- Last Lecture

©Statics and dynamics of rotational motion

- Today

-Everything you need to know about dynamics of rotation OImportant Concepts
-Equations for angular motion are mostly identical to those for linear motion with the names of the variables changed.
LLocation where forces are applied is now important.
-Rotational inertia or moment of inertia (rotational equivalent of mass) depends on how the material is distributed relative to the axis.
8.01L IAP 2006

Torque

DHow do you make something rotate? Very intuitive! DLarger force clearly give more "twist".
D Force needs to be in the right direction (perpendicular to a line to the axis).
DThe "twist" is bigger if the force is applied farther away from the axis (bigger lever arm).

OIn math-speak: $\vec{\tau}=\vec{r} \times \vec{F} \quad|\tau|=|r||F| \sin (\phi)$

Important Reminders

Dectures will be M 11-12, T\&W 10-12, F 11-12.

- Check schedule on web for new times and rooms for some recitations (all are still on Thursday).

Switching of recitations will be permitted if you have a conflict with another IAP activity.
-Contact your tutor about session scheduling -Students working with Stephane Essame reassigned.

- Mastering Physics due today at 10pm.

Pset due this Friday at 11am.
8.01L IAP 2006

More Ways to Think of Torque

- Magnitude of the force times the component of the distance perpendicular to the force (aka lever arm).
- Magnitude of the radial distance times the component of the force perpendicular to the radius.
- Direction from Right-Hand-Rule for cross-products and can also be thought of as clockwise (CW) or counter-clockwise (CCW).
- For torque, gravity acts at the center of mass.
8.01L IAP 2006

Equations for Dynamics

〇Same as before: $\Sigma \vec{F}=M \vec{a}$
\geqslant Only the direction and magnitude of the forces matter.
〇This gives one independent equation per dimension.
Additional condition: $\Sigma \vec{\tau}=I \vec{\alpha}$
This is true for any fixed axis (for example, a pulley).
Oln addition, this equation holds for an axis through the center of mass, even if the object moves or accelerates.

As for statics, if all of the forces are in the same plane, you only get one additional independent equation by considering rotation.
8.01L IAP 2006 1/11/2006

Moment of Inertia

$\Rightarrow I=\Sigma m_{i} r_{i}^{2}=\int r^{2} d m$
OHoop (all mass at same radius) I=MR2
-Solid cylinder or disk $\mathrm{I}=(1 / 2) \mathrm{MR}^{2}$
©Rod around end $\quad \mathrm{I}=(1 / 3) \mathrm{ML}^{2}$
2 Rod around center $\mathrm{I}=(1 / 12) \mathrm{ML}^{2}$
-Sphere $\mathrm{I}=(2 / 5) \mathrm{MR}^{2}$
DThe same object could have a different moment of inertia depending on the choice of axis.
DIn the equation: $\Sigma \vec{\tau}=I \vec{\alpha}$ all three quantities need to be calculated using the same axis.

Parallel Axis Theorum

DVery simple way to find moment of inertia for a large number of strange axis locations.

$\partial I_{1}=I_{\text {c.m. }}+M d^{2}$ where M is the total mass.
8.01L IAP 2006 1/11/2006

Everything you need to know for Linear \& Rotational Dynamics

- $\Sigma \vec{F}=M \vec{a}$
əThis gives one independent equation per dimension.
- $\Sigma \vec{\tau}=I \vec{\alpha}$

DThis is true for any fixed axis and for an axis through the center of mass, even if the object moves or accelerates.
∂ For problems in 8.01, you only get one additional independent equation by considering rotation.
©Rolling without slipping: $v=R \omega \quad a=R \alpha \quad f \neq \mu N$
R Rolling with slipping: $v \neq R \omega \quad a \neq R \alpha \quad f=\mu N$
8.01L IAP 2006

