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Final Exam


S O L U T I O N SNAME: _________________________________________________ 

Instructions: 
1. Do all SEVEN (7) problems. You have 2.5 hours. 
2.	 Show all work. Be sure to CIRCLE YOUR FINAL ANSWER. 
3. Read the questions carefully
4. All work and solutions must be done in the answer booklets provided
5. NO books, notes, calculators or computers are permitted. 	A sheet of 

useful equations is provided on the last page. 

Your Scores 

Problem Maximum Score Grader 

1 10 

2 15 

3 15 

4 15 

5 15 

6 15 

7 15 

Total 100 
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Problem 1: Multiple Choice & Short Answer Questions [10 pts] 

For each of the following questions enter the correct multiple choice option or
write/draw out a short answer in your answer booklet. You do not need to show
any work beyo

(a) [2 pts] Tw
M and 2M are
around a star a
respectively (a
mass is >> M)
the greater orb
which planet has the greater 2R 
orbital angular momentum? 

Orbital velocity depends on the strength of the gravitational force, scaling as v2 ∝ 
1/r; hence, the inner planet moves faster. The angular momentum scales as mvr ∝ 
r1/2, so the outer planet (which also has twice the mass) has a greater angular
momentum. 

(b) [2 pts] What is Chasles’ theorem? 

(1) (2) (3) (4) 

Every force Gravitational Motion can be separated Inertial mass 
has an equal orbits form in translation of center of equals
and opposite ellipses mass and rotation about gravitational

pair center of mass mass 

(1) is Newton’s 3rd law, (2) is Kepler’s 1st law, (3) is Chasle’s theorem and (4) is
the equivalence principle. 

(c) [2 pts] A stationary ice skater is spinning about her center of mass (along a
principal axis) on a frictionless surface. She pulls in her arms and spins up faster.
Which of the following is conserved in this motion (write down all that apply)? 

Energy Momentum Angular momentum 
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Without an external force, the ice skater’s momentum doesn’t change; similarly, as
there are no external torques, angular momentum is conserved. However,
rotational energy scales as L2/2I, and the moment of inertia (I) is reduced for the
skater as she pulls in her arms, so her total mechanical energy must increase. 

(d) [2 pts] What are the dimensions of the gravitational constant G? 

[M]-1[L]3[T]-2 

(e) [2 pts] A gyroscope whose spin angular
velocity vector points toward the left is
observed to precess such that its precession
angular velocity vector points at an angle as
shown. In which direction does the gravity
vector point? 

The precession direction points in the opposite direction as the spin vector initially
moves toward as the gyroscope falls under gravity. In this case, the gravity vector
must therefore be parallel to the precession vector. 

(f) [BONUS 2 pts] A diver is the middle of a dive as shown below. Based on clues 
in the photo, indicate in your answer booklet the direction that his total spin vector
points, and determine whether the diver is doing a front flip or a back flip. 

One clue is the hair, which lies in a
plane perpendicular to the spin vector
(twirl a handful of string to convince
yourself of this). The placement of the
arms breaks the degeneracy, indicating
an applied torque that causes a twist
rotation whose direction points along the
feet. So the total spin vector points in the
direction shown, and the flip component
indicates a front flip (head over feet). 
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Problem 2: Atwood Machine [15 pts] 

α 

2M 

M 

MR 

µ
d 

An Atwood machine consists of a fixed pulley wheel of radius R and uniform mass
M (a disk), around which an effectively massless string passes connecting two
blocks of mass M and 2M. The lighter block is initially positioned a distance d
above the ground. The heavier block sits on an inclined plane with opening angle 
α. There is a coefficient of friction µ between the surfaces of this block and the
inclined plane. Constant gravitational force acts downwards, and assume that the
string never slips. 

(a) [5 pts] Determine two conditions on the angle α which allow the lighter block
to move up or move down. 

(b) [10 pts] Assuming that the lighter block moves down, determine its
acceleration. 
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SOLUTION TO PROBLEM 2 

(a) The above diagram shows the appropriate forces on the two blocks and the
pulley wheel. The two conditions for the blocks arise from whether the leftmost 
block moves up or down, which changes the direction of the friction force acting
on the rightmost block. Consider first the leftmost block moving down; in that
case Mg > T1 and T1 > T2 (so the wheel can spin), and T2 must be greater than both
the friction force (µN = µ2Mgcosα) and the component of gravitational force
parallel to the inclined plane surface (2Mgsinα) on the rightmost block: 

Mg 

R 

T2 

Mg 

Fs 

2Mg

T2
N

µN

T1 

T1 

If the leftmost block moves up, then T1 > Mg, T2 > T1 and the gravitational force
on the rightmost block must overcome both tension and friction: 
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(b) Choosing our coordinate systems for each component as shown above so that
all objects move in a positive direction, we can write down the following equations
of motion: 

leftmost block: 


pulley wheel:


rightmost block:

The constraint equation tying all of these objects together (connected by an

massless and hence inextensible string) is:


Using this and the first two equations of motion we can relate to two tension
forces: 

and using the first and third equations of motion we can solve for the individual
tensions: 

Note that the first conditions from part (a) is necessary for acceleration to be
positive. 
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Problem 3: Rocket in an Interstellar Cloud [15 pts] 

A cylindrical rocket of diameter 2R, mass MR and containing fuel of mass MF is 
coasting through empty space at velocity v0. At some point the rocket enters a
uniform cloud of interstellar particles with number density N (e.g., particles/m3),
with each particle having mass m (<< MR) and initially at rest. To compensate for
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the dissipative force of the particles colliding with the rocket, the rocket engines
emit fuel at a rate dm/dt = γ at a constant velocity u with respect to the rocket.
Ignore gravitational effects between the rocket and cloud particles. 

(a) [5 pts] Assuming that the dissipative force from the cloud particles takes the
form F = –Av2, where A is a constant, derive the equation of motion of the rocket
(F = ma) through the cloud as it is firing its engines. 

(b) [5 pts] What must the rocket’s thrust be to maintain a constant velocity v0? 

(c) [5 pts] If the rocket suddenly runs out of fuel, what is its velocity as a function
of time after this point? 

(d) [BONUS 5 pts] Assuming that each cloud particle bounces off the rocket
elastically, and collisions happen very frequently (i.e., collisions are continuous),
prove that the dissipative force is proportional to v2, and determine the constant A.
Assume that the front nose-cone of the rocket has an opening angle of 90º. 
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SOLUTION TO PROBLEM 3: 

(a) Consider some time t when a parcel of mass dm is ejected from the rocket at
velocity u. Newton’s second law can be written as (assuming the rightward
direction to be positive): 

The momentum of the rocket + fuel system before and after ejection of fuel can be
written as: 

Keeping only first order terms we derive 

or 

where γ has been substituted in place of dm/dt. 

(b) To maintain constant speed, dv/dt = 0 hence the thrust is 

(c) When the rocket runs out of fuel, it has a mass MR and there is no thrust term,
hence the equation in part (a) becomes: 

This equation is separable and can be directly integrated: 
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(d) As illustrated in the figure to the right, each particle that
collides with the rocket is deflected through 90º (due to
geometry), which means that each particle imparts an
impulse on the rocket of Δp = mv in the horizontal
direction opposite of motion (it also imparts an impulse of
mv in the vertical direction, but that is balanced by particles
striking the other side of the nosecone). The number of 
particles that strikes the rocket per unit time is simple the
volume swept through by the rocket per unit time, AΔx/Δt = πR2v. The total 
momentum transfer onto the rocket is: 
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Problem 4: Sticky Disks [15 pts] 

ω0 

M 

2M 2R 

2R M 

2M 

A uniform disk of mass M and diameter 2R moves toward another uniform disk of 
mass 2M and diameter 2R on the surface of a frictionless table. The first disk has 
an initial velocity v0 and spin rate ω0 as indicated, while the second disk is initially
stationary. When the first disk contacts the second (a “glancing” collision), they
instantly stick to each other and move as a single object. 

(a) [5 pts] What are the velocity and spin angular velocity of the combined disks
after the collision? Indicate both magnitudes and directions. 

(b) [5 pts] For what value of ω0 would the combined disks not rotate? 

(c) [5 pts] How much total mechanical energy is lost in this collision assuming that
the combined disk system is not rotating? 
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SOLUTION TO PROBLEM 4: 
(a) There are no external forces on this system, so the initial and final momenta are
the same and equal to Mv0 toward the right. The total mass of the combined disk 
system is 3M, so the final velocity is 

The total angular momentum of the system is also conserved, but in this case we
must be more careful, as the question asks for the final spin angular velocity, so it
is important to calculate the initial and final angular momenta about the center of
mass of the combined disk system. This position lies at a distance: 

below the contact point of the two disks. About this point, the initial angular
momentum of the system comes from both rotation of the moving disk and its
center of mass translation with respect to the center of mass of the combined disk
system: 

The final moment of inertia of the two disks can be found by first adding the center
of mass moments of inertia of the two disks separately and thn applying the
parallel axis theorem (moving to the center of mass of the combined disk system): 

Hence the final spin angular velocity is 

(b) For the final spin angular velocity to be zero, the two terms above cancel, so 
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(c) To keep the math clean, it is assumed that the final system is not spinning, so
that ω0 and v0 are related as in part (b). The initial energy is therefore: 

The final energy is just the translation energy: 

so the total energy loss is: 
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Problem 5: Cylindrical Top [15 pts] 

M 

COM 

r 

µ = 0 

Δp 

L 

R 

A cylinder of mass M, length L and radius R is spinning about its long axis with
angular velocity on a frictionless horizontal surface. The cylinder is
given a sharp, horizontal strike with impulse Δp at a distance r from its center of 
mass (COM). Assume that constant gravitational acceleration acts downward.
NOTE: you do not need to use Euler’s equations to solve this problem. 

(a) [5 pts] What is the translational velocity of the cylinder after the impulse
(magnitude and direction)? 

(b) [5 pts] The strike imparts an angular momentum impulse to the cylinder which
causes it to lift up at one end. At what angle α will the cylinder be tilted after the
impulse and which end of the cylinder lifts up? Assume that the angular
momentum impulse is much smaller than the spin angular momentum. 

(c) [5 pts] After the cylinder tilts up, it effectively becomes a top. Determine its 
precessional rate and the direction of precession. Assume that nutational motion is 
negligible (i.e., α remains effectively constant) and that R << L (i.e., that the
cylinder can be approximated as a thin rod for this part). 

(d) [5 pts BONUS] For a strong enough impulse, the cylinder will tilt high enough
to precess in the opposite direction. What is the minimum tilt angle for this to
happen and what is the minimum impulse required? (Note that you cannot assume
R << L here. This problem is similar to the “tipping battery” trick pointed out by
one of the 8.012 students.) 
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SOLUTION TO PROBLEM 5: 

(a) The impulse provides the only external force to the system, so the total
momentum of the cylinder is simply the impulse, Δp in the y-direction. Hence, the
translational velocity of the cylinder is: 

(b) The angular impulse imparted on
r of mass is 

y to the

αthe cylinder about its cente

This impulse adds vectorall
spin angular momentum of the cylinder, as shown in the figure to the right. If we 
assume that LS >> ΔL (our standard gyroscopic approximation), then the
magnitude of the total angular momentum is still equal to IωS but points in a
direction offset by an angle α upwards. Since this is still the cylinder spinning
about its axis, it must be that the right side of the cylinder tips up by an angle α: 

(c) With the cylinder tipped up, gravity and the
w exert
l cause
recess
menta

 the
asured




N = Mg

Mg
L/2cosα - Rsinα

α

normal contact force on the ground no
a net torque on the cylinder, which wil
the spin angular momentum vector to p
with rate Ω. Let’s measure angular mo
and torque about the center of mass of
cylinder (alternately we could have me
about the pivot point, but since N=Mg, the
result is the same). The horizontal lever arm between the pivot point and the center

of mass is (L/2)cosα - Rsinα, but assuming L >> R we can drop the second term.

The torque is then:
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using here our expression for the time derivative of a vector (LS) in a rotating
reference frame. The precession vector must point along the z-direction, a fact we
can ascertain by considering that gravity would initially pull the spin angular
momentum vector down, so to conserve total angular momentum the precession
angular momentum vector must point upward. The precession vector rotates only
the radial component of the spin angular momentum vector, hence: 

Solving for the precession rate: 

note that the I here is the moment inertia about the spinning axis, not about the

L/2

R
α

α
90º-α

precession axis. 

from the solution to (a) this places a constraint on the

impulse required:


Note that this is approximate, as we no longer satisfy the
gyroscopic approximation that LS >> ΔL (indeed, they are of the same order of
magnitude in this case). 

(d) To precess in the other direction, the center of mass
must be inside the pivot point of the disk, which happens
at a critical angle (see right): 
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Problem 6: Bead on a Spinning Rod [15 pts] 

M 

ω 

r0 

A bead of mass M is placed on a frictionless, rigid rod that is spun about at one end
at a rate ω. The bead is initially held at a distance r0 from the end of the wire. For 
the questions below, treat the bead as a point mass. Ignore gravitational forces. 

(a) [5 pts] What force is necessary to hold the bead in place at r0? Indicate both 
magnitude and direction. 

(b) [5 pts] After the bead is released, what is its position in the inertial frame (in
polar coordinates) as a function of time? 

(c) [5 pts] Now calculate the fictitious forces on the bead in a reference frame that
is rotating with the wire. What real force must the rod exert on the bead in both the 
rotating and inertial frames? 
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SOLUTION TO PROBLEM 6: 

(a) The force applied to hold the bead in place is simply the centripetal force: 

(b) In the inertial frame, we can write down the equations of motion in polar
coordinates assuming that there is no radial force acting (no friction or constraint
force): 

Here, N is some normal force acting on the bead in the angular direction (important
for part c). The angular position is straightforward, since the rod is rotating at
constant angular rate, hence, 

For the radial position, we must solve the radial equation of motion: 

This can be done by trial, or you can simply remember that the general solution for
this equation is: 

Using the initial conditions r(0) = r0 and dr/dt(0) = 0, we find: 

So 

(c) In the rotating reference frame, there is only radial motion, and there are two
fictitous forces acting: centrifugal and coriolis forces: 
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The angular equation of motion in the rotating frame is: 

where N is again the angular normal force acting on the bead, and the net angular
acceleration component is 0 since θ is constant in the rotating frame. Hence 
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Problem 7: Central Potential [15 pts] 

A particle of mass m moves within a region under the influence of a force of the
form 

The particle is initially at a distance r0 from the origin of the force, and initially
moves with velocity v0 in a tangential direction. 

(a) [5 pts] Derive and sketch the effective potential of this system as a function of
radius from the origin. Indicate all important inflection points. Can the particle
pass through the origin of this reference frame? 

(b) [5 pts] Find the velocity v0 required for the particle to move in a purely circular
orbit at a radius r0 with this force law. 

(c) [5 pts] Compute the frequency of small oscillations about this equilibrium
radius. How does the period of these oscillations compare to the orbital period? 
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SOLUTION TO PROBLEM 7: 

(a) The effective potential arises from the radial equation of motion assuming that
the total angular momentum is a constant: 

where the angular momentum is defined as 

The potential arising from this total force law is 

The figure above provides a rough sketch of this function (with A = 4 and l2 = 2m).

There is one minimum inflection (equilibrium) point where the net force vanishes:
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This is a stable equilbrium point. The potential tends to infinity as r → 0, so it is
not possible to pass through the origin with this potential. 

(b) For a purely circular orbit, the object must reside at its minimum radius in the
potential, hence: 

(c) The frequency of small oscillations in any potential can be derived from the
second derivative of the potential about its (stable) equilibrium point: 

Substituting in our expression for v0 from part (b) reduces this to: 

The period of this oscillation is: 
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The period of rotational motion is: 

Hence, the ratio of these periods is . 
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Velocity in polar
coordinates 

Acceleration in polar
coordinates 

Center of mass (COM) of a
rigid body 

Volume element in 
cylindrical coordinates 

Kinetic energy 

Work 

Potential Energy
(for conservative forces) 

where 

Angular momentum 

Torque 
Fixed axis rotation: 
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USEFUL EQUATIONS 
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COM Moment of inertia 
for a uniform bar 

COM Moment of inertia 
for a uniform hoop 

COM Moment of inertia 
for a uniform disk 

COM Moment of inertia 
for a uniform sphere 

Scalar parallel axis theorem 

Moments of inertia tensor 
(permute x→y→z) 

Euler’s Equations
(permute 1→2→3) 

Time derivative between 

 Fictitious force in an 
accelerating frame 

Fictitious force in a 
rotating frame (Ω constant) 

Taylor Expansion of f(x) 

8.012 Fall 2008  Final Exam 

inertial and rotating frames
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