- Sit anywhere at tables 1-8 but arrange yourselves in groups of 3 for today's experiment.
- Last Lecture

DForce as a vecto
DStatic equilibrium $\sum \vec{F}=0$
PAddition and subtraction on vectors

- Today

DExamples, examples, examples.
DExperiment \# 1: Static equilibrium
OImportant Concepts
-Force is a vector, both magnitude and direction matter ƏVectors: Think with arrows, calculate with components
© Problem Solving Tool: Setting up
〇Make a careful drawing
OThink carefully about all of the forces
OChose an axis, put it on your drawing
-Think carefully about the angles
-Problem Solving Tool: Component checklist
DLoop through vectors:
Ils there a component?
Ols there an angle factor
Ols it sine or cosine?
Is it positive or negative?

Basic idea behind components

〇Want to do a quantitative calculation with vectors
D Need to convert multi-dimensional object to numbers, add or subtract or multiply the numbers, and then generate the multi-dimensional answe
© Write each vector as a sum of smaller sub-vectors all of which point in the same direction.

Summary - I

Different ways of writing vectors are related by:
$F_{x}=F \cos (\theta)=F \sin (\phi)$
$F_{y}=F \sin (\theta)=F \cos (\phi)$
$F=\sqrt{F_{x}^{2}+F_{y}^{2}} \tan (\theta)=F^{y} / F_{x} \xrightarrow[\mathrm{~F}_{\mathrm{x}}]{\mathrm{F}} \mathrm{F}_{x}$

$$
\tan (\phi)=F_{x} / F_{y}
$$

ƏUnit vector notation: $\vec{F}=F_{x} \hat{x}+F_{y} \hat{y}$ or $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}$

Summary - II

ƏPractice the component checklist and the guidelines for setting up static equilibrium problems. Don't try to remember special cases, each problem is different

DThe units of force are Newtons.
-Force of gravity on an object of mass M near the surface of the Earth is Mg where: $g=9.81 \mathrm{~N} / \mathrm{kg}$

Some forces (for example, the normal force) will rarely be given but, instead, will usually be found using sums of forces.

Experiment Advice - I

- Make sure that the Force sensor is plugged into the 750 interface, the interface is plugged into the USB on the side of the monitor, and that the interface is turned on.
OOne member of the group should log onto the computer to download the LabVIEW program to run the experiment.

DDon't forget to use a section of L10 and decide around your table who will be groups A, B, and C .

Experiment Advice - II

2Try to be as careful as possible about your measurements of the two distances.
©Check regularly that the weight hanger is in the middle of the string. It tends to move away from the center as you loosen the string.

DNotice that there are questions on both sides of the answer sheet.

- Each group should list all names on a single answer sheet turned in at the end.

