8.01L SUMMARY OF EQUATIONS

Note: Quantities shown in **bold** re vectors.

$$v = dr/dt$$
 $a = dv/dt$

For constant acceleration **a**, if at t = 0 **r** and **v** and **v** vo: $\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$ $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a}t^2$

Circular motion at constant speed $a = \frac{v^2}{r} = \omega^2 r$ (Centripetal acceleration, points towards center of circle, ω is angular speed in radians per second)

Adding relative velocities ("wrt" is short for "with respect to"): $\mathbf{v}_A + \mathbf{v}_B = \mathbf{v}_A$ $\mathbf{v}_C + \mathbf{v}_B = \mathbf{v}_A$ $\mathbf{v}_C + \mathbf{v}_C = \mathbf{v}_C$

$$\sum \mathbf{F} = 0 \iff \mathbf{a} = 0$$
 (Newton's first law)

F = ma or F = dp/dt (Newton's second law)

$$\mathbf{F}_{AB} = -\mathbf{F}_{BA}$$
 (Newton's third law)

F□ -k**x**□ (spring force) $f \le \mu N$ (Friction force relative to Normal force)

$$W = \int \mathbf{F} \cdot d\mathbf{r}$$
 (work done by force \mathbf{F})

$$W_{other} = \Delta E = E_F - E_I$$
 $E = KE + PE$ (work-energy theorem)

$$F_x = -\frac{dU}{dx}$$
 (force derived from potential energy)

Potential Energies: U = mgh (gravitational, near Earth)

<u>Physical Constants:</u>

g = 9.8 m/s^2 Use the approximate value g = 10 m/s^2 where told to do so.

Conversion reminder:

 π radians = 180°

<u>Lazy Physicist</u> 's <u>Favorite Angle</u>: (to be used when calculators are not allowed):

 36.9° and 53.1° are the angles of a 3-4-5 right triangle so:

$$\sin(36.9^\circ) = \cos(53.1^\circ) = 0.60$$
 $\cos(36.9^\circ) = \sin(53.1^\circ) = 0.80$

$$\tan(36.9^\circ) = 0.75$$
 $\tan(53.1^\circ) = 1.33$

Solution to a Quadratic Equation: If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$