MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.976 High Speed Communication Circuits and Systems Lecture 13 High Speed Digital Circuits

> Michael Perrott Massachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

High Speed Digital Design in Wireless Systems

Primary application areas

- Divider within frequency synthesizer
- High speed A/D's and D/A's in future wireless systems
- Design Issues
 - Speed want it to be fast
 - Power want low power dissipation
 - Noise need to be careful of how it impacts analog circuits

High Speed Digital Design in High Speed Data Links

- Primary application areas
 - Phase detector within CDR
 - High speed A/D's and D/A's in future systems
- Design Issues

Same as wireless, but dealing with non-periodic signals M.H. Perrott

Note: much of the material to follow can be found in

J. Rabaey, "Digital Integrated Circuits: A Design Perspective", Prentice Hall, 1996

The CMOS Inverter As An Amplifier (From Lecture 5)

- Small signal assumption allows linearized modeling
- Key metric for speed: gain-bandwidth product (= f_t)
 - Strive for high transconductance to capacitance ratio (= f_t)
 - Increase speed by lowering gain (use low valued resistors)
 - Minimize capacitance for given level of transconductance
- How does digital design differ?

The CMOS Inverter as a Digital Circuit

- Large signal variation prevents linearized modeling
 - We must examine nonlinear behavior of devices
- Key metric for speed: propagation delay
 - What device parameters influence this?
 - What are the tradeoffs?

Key Issue for High Speed – Fast Rise and Fall Times

- For digital circuit, propagation delays primarily set by rise and fall times
 - Rise and fall times set by slew rate
 - Slew rate: ratio of driving current to load capacitance
 - Faster speed obtained with higher slew rates
 - Key performance metric: current drive/capacitance
 - Compare with analog: transconductance/capacitance

Designing for High Speed

- Design parameters
 - Voltage supply (and voltage swing)
 - Scaling of NMOS and PMOS devices
 - Relative to each other
 - In an absolute sense
 - Circuit architecture (impacts drive current/capacitance ratio)
- Key focus point: how is drive current and capacitance influenced by these parameters?
- Focus on voltage and sizing issues first M.H. Perrott

Impact of Voltage and Sizing on Drive Current

- Rigorous analysis is difficult
 - Transistor goes through different regions of operation as load capacitance is charged (i.e., cutoff, triode, saturation)
 - Transistor physics is changing over time
 - Velocity saturation is becoming an important issue
- We need a simple approach for intuition
 - Assume device is in saturation the entire time load capacitor is being charged

We classically assume that MOS current is calculated as

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T)^2$$

Which is really

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T) V_{dsat,l}$$

- V_{dsat,I} corresponds to the saturation voltage at a given length, which we often refer to as ΔV
- It may be shown that

$$V_{dsat,l} \approx \frac{(V_{gs} - V_T)(LE_{sat})}{(V_{gs} - V_T) + (LE_{sat})} = (V_{gs} - V_T)||(LE_{sat})$$

- If V_{gs}-V_T approaches LE_{sat} in value, then the top equation is no longer valid
 - We say that the device is in velocity saturation

Analytical Device Modeling in Velocity Saturation (Lec 5)

If L small (as in modern devices), than velocity saturation will impact us for even moderate values of V_{gs}-V_T

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T) [(V_{gs} - V_T) || (LE_{sat})]$$

$$\Rightarrow I_D \approx \frac{\mu_n C_{ox}}{2} W(V_{gs} - V_T) E_{sat}$$

- Current increases linearly with V_{gs}-V_T
- Current no longer depends on L!
- Note: above is extreme case of velocity saturation!
 - In practice, modern devices operate somewhere between square law and extreme velocity saturation

M.H. Perrott

MIT OCW

Useful References for Velocity Saturation

- For a physics approach
 - See Lundstrom et.al., "Essential Physics of Carrier Transport in Nanoscale MOSFETS", IEEE Transactions on Electron Devices, Jan 2002
- For an engineering model
 - See Toh et. al., "An Engineering Model for Short-Channel MOS Devices", JSSC, Aug 1988, pp 950-958
- In this class
 - We will simply do a quick experimental hack job at assessing its impact

Investigate Velocity Saturation Issue for 0.18µ **Device**

- Linear curve for I_d versus V_{gs}
 - Velocity saturation is indeed an issue
 - How does this impact digital design?

M.H. Perrott

MIT OCW

Impact of Voltage and Sizing On Drive Current

Square Law Device

Velocity Saturated Device

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T)^2 \qquad I_D \approx \frac{\mu_n C_{ox}}{2} W (V_{gs} - V_T) E_{sat}$$

- Voltage supply
 - Drive current increases with higher drive voltage
- Width
 - Current scales proportionally
- Length
 - Current scales inversely proportional for square-law device
 - No dependence for purely velocity saturated device

Impact of Voltage and Sizing on Capacitance

- Voltage supply (and voltage swing)
 - Has no impact on capacitance (to first order)
- Sizing of NMOS and PMOS devices
 - Input capacitance proportional to product of width and length of transistor

 $C_{gs} \propto WL$

Junction and overlap capacitance proportional to W

 $C_{db} \propto W, \quad C_{ov} \propto W$

M.H. Perrott

MIT OCW

Designing For High Speed

- Want the highest ratio of drive current to load capacitance
- Increased supply voltage

Want high voltage supply and small length to achieve high speed

Setting of Transistor Width for High Speed

- Intrinsic performance of device not influenced by W
 - Current/capacitance ratio (considering only device capacitance) is constant with changing W (to first order)
- Within circuit, speed is improved by increasing W when C_{fixed} is significant with respect to device capacitance
 - W should be chosen such that device capacitance equals or exceeds fixed wiring capacitance

Relative Sizing of NMOS and PMOS Devices

Comparison of NMOS and PMOS current drive

Square Law DeviceVelocity Saturated DeviceNMOS
$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{Tn})^2$$
 $I_D \approx \frac{\mu_n C_{ox}}{2} W (V_{gs} - V_{Tn}) E_{sat}$ PMOS $I_D = \frac{\mu_p C_{ox}}{2} \frac{W}{L} (|V_{gs}| - V_{Tp})^2$ $I_D \approx \frac{\mu_p C_{ox}}{2} W (|V_{gs}| - V_{Tp}) E_{sat}$ Primary difference – mobility values (u. versus u.)

Finally difference – mobility values (μ_n versus μ_p)

Capacitance relationships the same for NMOS and PMOS

Relative Sizing to Match Propagation Delays

- Equate drive currents to get same slope when charging and discharging load capacitance
 - Assume minimum L for NMOS and PMOS for high speed
 - Choose W values to accommodate difference between NMOS and PMOS mobility values

$$\Rightarrow \frac{W_p}{W_n} = \frac{\mu_n}{\mu_p} \approx 2.5 \text{ (for } 0.18\mu \text{ CMOS)}$$

Size PMOS devices 2.5 times larger than NMOS!

Modeling Propagation Delays with Resistance

- We can visualize impact of relative transistor sizing between NMOS and PMOS by using switched resistances to represent their current drive
 - Choose α parameter to match propagation times of actual circuit (assume α has same value for NMOS and PMOS)
 - We see that increasing mobility or width reduces resistance
 - Intuitively illustrates impact of these parameters on drive current

• To match propagation delays, set $R_p = R_n \Rightarrow \frac{W_p}{W_n} = \frac{\mu_n}{\mu_p}$

Complementary CMOS Logic

- Composed of pull-up and pull-down networks that are duals of each other
 - Each network composed of NAND (series connection) and/or NOR (parallel connection) functions
- Advantage
 - No static power (except leakage)

Example: NAND Gate

Boolean function

$$Y = \overline{A \cdot B}$$

PDN performs NAND operation

 $PDN = \overline{A \cdot B} \Rightarrow series NMOS$

PUN is dual of PDN

 $PUN = \overline{PDN} = \overline{\overline{A} \cdot \overline{B}} = \overline{\overline{A} + \overline{B}} \Rightarrow parallel PMOS$

Modeling Dynamic Performance of NAND Gate

- Assume NMOS devices are same size and PMOS devices are same size
- Modeling of parallel devices (in PUN above) is straightforward
 - Simply represent with parallel switched resistors
- Modeling of series devices (in PDN above) is not immediately obvious
 - We need to do further investigation

Equivalent Transistor Model of Stacked Transistors

Drive current is created only when both devices are on

- We can hook gates together without loss of generality
- Resulting configuration is equivalent (at least to first order) to a single device with twice the length
- Issue if device velocity saturated, what's the impact?

Let's Do A Test

- In Hspice, simulate the output current of an NMOS transistor with a given V_{as} bias
 - Vary the length of the transistor
 - Scale the current by the length
- For square law device

$$L \cdot I_D = L \cdot \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_T)^2$$

Product independent of length

For velocity saturated device (extreme case)

$$L \cdot I_D \approx L \cdot \frac{\mu_n C_{ox}}{2} W(V_{gs} - V_T) E_{sat}$$

Product increases with length

Length Normalized Drain Current – 0.18µ NMOS Device

Product is relatively constant – square law behavior for L

M.H. Perrott

MIT OCW

Length Normalized Drain Current – 0.18µ PMOS Device

Product is relatively constant – square law behavior for L

M.H. Perrott

MIT OCW

Back to Dynamic Modeling of Stacked Transistors

Since we can assume approximately square law behavior with respect to impact of L for 0.18 micron CMOS

$$\Rightarrow I_D \propto \frac{1}{L}$$

- Model with two switched resistors in series
 - Represents the fact that we have half the drive current

Dynamic Model of NAND Gate

To match worst case propagation delays

$$\Rightarrow 2R_n = R_p$$

$$\Rightarrow W_p = \frac{1}{2} \left(\frac{\mu_n}{\mu_p} \right) W_n = 1.25 W_n \text{ (for } 0.18 \mu \text{ CMOS)}$$

Another Example: NOR Gate

Boolean function

$$Y = \overline{A + B}$$

PDN performs NAND operation

 $PDN = \overline{A + B} \Rightarrow parallel NMOS$

PUN is dual of PDN

 $\mathsf{PUN} = \overline{\mathsf{PDN}} = \overline{\overline{A + B}} = \overline{\overline{A} \cdot \overline{B}} \implies \text{series PMOS}$

M.H. Perrott

MIT OCW

Dynamic Model of NOR Gate

To match worst case delays

$$\Rightarrow 2R_p = R_n$$

$$\Rightarrow W_p = 2\left(\frac{\mu_n}{\mu_p}\right) W_n = 5W_n \text{ (for } 0.18\mu \text{ CMOS)}$$

Comparing the Dynamic Performance of Gates (Step 1)

NOR

- Normalize performance by setting NMOS widths to 1
- PMOS widths set to 5 to match propagation delay

Comparing the Dynamic Performance of Gates (Step 2)

NOR

- Normalize performance by setting NMOS widths to 1
- PMOS widths set to 5 to match NMOS propagation delay
- NAND
 - Match NOR by setting NMOS widths to 2
 - PMOS widths set to 2.5 to match NMOS propagation delay

Comparing the Dynamic Performance of Gates (Step 3)

- Compare the input device capacitance of each gate
 - Proportional to width of devices connected to a given input
 - **Define C** $_{\alpha}$ as a capacitance scaling factor
 - Includes impact of C_{ox}, L, etc.
- We see that the NAND gate is faster than the NOR gate
 - Ratio of current drive to capacitance is higher

Issue – Stacked PMOS Transistors Lower Performance

Why is NOR performance worse than the NAND?

- PMOS create dominant portion of capacitive load
- Stacked PMOS require even larger devices
- Can we eliminate the impact of the PMOS devices on input capacitance (i.e. eliminate the PUN)?
 - Could achieve higher speed!

Technique 1 to Eliminate PUN: Pseudo-NMOS

- Benefit
 - Substantial reduction in input capacitance faster speed!
- Negatives
 - Static power consumption
 - Asymmetric propagation delays (falling edge faster)
 - Output logic levels set by ratio of NMOS to PMOS width
 - Rule of thumb: Set R_p/R_n to 4 (or more)
 - Alternate rule of thumb: Set $W_p = W_n/2$

Dynamic Model for Pseudo-NMOS

- Arbitrarily choose NMOS width to be 1
 - Set PMOS width to be 1/2 according to rule of thumb on previous slide
- Note that negative edge transition at output is 5 times faster than the positive edge transition at output

$$\frac{R_p}{R_n} = \frac{\mu_n W_n}{\mu_p W_p} = 2.5 \frac{1}{0.5} = 5 \text{ (for } 0.18\mu \text{ CMOS)}$$

Comparison of Complementary CMOS vs Pseudo-NMOS

- For same negative transition propagation delay
 - Pseudo-NMOS has nearly 1/10 the input capacitance
- In practice, may want to scale up the pseudo-NMOS sizes to get faster positive transition propagation delay MIT OCW

The Issue of Static Power Dissipation

- Ratio of dynamic power to static power depends on transition activity of output
 - For low transition activity, static power is dominant
 - Could potentially turn off PMOS during quite times?
 - For high transition activity, static and dynamic power may be similar in value
 - Pseudo-NMOS can save power due to reduced capacitive loading

M.H. Perrott

MIT OCW

Sizing PDN Transistors for High Speed

Diffusion capacitance exists on intermediate nodes

- Different effective cap load for each PDN transistor
 - Example: transistor C must discharge C_L, C_{p2}, C_{p1}
- Transistor drive compromised by the floating nodes
 - Example: transistor A has reduced drive for V_{n2} > 0
- Design tips for highest speed
 - Increase the width of devices farthest from output (trans. C)
 - Place signals that transition last closest to output (trans. A)

Technique 2 to Eliminate PUN - DCVSL

Differential Cascade Voltage Swing Logic (DCVSL)

- Employs differential logic structure
- Faster speed than complementary CMOS
- No static power dissipation
- Great for interface between power supply domains
- Issues
 - Slower than Pseudo-NMOS (PMOS gates load output)
 - More power than complementary CMOS

Technique 3 to Eliminate PUN (or PDN): Dynamic Logic

- Use a clock, Φ , to gate the load and PDN network
 - $\Phi = 0$
 - Precharge the output node
 - Shut off current to PDN
 - Φ=1
 - Turn off the precharge device
 - Send current to PDN so that it "evaluates" inputs

M.H. Perrott

MIT OCW

The Pros and Cons of Dynamic Logic

- Benefits
 - High speed (but lower speed than Pseudo-NMOS due to precharge time requirement)
 - No static power, non-ratioed, and low number of transistors
- Issues
 - High design complexity cascading requires care
- Large clock load, minimum clock speed due to leakage M.H. Perrott

Increasing Speed By Reducing Voltage Swing

- The propagation delay is defined as time between input and output crossing at 50% amplitude
- We found that increased voltage is beneficial for speed
 - Increased V_{gs} leads to increased drive current to capacitance ratio
- What if we could keep high drive current to capacitance ratio AND reduce the swing?

Impact of Reduced Swing with Same Drive Current

- Propagation time reduced!
- How do we reduce the swing AND achieve high drive current to capacitance ratio?

Technique 4 to Eliminate PUN: Source-Coupled Logic

- Single-ended version V_{ref} set by bias network
- High speed achieved through
 - Small signal swings
 - Leveraging of a fast amplifier structure
- Load can be implemented in a variety of ways
 - Resistor: highest speed, but large area
 - Diode connected PMOS (or NMOS): slower, but small area
- PMOS in triode region: high speed, but complicated biasing M.H. Perrott

Logic Realization Using Differential SCL

Employs differential signaling (no V_{ref})

- More robust and higher noise margin than singled-ended version
- Ordering of signals yields AND/NAND versus OR/NOR

Comparison of Differential SCL to Full Swing Logic

- Advantages
 - Much faster speed (> 2X with resistor loads)
 - Quieter on supplies (good when analog parts nearby)
- Disadvantages
 - Static current, need for biasing networks
 - Logic implementation more clumsy

Registers

Edge-triggered Registers

- Achieved by cascading two latches that are transparent out of phase from one another
- Two general classes of latches
 - Static employ positive feedback
 - Robust
 - Dynamic store charge on parasitic capacitance
 - Smaller, lower power in most cases
 - Negative: must be refreshed (due to leakage currents)

Static Latches

Classical case employs cross-coupled NAND/NOR gates to achieve positive feedback

Above example uses cross-coupled inverters for positive feedback

- Set, reset, and clock transistors designed to have enough drive to overpower cross-coupled inverters
- Relatively small number of transistors
- Robust

Dynamic Latches

- Leverage CMOS technology
 - High quality switches with small leakage available
 - Can switch in and store charge on parasitic capacitances quite reliability
- Achieves faster speed than full swing logic with fewer transistors
- Issues: higher sensitivity to noise, minimum refresh rate required due to charge leakage

True Single Phase Clocked (TSPC) Latches

- Allow register implementations with only one clock!
 - Latches made transparent at different portions of clock cycle by using appropriate latch "flavor" – n or p
 - n latches are transparent only when Φ is 1
 - p latches are transparent only when Φ is 0
- Benefits: simplified clock distribution, high speed

Positive edge-triggered version

Negative edge-triggered version

A Simplified Approach to TSPC Registers

Clever implementation of TSPC approach can be achieved with reduced transistor count

- For more info on TSPC approach, see
 - J. Yuan and C. Svensson, "New Single-Clock CMOS Latches and Flipflops with Improved Speed and Power Savings", JSSC, Jan 1997, pp 62-69

Embedding of Logic within Latches

- We can often increase the speed of a logic function fed into a latch through embedding
 - Latch slowed down by extra transistors, but logic/latch combination is faster than direct cascade of the functions
- Method can be applied to both static and dynamic approaches
 - Dynamic approach shown above

Highest Speed Achieved with Differential SCL Latch

- Employs positive feedback for memory
 - Realized with cross-coupled NMOS differential pair
- Method of operation
 - Follow mode: current directed through differential amplifier that passes input signal
 - Hold mode: current shifted to cross-coupled pair

Design of Differential SCL Latch with Resistor Loads

 Step 1: Design follower amplifier to have gain of 1.75 to 2 using simulated g_m technique from Lecture 5

Design of Differential SCL Latch with Resistor Loads

- Step 1: Design follower amplifier to have gain of 1.75 to 2 using simulated g_m technique from Lecture 5
- Step 2: For simplicity, size cross-coupled devices the same as computed above (or make them slightly smaller)

Design of Differential SCL Latch with Resistor Loads

- Step 1: Design follower amplifier to have gain of 1.75 to 2 using simulated g_m technique from Lecture 5
- Step 2: For simplicity, size cross-coupled devices the same as computed above (or make them slightly smaller)
- Step 3: Choose clock transistors roughly 20% larger in width (they will be in triode, and have lower drive)