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Final Exam
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NAME: ____________S O L U T I O N S ______________ 

MIT ID number: __________________________________________________ 

Instructions: 
1.	 Do all EIGHT (8) problems. You have 3 hours. 
2.	 SHOW ALL WORK. Be sure to circle your final answer. 
3.	 Read the questions carefully. 
4.	 All work must be done in the blue/white books provided. 
5.	 NO books, notes, calculators or computers are permitted. A list of useful 

equations is provided on the last page. 

Your Scores 

Problem Maximum Score Grader 

1 10 

2 15 

3 10 

4 10 

5 15 

6 15 

7 15 

8 10 

Total 100 
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Problem 1: Short Answer Problems [2 pts each] 

(a) List Newton’s three laws (order is not important). 

(b) What are the units of impulse, using the notation [L] = length, [M] = mass and 
[T] = time? 

(c) An archer in the northern hemisphere on Earth faces North and shoots an arrow 
at very high velocity. Will the arrow veer off to the left or the right? Justify your
answer (note that the angular velocity vector of the Earth points away from the
North Pole). 

(d) Referring to the figure to the right,
how far from the mass on the left is the 
point at which a test particle feels equal
gravitational force from both spheres?
Assume L is much larger than the radii
of the spheres 

(e) A mass is at rest in an inertial frame at a distance R from the origin. An 
observer sits at the origin of a rotating frame with angular velocity Ω that is 
initially aligned with the inertial frame. Describe in words the motion of the object
from the observer’s perspective, and explain how that motion comes about in terms
of fictional forces (there are no real forces acting on the mass). 
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(a) (i) An object at rest or in uniform motion tends to stay at rest or in uniform 

motion unless acted on by an outside force (e.g., inertial frames exist) 

(ii) - acceleration is proportional to force and inversely 

proportional to mass 

(iii) - force exerted by one body onto a second body is equal 

and directed in the opposite direction to the force exerted by the second body onto 

the first 

(b) Impulse = FxΔt = Δp = [M] [L] [T]-1 

(c) The veering of the arrow results from Coriolis force and is directed toward the 

right. which is to the right when facing 

north. 

(d) Total forces cancel at a distance x from the left sphere when: 
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This quadratic equation is solved for x = L/3 (the negative solution, x=-L, does not 

correspond to a point where there is zero net force). 

(e) To the observer in the rotating frame, the mass would appear to move in a circle 

of radius R about origin with velocity v = RΩ in the opposite sense of the rotation 

of the frame. This is consistent with the fictional forces experienced by the mass 

as both centrifugal and coriolis accelerations contribute, giving 

This net (fictional) force provides the necessary centripetal acceleration to keep 

the object moving in a fixed radius circle. 
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Problem 2: The Double Gyroscope [15 pts] 

A gyroscope consists of two identical uniform disks with mass M and radius R
mounted on a rigid axle with length 2D. The axle is fixed to the outer disk, while
the inner disk is allowed to spin freely but is constrained to remain at a distance D
from the pivot (at left) by a collar. The axle spins about the pivot freely on a 
frictionless mount. The outer disk and axle are initially spun up to an angular 
frequency ω0. Assume that the mass of the axle and pivot mount are negligible.
Gravity points downward. Ignore nutation. 

(a) Calculate the precession rate Ω of the gyroscope assuming that the inner disk is 
not spinning. Assume that ω0 is very large and the gyroscopic approximation 
applies. 

(b) Friction between the axle and the disk closest to the pivot causes the latter to 
spin up. Assuming that a constant torque τ acts at the interface between the axle 
and inner hole of this disk, calculate the final spin rate ω of both disks and the final 
precession rate in terms of the initial precession rate. 

(c) How much energy is lost from the gyroscope system during the spinning up of
the inner disk? 
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(a) The net torque on the gyroscope with respect to the pivot point is 

The gyroscope approximation is: 

The angular momentum of the first disk is 

Hence 

(b) The constant frictional torque is 

Hence: 

This is the result of the force from the axle acting on the inner wheel; Newton’s 

third law tells us that an equal and opposite force acts on the axle + outer wheel 

and slows it down. Hence 

The frictional force ceases when the surfaces do not slide relative to one another, 

i.e., when , so 
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To calculate the precession, note that the torque hasn’t changed, while the 

magnitude of the angular momentum vector is 

and is therefore also unchanged. So the precession rate is the same: 

(c) Only the rotational kinetic energy of the system changes as a result of the inner 

wheel spinning up. The initial rotational kinetic energy is 

where is the moment of inertia of the entire gyroscope rotating about the pivot. 

The final rotational kinetic energy is 

Hence the total energy lost is: 
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Problem 3: Balanced Poles [10 pts] 

Two sticks are attached with frictionless hinges to each other and to a wall, as
shown above. The angle between the sticks is θ. Both sticks have the same 
constant linear mass density λ, and the horizontal stick has length L. Find the force 
(both horizontal and vertical components) that the lower sticks applies to the upper
one where they connect at point A. Assume gravity points downward. 
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The best way to approach this problem is to 

balance the forces and torques acting on the 

sticks, since the system is not accelerating 

and not rotating. A force diagram is shown 

on the left, indicating forces acting on the 

horizontal stick as solid arrows and forces 

acting on the angled stick as dotted arrows. 

The objective is to determine Fh and Fv. 

First measure the torque on the horizontal stick about point B (assuming torque is 

positive in a clockwise direction on the page): 

Now measure the torque on the angled stick about point B: 
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Problem 4: The Accelerated Atwood Machine [10 pts] 

An idealized Atwood machine, consisting of a two blocks of masses M and 3M
connected via a massless string through a massless pulley, sits on a flat horizontal
table. The coefficient of kinetic friction between the block and table surfaces is µ.
The pulley is pulled by a string attached to its center and accelerated to the left. 
Assume that gravity acts with constant acceleration g down through the plane of
the table. 

(a) What are the horizontal accelerations of the two masses in the frame of rest of
the table? 

(b) What is the maximum acceleration A for which the block of mass 3M will 
remain stationary? 
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This problem is straightforward if one works 

in the accelerated reference frame. The force 

diagrams for the two masses are shown at 

left. Note the additional fictional forces, and 

the fact that the friction forces both act 

toward the right – this is because in the 

accelerated frame the table is sliding to the 

right, dragging the blocks with it. The 

tension force acts via the massless string and is the same for both masses. 

The equations of motion for the two blocks are: 

The positions of the masses are constratined to x1 + x3 = constant due to the fixed 

length of rope connecting them; hence 

Replacing this expression in to the equations of motion yield: 

We move to the frame of rest of the table by adding the acceleration A to both 

equations of motion: 
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(b) For the 3M mass to remain stationary in the frame of rest, so 
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Problem 5: Central Force Potentials [15 pts]


A particle of mass m is inserted into a central force field of the form


where r is the radial distance from the origin, and k and n are constants. 

(a) Show that the total angular momentum about the origin of the system is a 
constant of the motion. 

(b) Derive the general effective potential for the system, assuming = L. 

(c) Derive a general expression for the equilibrium point(s) for this potential. 

(d) For what values of n are stable orbits possible; i.e., for which the particle is
constrained to a finite range of r? Show your results in detail (i.e,. do not simply 
state the answer). 
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(a) The torque on the mass about the origin is: 

Hence, the angular momentum vector about the origin is a constant of the motion. 

(b) The effective potential is 

where 

We can choose a zeropoint such that U(∞) = 0, which for n > 1 implies C = 0, and 

hence: 

(c) The equilibrium point satisfies 
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(d) For a stable orbit, the equilibrium point should be a stable one which requires 
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Problem 6: Rolling Platform [15 pts] 

A platform of mass M and uniform density rests on three solid cylinders, each of
mass M, radius R and uniform density. The whole structure is initially at rest on 
an inclined plane tilted at angle θ, and then released. Assume that there is no 
slipping between the various surfaces and gravity points downward. 

(a) What is the acceleration of the platform along the incline? 

(b) If the solid cylinders are replaced with hollow cylinders, what is the resulting 
acceleration of the platform? 

(c) Based on the result of part (b), what are the optimal rollers for moving a heavy 
platform such as the one shown above: (1) solid uniform cylinders, (2) hollow
cylinders, or (3) cylinders with mass concentrated at their centers? Justify your
answer (This would have been an engineering consideration for the ancient 
Egyptians when they transported large blocks of stone to construct the Pyramids.) 
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(a) There are two main points to this problem that must be recognized to solve it. 

The first is that friction must act between the wheels and platform, and between the 

wheels and incline, and that the former modifies the acceleration of the platform. 

The second is that the no slipping constraint applies between the wheels and 

platform and the wheels and incline, so 

Where φ is the angular motion of the wheel. 

This problem can be solved in two ways: by solving the translational and rotational 

equations of motion and applying the constraint equations and using energy. 

The first solution is built upon the force diagrams shown above. Note the 

matching of forces between the wheel and platform (ƒ and N). Also note that we 

have not assumed ƒ = ƒ’, nor have we assumed a relation between ƒ and N based 

on the (unknown) coefficient of friction. We can restrict analysis to the platform 

and one wheel, since the other wheels will experience the same motion. The 

translational equations of motion for the platform are (note the directions of x and 

y from the figures): 
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The translational equations of motion for each wheel are 

The wheel also spins, so we need to calculate rotational equations of motion. To 

do this we choose a fixed point parallel to the incline that is aligned with center of 

the wheel – we cannot chose the center of the wheel as our reference point because 

the wheel is accelerating down the incline. Hence, 

where the xw terms have dropped out based on the y-axis equation of motion of the


wheel above.


Now we apply the constraint equations to the xp, xw and φ equations of motion,


and assume
 giving: 

Using these equations to eliminate ƒ and ƒ’ yields: 

The alternate derivation of the solution involves computing the change in energy 

for the system, which is conserved since the friction forces do no work (the 

surfaces are not slipping relative to each other). Assuming that the system starts 

from rest at xp = xw = 0, then 
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where the constraint equations have been used in the last step. Taking a time 

derivative of this equation, and again using the constraint equations gives: 

(b) Changing the moment of inertia to changes the rotational equation 

of motion in the first solution to: 

This results in ƒ = 0, so 

Similarly, we could replace the rotational energy term in the second solution and 

derive the same result. 

(c) This question is subjective, but one may consider that an optimal engineering 

choice is to obtain the most acceleration for the least force applied. Since the force 

applied must also compensate for the motion of the rollers, the minimum moment 

of inertia for the rollers is optimal, which would be the case for those with mass 

concentrated at the center. 
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Problem 7: Spinning Bouncing Ball [15 pts] 

A uniform sphere of mass M and radius R spinning with angular velocity ω is 
dropped from a height H. It bounces on the floor and recoils with the same vertical 
velocity. During the bounce, the surface of the ball slips relative to the surface of
the floor (i.e., it does not roll) and in the process the ball is acted upon by a friction 
force with magnitude ƒ = µN, where N is the normal contact force between the ball 
and the floor and µ is a constant. Hence, the ball experiences impulses in both 
vertical and horizontal directions. Assume that the duration of contact, Δt, is very 
short. 

(a) What angle α with respect to vertical does the ball recoil? 

(b) What is the final rotation velocity of the ball? 

(c) What value of H results in the ball bouncing off with no spin? 
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(a) The angle α is related to the horizontal and vertical components of the ball’s 

velocity after the bounce. The vertical component is straightforward, as it is stated 

in the problem that it rebounds with the same velocity as it struck the ground, 

which is: 

The horizontal component arise from the impulse due to friction acting at the 

contact surface: 

This is related to the vertical impulse by: 

Hence: 

and: 

(b) The frictional force produces a torque that acts in the opposite direction as the 

spinning of the ball. This torque exerts a rotational impulse (change in angular 

momentum): 

Hence, 

Using the momentum of inertia for a sphere: 
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yields 

(c) For no spin after the bounce, ω = 0, so 
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Problem 8: Orbiting Rope [10 pts] 

A uniform rope of mass m and length R orbits a spherical planet of mass M and 
radius R with constant angular velocity Ω, such that the rope remains straight and 
in a circular orbit by a balance of gravitational and centrifugal forces. For this 
problem, ignore the effects of air resistance and assume that M >> m. 

(a) Derive an expression for the angular velocity Ω as a function of m, M and R 
(not all three quantities may be in the expression). Hint: consider the tension in the 
rope as a function of radius. 

(b) What point on the rope experiences the greatest tension (and is thus most likely 
to break)? 

(c) An orbiting rope such as this is one concept for a space elevator, allowing 
material to be transported into orbit without the use of rockets. What restrictions 
must be made on the angular velocity Ω and the anchor point of the rope on the 
Earth in this case? 
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(a) The best way to approach this problem is to take the hint and consider how 

tension varies along the rope. Consider a small section of rope of length dr and 

mass dm at radius r, and assume a coordinate system that rotates with the rope. 

The forces acting on that piece of rope, including gravitational, centrifugal 

(fictional) and radius-dependent tension, are illustrated below. Note that Coriolis 

force does not act because the rope has no velocity in the rotating frame of 

reference. 

The net force acting on this piece of rope must be equal to zero: 

where dT is the differential change in the tension along the rope. Taking the 

intergral of this expression: 

The tension at the ends of the rope must vanish. We have explicitly assumed that 

the T(0) = 0, so now consider that the tension at the far end T(R) = 0; then 
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(b) Extremum point in tension occurs when dT/dr = 0, or 

(c) For this kind of space elevator to work, the end point closest to the ground must 

stay at the same spot relative to the Earth on its own, otherwise it will be too hard 

to attach anything to the rope, and if the rope were anchored to the ground it would 

quickly get wrapped up and would likely fall to the Earth. Hence, the angular 

velocity should match the angular rotation rate of the Earth. Also, the anchor spot 

should be as close to the equator as possible, for otherwise the end of the rope will 

drift north to south as it completes a full orbit (this is why gyrosynchronous 

satellites tend to be above the equator). Note that many effects limit the feasibility 

of a space elevator that we’ve ignored here, such air resistance and winds, nutation 

effects on spin axis of the Earth, deviations of the Earth’s shape from a perfect 

sphere and the tensile strength of the rope. 
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USEFUL EQUATIONS


Trajectory for constant
acceleration 

Velocity in polar coordinates 

Acceleration in polar 
coordinates 

Center of mass of a rigid body 

Kinetic energy 

Work 

Angular momentum 

Torque 

Moment of inertia for a 
uniform bar 

Moment of inertia for a 
uniform hoop 

Moment of inertia for a 
uniform disk 
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Moment of inertia for a 
uniform sphere 

Parallel axis theorem 

Velocity from rotation 

Moments of inertia tensor 
(permutate x→y→z) 

Products of inertia tensor 
(permutate x→y→z) 

Euler’s equations
(permutate 1→2→3) 

Fictitious force in an 
accelerating frame 

Fictional forces in a rotating 
frame 

Time derivative of an arbitrary 
vector between inertial and 

rotating frames 

Reduced mass 

Effective potential for orbital 
motion 
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