by name (see section 7),
similar to passing ports by name, when instantiating
modules. The VSG hopes that engineers will take
advantage of this new capability and that defparam
statements eventually die (see section 6.6).

6.3. Multiple defparams in the same file

defparams are abused by placing multiple
defparams in the same file that modify the same
parameter. The Verilog-2001 Standard defines the
correct behavior to be:

In the case of multiple defparams for a

single parameter, the parameter takes the

value of the last defparam statement

encountered in the source text.[5]

In Example 9, two copies of the register from
Example 1 are instantiated into the two_regs2 module.
The SIZE parameter for both instances is set to 16 by
defparam statements placed before the corresponding
register instantiations. A third defparam statement is
placed after the second register instantiation, changing
the size of the second register to 4 by mistake.

HDLCON 2002 4 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

module two_regs2 (q, d, clk, rst_n);

 parameter SIZE = 16;

 output [SIZE-1:0] q;

 input [SIZE-1:0] d;
 input clk, rst_n;
 wire [SIZE-1:0] dx;

 defparam r1.SIZE=16;

 register r1 (.q(q), .d(dx), .clk(clk),

 .rst_n(rst_n));

 defparam r2.SIZE=16;

 register r2 (.q(dx), .d(d), .clk(clk),

 .rst_n(rst_n));

 defparam r2.SIZE=4; // Design error!

endmodule

Example 9 - Instantiation using defparam statements

Because this is a small design and because compilers
will issue "port-size mismatch" warnings, this design will
not be difficult to debug.

Unfortunately, frequently when a second stray
defparam statement is added by mistake, it is added into
a large design with pages of RTL code because the
designer did not notice that an earlier defparam

statement had been used to redefine the same parameter
value. This type of design is typically more confusing and
more difficult to debug.

6.4. Multiple defparams in separate files

defparams are even abused by placing them in
multiple different files.

The practice of placing multiple defparam statements
in different files that make assignments to the same
parameter is very problematic. Multiple defparam
statements are treated differently by different vendors
because the behavior for this scenario was never defined
in the Verilog-1995 Standard.

The Verilog-2001 Standards Group did not want to
encourage this behavior so we added the following
disclaimer to the Verilog-2001 Standard.

When defparams are encountered in multiple

source files, e.g., found by library

searching, the defparam from which the

parameter takes its value is undefined.[5]

The Verilog-2001 Standards Group basically wanted to
discourage this practice altogether so we left the behavior
undefined and documented that fact, hoping to discourage
anyone from requiring vendors to support this flawed
strategy.

6.5. defparams and tools

Since defparams can be placed anywhere in a design
and because they can hierarchically change the
parameter values of any module in a design,
defparams in their current incarnation make it very
difficult to write either a vendor tool or an in-house tool
that can accurately parse a design that is permitted to
include defparam statements[14].

A Verilog compiler cannot determine the actual values
of any parameters until all of the Verilog input files have
been read, because the last file read might change every
single parameter in the design!

I know of some companies that ban the use of
defparams in their Verilog code in order to facilitate the
creation of useful in-house Verilog tools. I agree with this
practice and propose the following guideline:

Guideline: do not use defparams in any Verilog
designs.

A superior alternative to defparam statements is
discussed in section 7.

6.6. Deprecate defparam

The VSG is not the only organization that hopes that
the defparam statement will die (see the end of section
6.2).

The IEEE Verilog Synthesis Interoperability Group
voted not to support defparam statements in the IEEE
Verilog Synthesis Standard[7].

And in April 2002, The SystemVerilog Standards
Group voted unanimously (with one abstention) to
deprecate the defparam statement (possibly remove
support for the defparam statement from future versions
of the Verilog language)[1].

After defparams have been deprecated, the author
suggests that future Verilog tools report errors whenever a
defparam statement is found in any Verilog source code
and then provide a switch to enable defparam statement
use for backward compatibility. An error message similar
to the following is suggested:

"The Verilog compiler found a defparam

statement in the source code at

(file_name/line#).

To use defparam statements in the Verilog

source code, you must include the switch

+Iamstupid on the command line which will

degrade compiler performance and introduce

potential problems but is bug-compatible

with Verilog-1995 implementations.

Defparam statements can be replaced with

named parameter redefinition as define by

the IEEE Verilog-2001 standard."

HDLCON 2002 5 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

The preceeding defparam warning is annoyingly long.
Hopefully users will tire of these long annoying warnings
and remove defparams from their code.

7.	 Verilog-2001 named parameter
redefinition

An enhancement added to the Verilog-2001 Standard is
the ability to instantiate modules with named parameters
in the instantiation itself[3][5].

This enhancement is superior to and eliminates the
need for defparam statements.

module demuxreg (q, d, ce, clk, rst_n);

 output [15:0] q;

 input [7:0] d;
 input ce, clk, rst_n;
 wire [15:0] q;
 wire [7:0] n1;

 not u0 (ce_n, ce);
 regblk #(.SIZE(8)) u1

 (.q(n1), .d (d), .ce(ce),

 .clk(clk), .rst_n(rst_n));

 regblk #(.SIZE(16)) u2

 (.q (q), .d({d,n1}), .ce(ce_n),

 .clk(clk), .rst_n(rst_n));

endmodule

module regblk (q, d, ce, clk, rst_n);

 parameter SIZE = 4;

 output [SIZE-1:0] q;

 input [SIZE-1:0] d;

 input ce, clk, rst_n;

 reg [SIZE-1:0] q;

 always @(posedge clk or negedge rst_n)

 if (!rst_n) q <= 0;

 else if (ce) q <= d;

endmodule

Example 10 - Instantiation using named parameter passing

This new technique offers the advantage of specifically
indicating which parameter is modified (like the
defparam statement) and also places the parameter
values conveniently into the instantiation syntax, like
Verilog-1995 # parameter redefinition.

This is the cleanest way to instantiate models from any
vendor and this is a technique that should be encouraged
by designers and vendors of reusable models.

Because all of the parameter information is included in
the instantiation of the model, this coding style will also
be easiest to parse by vendor and in-house tools.

Guideline: require all passing of parameters to be done
using the new Verilog-2001 named parameter redefinition
technique.

8.	 `define Macro Substitution

The `define compiler directive is used to perform
"global" macro substitution, similar to the C-language
#define directive. Macro substitutions are global from the
point of definition and remain active for all files read after
the macro definition is made or until another macro
definition changes the value of the defined macro or until
the macro is undefined using the `undef compiler
directive.

Macro definitions can exist either inside or outside of a
module declaration, and both are treated the same.
parameter declarations can only be made inside of
module boundaries.

Since macros are defined for all files read after the
macro definition, using macro definitions generally makes
compiling a design file-order dependent.

A typical problem associated with using macro
definitions is that another file might also make a macro
definition to the same macro name. When this occurs,
Verilog compilers issue warnings related to "macro
redefinition" but an unnoticed warning can be costly to the
design or to the debug effort.

Why is it bad to redefine macros? The Verilog
language allows hierarchical referencing of identifiers.
This proves to be very valuable for probing and
debugging a design. If the same macro name has been
given multiple definitions in a design, only the last
definition will be available to the testbench for probing
and debugging purposes.

If you find yourself making multiple macro definitions
to the same macro name, consider that the macro should
probably be a local parameter as opposed to a global
macro.

9.	 `define Usage

Guideline: only use macro definitions for identifiers
that clearly require global definition of an identifier that
will not be modified elsewhere in the design.

Guideline: where possible, place all macro definitions
into one "definitions.vh" file and read the file first
when compiling the design.

Alternate Guideline: place all macro definitions in the
top-level testbench module and read this module first
when compiling the design.

Reading all macro definitions first when compiling a
design insures that the macros exist when they are needed
and that they are globally available to all files compiled in
the design.

Pay attention to warnings about macro redefinition.

Guideline: do not use macro definitions to define
constants that are local to a module.

HDLCON 2002 6 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

10. `define Inclusion

One popular technique to insure that a macro definition
exists before its usage is to use an `ifdef, or the new
Verilog-2001 `ifndef compiler directives to query for
the existence of a macro definition followed by either a
`define macro assignment or a `include of a file name
that contains the require macro definition.

`ifdef CYCLE

 // do nothing (better to use `ifndef)

`else

 `define CYCLE 100

`endif

`ifndef CYCLE

 `include "definitions.vh"

`endif

Example 11 - Testing and defining macro definitions

11. The `undef compiler directive

Verilog has the `undef compiler directive to remove a
macro definition created with the `define compiler
directive.

Bergeron recommends avoiding the use of macro
definitions[11]. I agree with this recommendation.
Bergeron further recommends that all macro definitions
should be removed using `undef when no longer
needed[11]. I disagree with this recommendation. This
seems to be overkill to correct a problem that rarely exists.
Using the `define compiler directive to create global
macros where appropriate is very useful. Losing sleep
over the existence of global macro definitions and
tracking all of the `undef's in a design is not a good use
of time.

For the rare occasion where it might make sense to
redefine a macro, use `undef in the same file and at the
end of the file where the `define macro was defined.

Make sure that the last compiled macro definition is
likely to be the macro that you might want to access from
a testbench, because only one macro definition can exist
during runtime debug.

Again, using a `define-`undef pair should be
considered the last resort to a problem that could probably
be better handled using a better method.

12. Clock cycle definition

Bergeron's somewhat justified paranoia over the use of
the `define macro definition leads him to recommend
that clock cycles be defined using parameters as
opposed to using the `define compiler directive[12].
This recommendation is flawed.

Guideline: make clock cycle definitions using the
`define compiler directive. Example:

`define CYCLE 10

Guideline: place the clock cycle definitions in the
"definitions.vh" file or in the top-level testbench.
Example:

`define CYCLE 10

module tb_cycle;

 // ...

 initial begin

 clk = 1'b0;

 forever #(`CYCLE/2) clk = ~clk;

 end

 // ...

endmodule

Example 12 - Global clock cycle macro definition and
usage (recommended)

Reason: Clock cycles are a fundamental constant of a
design and testbench. The cycle of a common clock signal
should not change from one module to another; the cycle
should be constant!

Verilog power-users do most stimulus generation and
verification testing on clock edges in a testbench. In
general, this type of testbench scales nicely with changes
to the global clock cycle definition.

13. State Machines and `define do not mix

Bening and Foster[13] and Keating and Bricaud[15]
both recommend using the `define compiler directive to
define state names for a Verilog state machine design.
After recommending the use of `define, Keating and
Bricaud subsequently show an example using parameter
definitions instead of using the `define[16]. The latter is
actually preferred.

Finite State Machine (FSM) designs should use
parameters to define state names because the state name
is a constant that applies only to the FSM module. If
multiple state machines are added to a large design, it is
not uncommon to want to reuse certain state names in
multiple FSM designs[1]. Example state names that are
common to multiple designs include: RESET, IDLE,
READY, READ, WRITE, ERROR and DONE.

Using `define to assign state names would either
preclude reuse of a state name because the name has
already been taken in the global name space, or one would
have to `undef state names between modules and re-
`define state names in the new FSM modules. The latter
case makes it difficult to probe the internal values of FSM

HDLCON 2002 7 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

state buses from a testbench and running comparisons to
the state names.

There is no good reason why state names should be
defined using `define. State names should not be
considered part of the global name space. State names
should be considered local names to the FSM module that
encloses them.

Guideline: do not make state assignments using
`define macro definitions for state names.

Guideline: Make state assignments using parameters
with symbolic state names.

14. Verilog-2001 localparam

An enhancement added to the Verilog-2001 Standard is
the localparam.

Unlike a parameter, a localparam cannot be
modified by parameter redefinition (positional or named
redefinition) nor can a localparam be redefined by a
defparam statement.

The localparam can be defined in terms of
parameters that can be redefined by positional
parameter redefinition, named parameter redefinition
(preferred) or defparam statements.

The idea behind the localparam is to permit
generation of some local parameter values based on other
parameters while protecting the localparams from
accidental or incorrect redefinition by an end-user.

In Example 13, the size of the memory array mem
should be generated from the size of the address bus. The
memory depth-size MEM_DEPTH is "protected" from
incorrect settings by placing the MEM_DEPTH in a
localparam declaration. The MEM_DEPTH parameter will
only change if the ASIZE parameter is modified.

module ram1 #(parameter ASIZE=10,

 DSIZE=8)

 (inout [DSIZE-1:0] data,
 input [ASIZE-1:0] addr,
 input en, rw_n);

 // Memory depth equals 2**(ASIZE)

 localparam MEM_DEPTH = 1<<ASIZE;

 reg [DSIZE-1:0] mem [0:MEM_DEPTH-1];

 assign data = (rw_n && en) ? mem[addr]

 : {DSIZE{1'bz}};

 always @(addr, data, rw_n, en)

 if (!rw_n && en) mem[addr] = data;

endmodule

Example 13 - Verilog-2001 ANSI-parameter and port
style model with localparam usage

We want to protect the local MEM_DEPTH parameter
and calculate it from the size parameter value of the
address bus.

Note: the Verilog-2001 Standard does not extend the
capabilities of the localparam enhancement to the module
header parameter list. Specifically, localparam currently
cannot be added to an ANSI-style parameter list as shown
in Example 14.

module multiplier2

 #(parameter AWIDTH=8, BWIDTH=8,

 localparam YWIDTH=AWIDTH+BWIDTH)

 (output [YWIDTH-1:0] y,

 input [AWIDTH-1:0] a,

 input [BWIDTH-1:0] b);

 assign y = a * b;

endmodule

Example 14 - Illegal use of localparam in the ANSI-
parameter header

15. `timescale Definitions

The `timescale directive gives meaning to delays
that may appear in a Verilog model. The timescale is
placed above the module header and takes the form:

`timescale time_unit / time_precision

The `timescale directive can have a huge impact on
the performance of most Verilog simulators. It is a
common new-user mistake to select a time_precision of
1ps (1 pico-second) in order to account for every last
pico-second in a design. adding a 1ps precision to a
model that is adequately modeled using either 1ns or
100ps time_precisions can increase simulation time by
more than 100% and simulation memory usage by more
than 150%. I know of one very popular and severely
flawed synthesis book that shows Verilog coding samples
using a `timescale of 1 ns / 1 fs[17] (measuring
simulation performance on this type of design typically
requires a calendar watch!)

I have seen some engineers use a macro definition to
facilitate changing all `timescales in a design. All
modules coded by these engineers include the timescale
macro before every module header that they ever write.
Example 15 shows a macro definition for a global
`timescale and usage of the global `timescale
macro.

`define tscale `timescale 1ns/1ns

`tscale

module mymodule (...);

 ...

HDLCON 2002 8 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

Example 15 - Global maroc definition of a timescale
macro (not recommended)

These well-meaning engineers typically hope to control
simulation efficiency by changing a global `timescale
definition to potentially modify both the time_units and
time_precisions of every model and enhance simulator
performance.

Globally changing the time_units of every
`timescale in a design can adversely impact the
integrity of an entire design. Any design that includes
#delays relies on the accuracy of the specified time_units
in the `timescale directive. In Example 16, the model
requires that the time_units of the `timescale be in
units of 100ps. Changing the time_units to 1ns changes
the delay from 160ps to 1.6ns, introducing an error into
the model.

`timescale 100ps/10ps

module tribuf2001 #(parameter SIZE=8)

 (output [SIZE-1:0] y,

 input [SIZE-1:0] a,

 input en_n);

 assign #1.6 y = en_n ? {SIZE{1'bz}}:a;

endmodule

Example 16 - Module with 100ps time_units

Since the time_precision must always be equal to or
smaller than the time_unit in a `timescale directive,
additional guidelines should probably be followed if a
global `timescale strategy is being employed:

Guideline: Make all time_units of user defined
`timescales equal to 1ns or larger.

Reason: if a smaller time_unit is used in any model,
globally changing all time_precisions to 1ns will break an
existing design.

Note: If a vendor model is included in the simulation
and if the vendor used a very small time_precision in the
their model, the entire simulation will slow down and very
little will have been accomplished by globally changing
the time_precisions of the user models.

To enhance simulator performance, using a unit-delay
simulation mode or using cycle based simulators are better
options than macro-generating all of the `timescales in
a design.

16. Conclusions

Macro definitions should be used to define system-
global constants, such as a user-friendly set of names for
PCI commands or global clock cycle definitions.

Each time a new macro definition is made, that macro
name cannot be safely used elsewhere in the design

(name-space pollution). As more and more modules are
compiled into large system simulations, the likelihood of
macro-name collision increases. The practice of making
macro definitions for constants such as port or data sizes
and state names is an ill-advised practice.

Macro definitions using the `define compiler
directive should not be used to define constants that can
be better localized to individual modules.

Verilog parameters are intended to represent
constants that are local to a module. A parameter has
the added benefit that each different instance of the
module can have different values for the parameters in
each module.

The following is a summary of important guidelines
outlined in this paper:

Guideline: do not use defparams in any Verilog
designs.

Guideline: require all passing of parameters to be done
using the new Verilog-2001 named parameter redefinition
technique.

Guideline: only use macro definitions for identifiers
that clearly require global definition of an identifier that
will not be modified elsewhere in the design.

Guideline: where possible, place all macro definitions
into one "definitions.vh" file and read the file first
when compiling the design.

Alternate Guideline: place all macro definitions in the
top-level testbench module and read this module first
when compiling the design.

Guideline: do not use macro definitions to define
constants that are local to a module.

Guideline: make clock cycle definitions using the
`define compiler directive.

Guideline: place the clock cycle definitions in the
"definitions.vh" file or in the top-level testbench.

Guideline: do not make state assignments using
`define macro definitions for state names.

Guideline: Make state assignments using parameters
with symbolic state names.

Guideline: To improve simulation efficiency, make all
time_units of user defined `timescales equal to 1ns or
larger.

In his book Writing Testbenches, Functional
Verification of HDL Models, Bergeron claims that VHDL
and Verilog both have the same area under the learning
curve[8]. Due to the misinformation that has been spread
through numerous Verilog books and training courses, I
am afraid Bergeron may be right. When Verilog is taught
correctly, I believe the area under the Verilog learning

HDLCON 2002 9 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

curve is much smaller (and Verilog simulations run much
faster).

"Long live named parameter redefinition!"

"Death to defparams!"

17. References

[1]	 Accellera - SystemVerilog 3.0 Accellera's Extensions to
Verilog/Draft 6. www.accellera.org (not publicly available
at this time).

[2]	 Clifford E. Cummings, "State Machine Coding Styles for
Synthesis," SNUG'98 (Synopsys Users Group San Jose,
CA, 1998) Proceedings, March 1998. Also available at
www.sunburst-design.com/papers

[3]	 Clifford E. Cummings, "Verilog-2001 Behavioral and
Synthesis Enhancements," Delivered at HDLCON-2001 but
missed publication in the Proceedings, March 2001.
Available at www.sunburst-design.com/papers

[4]	 Donald Thomas, and Philip Moorby, The Verilog
Hardware Description Language, Fourth Edition, Kluwer
Academic Publishers, 1998, pg. 142. (re-ordering the
parameter redefinition list)

[5]	 IEEE Standard Verilog Hardware Description Language,
IEEE Computer Society, IEEE, New York, NY, IEEE Std
1364-2001,

[6]	 IEEE Standard Hardware Description Language Based on
the Verilog Hardware Description Language, IEEE
Computer Society, IEEE, New York, NY, IEEE Std 1364
1995

[7]	 IEEE P1364.1/D2.1 Draft Standard for Verilog Register
Transfer Level Synthesis, http://www.eda.org/vlog-
synth/drafts.html

[8]	 Janick Bergeron, Writing Testbenches, Functional
Verification of HDL Models, Kluwer Academic Publishers,
2000, pg. xxi. (Verilog learning curve)

[9]	 Janick Bergeron, Writing Testbenches, Functional
Verification of HDL Models, Kluwer Academic Publishers,
2000, pg. 265. (why people use defparam)

[10] Janick	 Bergeron, Writing Testbenches, Functional
Verification of HDL Models, Kluwer Academic Publishers,
2000, pg. 267. (defparam file)

[11] Janick	 Bergeron, Writing Testbenches, Functional
Verification of HDL Models, Kluwer Academic Publishers,
2000, pg. 340. (avoid `define and `undef all `defines)

[12] Janick	 Bergeron, Writing Testbenches, Functional
Verification of HDL Models, Kluwer Academic Publishers,
2000, pg. 341. (parameter CYCLE)

[13] Lionel Bening, and Harry Foster, Principles of Verifiable
RTL Design, Second Edition, Kluwer Academic
Publishers, 2001, pg. 146. (recommendation to use `define
for FSM state names)

[14] Lionel Bening, and Harry Foster, Principles of Verifiable
RTL Design, Second Edition, Kluwer Academic
Publishers, 2001, pg. 147. (tool implementation of
parameters are more difficult than `define)

[15] Michael Keating, and Pierre Bricaud, Reuse Methodology
Manual, Second Edition, Kluwer Academic Publishers,
1999, pg. 110. (recommendation to use `define for state
names)

[16] Michael Keating, and Pierre Bricaud, Reuse Methodology
Manual, Second Edition, Kluwer Academic Publishers,
1999, pg. 112. (example state machine design uses
parameters)

[17] Pran	 Kurup, and Taher Abbasi, Logic Synthesis Using
Synopsys, Second Edition, Kluwer Academic Publishers,
1997 (book not recommended!)

Revision 1.2 (May 2002) - What Changed?

The text before Example 16 incorrectly stated that
"Changing the time_units to 1ns changes the delay from
1.6ns to 16ns, introducing an error into the model." The
corrected text reads, "Changing the time_units to 1ns
changes the delay from 160ps to 1.6ns, introducing an
error into the model."

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is
an independent EDA consultant and trainer with 20 years
of ASIC, FPGA and system design experience and ten
years of Verilog, synthesis and methodology training
experience.

Mr. Cummings, a member of the IEEE 1364 Verilog
Standards Group (VSG) since 1994, chaired the VSG
Behavioral Task Force, which was charged with
proposing enhancements to the Verilog language. Mr.
Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group and the
Accellera SystemVerilog Standardization Group

Mr. Cummings holds a BSEE from Brigham Young
University and an MSEE from Oregon State University.

This paper can be downloaded from the web site:
www.sunburst-design.com/papers

(Data accurate as of April 19th, 2002)

HDLCON 2002 10 New Verilog-2001 Techniques for Creating Parameterized Models
Rev 1.2 (or Down With `define and Death of a defparam!)

