D Last Lecture

-Kinematics - describing 1D motio
-Relative velocity (yes, more vectors!)
OToday
-More dimensions
ƏMore examples
จMore vectors
OImportant Concepts
OChange=derivative=slop
DMultiple dimensions are as independent as many objects
OThink carefully about directions (changes the + /- sign)

More complicated situations

- More objects

WWrite an additional set of equations
∂ More dimensions
QWrite an additional set of equations

$$
\begin{aligned}
& v_{x}=\frac{d x}{d t} \quad a_{x}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}} \\
& v_{y}=\frac{d y}{d t} \quad a_{y}=\frac{d v_{y}}{d t}=\frac{d^{2} y}{d t^{2}}
\end{aligned}
$$

Important Reminders

-Pset \#2 due here tomorrow at 10 am
-Finish Mastering Physics \#3 before next Monday at 10pm

D Exam \#1 is next Friday at 10am

Kinematics: Description of Motion
©All measurements require an origin, a coordinate system, and units

ONext complication is "reference frame", the term used to describe the motion of observer
〇Constant velocity is OK, accelerated observer is not

Basic definitions:

-Position
Distance versus displacemen
∂ Velocity - change of position
2Speed is the magnitude of velocity
PAcceleration - change of velocity

$$
\begin{gathered}
\text { Vector Connections } \\
\begin{array}{c}
\vec{v}=\frac{d \vec{r}}{d t} \quad \vec{a}=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}} \\
|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \\
|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
\end{array}
\end{gathered}
$$

Multi-dimensional Kinematics Problems

D Need to think carefully about directions (signs!)
D Need to think carefully about initial conditions
Write separate equations for each dimension
DRead problem carefully to understand the specific constraint to use to solve

Special Case of Constant Acceleration
$x=\left(x_{0}\right)+v_{0 x} t+\frac{1}{2} a_{x} t^{2}$

$$
v_{x}=v_{0 x}+a_{x} t
$$

$$
y=\left(y_{0}\right)+\left(v_{0 y} t+\frac{1}{2} a_{y} t^{2}\right.
$$

OPhysics

$$
v_{y}=v_{0 y}+a_{y} t
$$

OInitial conditions

$$
\begin{aligned}
& \text { Quadratic Equations } \\
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Important property: Such equations can have 0,1 , or 2 solutions depending on the value of $b^{2}-4 a c$.
Negative: 0 solutions Zero: 1 solution Positive: 2 solutions
Warning: Only one of the 2 solutions may be physical!

Extra special case

Trajectories with gravity near the surface of the Earth and no air resistance or other drag forces

$a_{x}=0$
$a_{y}=-g$
$v_{0 x}=v_{0} \cos (\theta) \quad v_{0 y}=v_{0} \sin (\theta)$

Super special case

Range of a projectile near the surface of the Earth and no air resistance or other drag forces

$$
x_{0}=0 \quad y_{0}=0 \quad y_{\text {final }}=0 \quad x_{\text {final }}=\text { Range }
$$

$$
\text { Range }=\frac{v_{0}^{2} \sin (2 \theta)}{g}
$$

You should immediately forget you ever saw this formula but remember the technique used to find it.

Summary
Study special cases (like range of a projectile) but
understand the assumptions that go into all formulas
〇Position, velocity, and acceleration are ALL vectors
and need to be manipulated using either arrows
(qualitative) or components (quantitative)
〇Directions (or signs in 1D) of position, velocity, and
acceleration can all be different

