```
-Sit in your assigned seats. Make sure you are
    using the correct PRS unit to answer questions.
DLast Lecture
     Free-body diagrams
Today
    OKinematics - describing 1D motion
    \partialRelative velocity (yes, more vectors!)
OImportant Concepts
    OChange=derivative=slope
     OThink carefully about directions (changes the +/- sign)
```


Kinematics: Description of Motion

All measurements require an origin, a coordinate system, and units
ONext complication is "reference frame", the term used to describe the motion of observer
วConstant velocity is OK, accelerated observer is not
D Basic definitions:

-Position

DDistance versus displacement
-Velocity - change of position
OSpeed is the magnitude of velocity
-Acceleration - change of velocity

Important Reminders

© Finish Mastering Physics \# 2 tonight before 10pm

D Mandatory tutoring sessions start this week

D Office hours posted

- Pset \# 2 due this Friday
Key Kinematics Concepts
OChange=slope=derivative
$v_{x}=\frac{d x}{d t} \quad a_{x}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}$
Ovelocity is the slope of position vs t , acceleration is the

slope of velocity vs tand the curvature of position vs t OEven in simple 1D motion, you must understand | the vector nature of these quantities |
| :--- |
| O Initial conditions |
| All formulas have assumptions |

One Important Special Case

Constant Acceleration $=\boldsymbol{a} \square$

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

$$
v=v_{0}+a t
$$PhysicsInitial conditions

Multi-body Kinematics Problems

- Need to use consistent coordinate system and origin for all objects
\quad Need to think carefully about directions (signs!)
- Need to think carefully about initial conditions, especially when things "start" at different times
- Write separate equations for each object

DRead problem carefully to understand the specific constraint to use to solve

Summary

- Kinematics provides a language to describe motion
- Basic relationship between position, velocity, acceleration (change=slope=derivative)
©Study special cases (like constant acceleration) but understand the assumptions that go into all formulas
-Position, velocity, and acceleration are ALL vectors and need to be manipulated using either arrows (qualitative) or components (quantitative)
Directions (or signs in 1D) of position, velocity, and acceleration can all be different

