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Einstein’s Field Equations 

Our goal is to present a brief motivation for Einstein’s field equations of gravity (hereafter 
“Einstein’s equation”). This is an equation that relates the metric of spacetime to a source 
consisting of, among other things, mass and energy. The philosophy of General Relativity is 
that “mass tells spacetime how to curve, and this curvature of spacetime tells matter how 
to move”. This is similiar to Newtonian ideas about gravity, in that the gravitational field is 
the direct result of its source mass. A key difference is that Einstein’s gravity is a relativistic 
theory and Newton’s is not. 

We will first briefly discuss the metric, tensors, and index notation. Index notation is an 
alternative way of writing vectors. Moreover, index notation allows us to write down objects 
called tensors, of which vectors are a special case. As a simple example of index notation, 
consider the 4-momentum vector [E/c, px, py, pz]; we denote such an object as pν , where the 
index used, ν, is a Greek letter. The Greek index is a variable which denotes the components 
of the four vector. Therefore, pν represents four numbers, one number for each possibility 
of ν {t, x, y, z} ≡ {0, 1, 2, 3}. For example, if ν = 0, then pν = p0 = E/c denotes the 0 
component of the four-vector. In order to reproduce 4-vector dot products we introduce 
superscripts which are also used for indices. For example, pν is another way of denoting the 
four-momentum, but it will have a slightly different meaning. We define, 

p 0 = p0 p x = −px py = −py p z = −pz . 

These definitions apply only in the case of special relativity; they are modified in the case 
of curved spacetimes in general relativity. Now, we adopt the convention that whenever an 
upper index is repeated with a lower index in a product, a summation over that index is 
implied. For example, 

ν ν p pν = p pν 

ν 

= p 0 p0 + p x px + pypy + p z pz 

= p0p0 − pxpx − pypy − pzpz 

= p 20 − p 2 
x − p 2 

y − p 2 
z = E2/c2 − p� p�· 

This is referred to as the “Einstein sum convention”. Summing over the indices here resulted 
in a Lorentz invariant! 

Now suppose we have an object with more than one index, such as Tµν . This actually 
represents 16 numbers, because there are (4 possibilities for µ) × (4 possibilities for ν). An 
object like this is called a “second rank tensor” because it has two indices. Likewise, vectors 
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are referred to as “first rank tensors”, because they have only one index. Scalars are “zero 
rank tensors”. Tµν can be viewed as a matrix: 

⎞⎛ 

Tµν = 
⎜⎜⎝


Ttt Ttx Tty Ttz


Txt Txx Txy Txz


Tyt Tyx Tyy Tyz


Tzt Tzx Tzy Tzz


⎟⎟⎠
 .


We will not discuss tensors in any detail. However, we simply note that, just as four-
vectors have a transformation law under Lorentz boosts, tensors also have a transformation 
law (involving a factor of the Lorentz matrix for each rank). Just as we defined pµ in terms 
of pµ, we can similarly define objects such as, Tµ

ν , T µν , and T µν in terms of Tµν . 

A second rank tensor of particular importance is the metric. The metric is an object 
which tells us how to measure intervals. For example, in three dimensional Euclidean space, 
how do we calculate the distance between two nearby points? If we work in Cartesian 
coordinates, then the distance is given by ⎞⎛⎞⎛ 

1 0 0 dx

ds2 = dx2 + dy2 + dz2 = dx dy dz ⎝
 0 1 0
 ⎝
⎠
 dy
 ⎠


0 0 1 dz 

The right hand side is written in terms of matrix multiplication, with a row vector times a 
square matrix times a column vector. This is convenient, because we can interpret the square 
matrix as the metric. Now consider computing this same distance in spherical coordinates. ⎞⎛⎞⎛ 

1 0 0 dr

ds2 = dr2 + r 2dθ2 + r 2 sin2 θdφ2 =
 ⎝
 0
 r
2 0
 ⎝
⎠
 dθ
 ⎠
dr dθ dφ


0 0 r2 sin2 θ dφ 

Notice, that in two different coordinate systems, the general form of the equation that gives 
ds2 is the same, i.e., they both can be written as 

ds2 = gµν dxµdxν , 

where µ and ν are each summed only over {1, 2, 3} in the above examples (however, we 
generalize this to 4 dimensions next). In effect, the metric gµν determines how to measure 
intervals. We have also learned that the spacetime interval, ds2, is independent of Lorentz 
frame. Thus, one can use a metric to determine the invariant spacetime interval: ⎞⎛⎞⎛ 

1 0 0 0 cdt


ds2 = c 2dt2 − dx2 − dy2 − dz2 = cdt dx dy dz 
⎜⎜⎝


⎜⎜⎝

⎟⎟⎠


dx

dy


⎟⎟⎠

0 −1 0 0 

00
 −1 0 
00 0
 −1 dz


The metric diag(1, −1, −1, −1) is called the “Minkowski metric”, to distinguish it from other 
metrics like diag(1, −1, −r2 , −r2 sin2 θ) (which is also the metric of flat spacetime, expressed 
in spherical polar coordinates). 
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The spacetime ordinarily used in special relativity is the Minkowski metric and is, by 
definition, flat. By contrast, spacetimes in the presence of matter are referred to as “curved” 
and are described by metric tensors with quite different properties. In curved spacetimes 
Euclid’s fifth postulate is violated, i.e., initially straight parallel lines can intersect. 

Finally, we note that gµν with raised indices is just the matrix inverse of gµν . In any 
spacetime, the metric is used to lower indices and the inverse matrix to raise them. Thus, 
pµ = gµαpα and pµ = gµαpα where the index α in each case is summed over {0, 1, 2, 3}. 

The theory of relativity was partially motivated by the invariance of the form of Maxwell’s 
equations under Lorentz transformations. For this reason, we say that electromagnetism is a 
relativistic theory. What is the relativistic theory of gravity? Newton’s theory is determined 
by an equation similar to Gauss’ law in E&M. One sees the similarity between Newton’s 
theory and Gauss’s Law by noting that both involve fields that that fall off as r−2 . Newton’s 
theory can be expressed as 

� · g = −4πGρm 

where g is the gravitational field and ρm is the mass density. Equivalently, Newton’s law 
of gravity can be expressed in terms of the gravitational potential in the form of Poisson’s 
equation 

�2φ = 4πGρm , 

where φ is the gravitational potential defined so that g = −�φ. 

Unfortunately, Newton’s theory is not relativistic. Among other things, the fact that the 
gravitational field is completely determined by a single equation that has no time derivatives 
implies “action at a distance”, i.e., instantaneous knowledge by a test mass of the location of 
the source mass, without regard to propagation time delays at the speed of light. Of course, 
Maxwell’s equations also include Poisson’s equation, and yet they transform correctly in the 
context of special relativity. However, Newton’s theory of gravity has no other equations 
analogous to the time-dependent Ampere’s law and Faraday’s law. This might motivate a 
simple suggestion to generate a relativistic theory of gravity. For example, we might try to 
add three more equations to give the same form as Maxwell’s equation’s, with the following 
substitutions in Maxwell’s equations 

1 
E → g B → Bm ρ → ρm j → jm �0 → − 

4πG 

However, this does not actually work since charge density and mass density do not have the 
same Lorentz transformation properties. Remember, mass which is equivalent to energy is 
not a Lorentz scalar, but charge is a Lorentz scalar. 

Then, how does one construct a relativistic theory of gravity? A helpful starting point 
is Einstein’s Principle of Equivalence (1911) which states that it is not possible via local 
observations to distinguish between a uniform gravitational field g, and a frame undergoing 
uniform acceleration a = −g. Thus, the apparent gravity seems to depend on the choice of 
reference frame. For example, if you are in an elevator in free fall or orbiting the Earth in 
the Space Shuttle, you observe everything to be weightless. It is as if the gravitational field 
is zero. Likewise, if one were in a totally isolated rocket that was undergoing a constant 
acceleration of 9.8 m s−2, then inside the rocket it would seem as if there were a gravitational 
field present of g = 9.8 m s−2 . In both cases, we see that the inferred field depends on the 
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choice of frame. In fact, it seems as though one can always choose a frame in which the 
gravitational field vanishes. Note, however, that there are peculiarities with these frames. 
The freely-falling elevator frame, if extended a great distance (e.g., to the other side of the 
earth), would not be everywhere free-fall. In the case of the accelerating rocket, the frame 
is non-inertial. 

In General Relativity, we go beyond considering only inertial frames. So this suggests we 
want a theory, in which the equations take on the same form after any coordinate transfor­
mation. Equations that have this property are called “generally covariant”. It follows from 
the equivalence principle that if a material object has no forces other than gravity acting 
on it, the path the object follows is independent of the nature of the object. So Einstein’s 
conjecture was that gravity is the result of spacetime curvature. In turn, the curvature and 
geometry of spacetime are all determined by the metric of spacetime. Hence, we want to 
postulate an equation that relates the metric to a source of mass/energy. 

We will no longer talk about gravitational fields; however, the metric plays a role analo­
gous to that of the gravitational potential. Recall in electromagnetism, Maxwell’s equations 
relate the electric and magnetic fields to source charge and currents. Likewise, Einstein’s 
equation will relate the metric to matter and energy. So there is some similarity between 
Maxwell’s equations and Einstein’s equation though, as we shall see, the latter is inherently 
a tensor equation rather than a vector equation. 

We want to exploit the similarities between electromagnetism and gravity just a bit more. 
In particular, we note that charge conservation can be directly extracted from Maxwell’s 

∂equations. To show this, start by taking the time derivative, 
∂t , of Gauss’s Law 

∂ ∂ 
∂t 

(� · E) = 
∂t 

(4πρ) 

∂E ∂ρ �· 
∂t 

= 4π 
∂t 

and take the divergence, �·, of Ampere’s Law 

4π 1 ∂E �·(�× B) = �·( 
c

j + 
c ∂t 

) 

4π 1 ∂E 
0 = 

c 
� · j + 

c 
�· 

∂t 

If we now combine these two results we find 

4π ∂ρ 
0 = 

c 
� · j + 

∂t 
∂ρ � · j + 
∂t 

= 0 

This final equation expresses conservation of charge. In index notation, it takes the following 
simple form ∂jµ/∂xµ = 0, where the 4-vector current density is defined as {cρ; jx; jy; jz}. This 
conservation equation manifestly takes on the same form in all Lorentz frames since both jµ 

and xµ transform as 4-vectors. 
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We want Einstein’s equation to have an analogous feature. What acts as a source in 
Einstein’s equation? A first guess might be the mass density ρm. However, as mentioned 
above, mass is not a relativistic invariant, as is charge. How does mass density fit into a 
relativistic structure? We know from special relativity that mass density should be replaced 
with mass/energy density. However, we also learned from special relativity that pure energy 
in one frame transforms to energy and momentum in another frame. Consideration of energy 
and momentum densities as well as energy and momentum fluxes leads naturally to the 
energy-momentum tensor, T µν . The tensor nature arises due to the fact that flows of vector 
quantities require two directions for complete specification. For example, there can be a 
flow of the x̂ component of momentum in the ŷ direction, corresponding to T xy. In all, the 
components of the stress-energy-momentum tensor contain T 00 = energy density; cT 0i = 
energy flux across a surface with a normal in the î direction; T i0/c = momentum density; 
and T ij = momentum î flux across a surface whose normal is in the ĵ direction. (Here the 
indices i and j run over only the 3 spatial components.) 

Let’s think about T µν a bit more. Since it contains various densities and “currents” of 
momentum and energy, we expect that it probably obeys an equation analogous to that for 
charge conservation. This suggests a somewhat unconventional notation for the stress-energy 
tensor T νµ = [T ν0, T νx, T νy, T νz] = [cρν , jνx, jνy, jνz]. Here we have identified the energy and 
momentum fluxes as “current densities”, jν ≡ T νi and energy and momentum densities as 
ρν ≡ T ν0 . Since each component is separately conserved, this implies a grand conservation 
law: 

∂T ν0 

= 0 
∂t 

+ � · jν 

∂T µν 

≡ ∂µT µν = 0 
∂xµ 

For Einstein’s equation to have a similar feature, it must be constructed such that �µT µν 

automatically vanishes, where �µ is called the covariant derivative. For our purposes, all 
we need to know is that the covariant derivative is General Relativity’s generalization of the 
partial derivative ∂µ. 

As implied above, we expect Einstein’s equation to relate the metric tensor to T µν . We 
anticipate an equation of the form 

O[gµν ] = κTµν 

where the operator, O that we chose operates on gµν to yield a constant, κ, times the stress-
energy tensor Tµν . Here, the metric itself has been used to lower the indices on the stress-
energy tensor: Tµν = gαµgβν T αβ . O will then automatically satisfy �µOµν = 0. Choosing 
the operator to satisfy that condition insures that energy and momentum are conserved. 
Furthermore, κ is a constant to be determined by the condition that Einstein’s theory in the 
limit of small mass densities must agree with Newton’s law of gravity. It turns out, we can 
make the following choices 

1 8πG O[gµν ] = Rµν − gµν R κ = 
42 c

where Rµν is the Ricci tensor defined in detail below. These results lead to Einstein’s field 
equations which are summarized next. 
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Einstein Field Equations Summary of Definitions


1 8πG 
Rαβ − gαβR = Tαβ ,

2 c4 

or, alternatively 
8πG 

Gαβ = Tαβ , 
c4 

where 

•	 Gαβ is the “Einstein tensor” (not to be confused with G, the universal gravitational 
constant), 

•	 gαβ is the “metric tensor”, 

•	 Tαβ is the “stress-energy” or “energy-momentum tensor” involving terms in rest mass 
and kinetic energy, as well as pressure, 

•	 R, the “curvature scalar” of spacetime, is given by R = gαβRαβ , a contraction of the 
“Ricci tensor” with the metric, 

Rαγ , in turn, is the Ricci tensor, defined by Rαγ = Rλ
αβγ δ

β
λ = Rλ

αλγ , a contraction of • 
the “Riemann curvature tensor” with a 4-dimensional Kronecker delta function (with 
only 1�s along the diagonal). 

Riemann Curvature Tensor 

∂Γω ∂Γω 

Rω = βλ βγ 
+ Γω 

βλ − Γω 
βγ ,βγλ ∂xγ 

− 
∂xλ γσΓσ 

λσΓσ 

where the Γα are the “Christoffel symbols” (also known as the connection coefficients), βγ 

defined as � � 

Γα gασ ∂gσβ ∂gσγ ∂gβγ 
βγ = 2 ∂xγ 

+ 
∂xβ 

− 
∂xσ 

. 

Notes 
1. All indices run over the 4 spacetime coordinates (0 = time, 1, 2, 3 = space). 
2. Repeated upper and lower indices imply a summation over that index. 
3. Rαβ and Gαβ contain 16 elements, 10 of which are independent; Rαβγλ contains 256 
elements, only 20 of which are independent. 
4. The dimensions of Rαβ and Gαβ are generically (length)−2 . 

Thus, Einstein’s equation actually represents a set of 10 (4 × 4 − 6) coupled, second 
order, partial, non-linear differential equations that relate gµν to the stress-energy-momentum 
tensor (i.e., the “source” term). This is analogous to Poisson’s equation in which a second 
order differential equation relates the gravitational potential to mass density. 
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The Schwarzschild Metric Solution 

After taking into account the various symmetries associated with a static, non-rotating, 
spherically symmetric mass distribution, we can write the metric in the region exterior to 
the mass as 

ds2 = gαβdxαdxβ = e 2Φ(cdt)2 − e 2Λdr2 − r 2dθ2 − r 2 sin2 θdφ2 

where Φ and Λ are functions of r only, and are written in this exponential form for conve­
nience. Here, the coordinates are {x0, x1, x2, x3} ≡ {ct, r, θ, φ}. ⎞⎛ 

The metric tensor, gαβ , is 
then given by


e2Φ 0 0 0 
0 −e2Λ 0 0 

0 

⎜⎜⎝

⎟⎟⎠
 ,
20
 0
−r

0 2 sin2 θ0 0
 −r


Steps to determine e2Φ and e2Λ 

1. Plug gαβ into the equations for the Christoffel symbols, Γα (These involve first-order βγ . 
derivatives). For the Schwarzschild metric, there are only 9 non-zero Christoffel symbols . 
2. The resulting Γα are then inserted into the expression for the Riemann curvature tensor βγ 

(this operation produces second derivatives). The Riemann tensor contains only 6 non­
vanishing independent elements for this particular problem. 
3. The Riemann curvature tensor, Rλ

αβγ , is then contracted with a 4-dimensional Kronecker 

delta function δβ
λ to yield the Ricci tensor Rαγ (i.e., Rαγ = Rλ

αβγ δ
β
λ). 

4. After computing the curvature scalar and forming the complete Einstein tensor, only 
diagonal elements remain; two of these provide the information needed to find e2Φ and e2Λ 

1 d 
G00 = 

2 
e 2Φ [r(1 − e−2Λ)] , 

r dr 
1 2 dΦ 

G11 = −
r

e 2Λ(1 − e−2Λ) + 
r dr 

. 
2 

5. Since the energy-momentum tensor is zero outside the mass distribution, G00 = 0 and 
G11 = 0, are simple differential equations from which we find (see Problem Set 10) 

2GM 
e 2Φ = e−2Λ = 1 − 

c2r
. 

Now, we actually carry out the steps of plugging in our inferred form for the metric into 
Einstein’s equation to derive the differential equations for Φ and Λ. Recall 

ds2 = e 2Φdt2 − e 2Λdr2 − r 2dθ2 − r 2 sin2 θdφ2 . 
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Step one 

Start by computing the Christoffel symbols. We’ll make a slight change in notation for 
brevity, from now on when a comma appears next to an index in a tensor it indicates a 
derivative. For example, gαβ,γ ≡ ∂gαβ , and likewise gαβ,γν ≡ ∂2gαβ 

∂xγ ∂xγ ∂xν . 

ασ ∂gσµ ∂gσν ∂gµν
Γα g

= µν +
 −

∂xν ∂xµ ∂xσ2


In all there are 4 × 4 × 4/2 = 32 independent elements of the Christoffel symbol. We’ll work 
out the values of some of the elements of the Christoffel symbol as examples, and then just 
list the results for the rest of them. One more bit of notation: whenever we use an index 
such as {t, r, φ, θ}, we mean one of those 4 specific components; however, if we use any other 
Greek letter we are referring to an arbitrary component that is possibly being summed over. 

Let’s start by working out Γt 
tr 

tσ ∂gσt ∂gσr ∂gtr
Γt g

= tr +
 −

∂xσ2 ∂r ∂t


First, we notice that none of the metric depends on time, t, nor on the angle φ. Hence, terms 
like, ∂g

∂t 
σr , vanish. So consider only derivatives with respect to r or θ. Next, note that the 

metric is diagonal, so elements off the diagonal are all zero, such as gtr = gtθ = grφ = 0, etc. 
So looking at our expression for Γt , we see that only one of the three derivatives might be tr

non-zero, and that is ∂g
∂r 

σt . This derivative is only non-zero when σ is t, otherwise it is an 
off-diagonal element of the metric. Also 

∂gtt ∂(e2Φ) 2Φ ∂Φ 
= = 2e 

∂r ∂r ∂r 

So now, we need to know the value of gtt . How do we find the value of the metric when the 
indices are raised? In other words, we want to know gαβ , but this is just the inverse of gαβ . 
Hence, gαβ is given by ⎞⎛ 

e−2Φ 0 0 0 
0 −e−2Λ 0 0 
0 0 

⎜⎜⎝

⎟⎟⎠
 ,
−r−2 0


0 −r−2 sin−2 θ0 0


So gtt = e−2Φ, and hence Γt = ∂
∂r 
Φ = ∂rΦtr 

Next, let’s work out a trickier example, Γθ 
φφ 

θσ θσ ∂gσφ ∂gσφ ∂gφφ 2∂gσφ ∂gφφg
 g

Γθ 

φφ =
 +
 −
 −
=

∂xσ ∂xσ2 ∂φ ∂φ
 2 ∂φ


Now remember the metric is diagonal, and notice the prefactor of gθσ , so we only get a 
non-zero result when σ is θ, so we have 

Γθ 
φφ = −gθθ ∂gφφ 

= − 
r−2 

(2r 2 sin θ cos θ) = − sin θ cos θ 
2 ∂θ 2 
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Many of the other elements of the Christoffel symbol work out to be zero. We’ll show one 
example of this. Consider Γθ 

tt 

gθσ ∂gσt ∂gσt ∂gtt gθθ ∂gtt
Γθ = + = 0 tt 2 ∂t ∂t 

− 
∂xσ 

= −
2 ∂θ 

Also, recall that Φ and Λ depend only on r and not on t, θ, and φ. Thus ∂gtt = 0, which 
∂θ 

implies Γθ = 0. Working out all the possible elements of the Christoffel symbol is quite tt 

a tedious exercise, and thus we simply state the results after all the algebra is done. For 
∂brevity, we will use the notation of ∂r, which stands for 
∂r . Only 9 of the elements work out 

to be non-zero and they are 

Γt Γr 2(Φ−Λ)∂r Γr 
tr = ∂rΦ tt = e Φ rr = ∂rΛ 

Γr = −re−2Λ Γr = −r sin2 θe−2Λ Γθ = 1 
θθ φφ rθ r 

Γθ = − sin θ cos θ Γφ = 1 Γφ = cot θφφ rφ r θφ 

Step two 

Now we need to compute the Riemann curvature tensor, which is given in terms of the 
Christoffel symbols 

Rσ = Γσ + Γσ Γτ Γτ ,µβν µν,β − Γσ 
βτ ντ µβµβ,ν µν − Γσ 

(note the commas, indicating derivatives, in the first two terms). Now, if one works out 
what Rσ is in terms of the metric, it can be shown to have a number of symmetries. µβν 

These symmetries can be used to show there are only 20 independent components. In the 
end, we actually want to find the Ricci tensor Rµν = Rα Now using the definition of µαν . 
the Riemann curvature tensor and the results for the Christoffel symbol, we carry out the 
tedious computations similiar to computing the Christoffel symbol. Here we simply list the 
independent non-vanishing components 

Rt
rtr = ∂rΦ∂rΛ − ∂r 

2Φ − (∂rΦ)2; 

Rt
θtθ = −re−2Λ∂rΦ; 

Rt
φtφ = −re−2Λ sin2 θ∂rΦ; 

Rr
θrθ = re−2Λ∂rΛ; 

Rr
φrφ = re−2Λ(∂rΛ) sin2 θ; 

Rθ
φθφ = (1 − e−2Λ) sin2 θ 

This means we’ll only need to work out a subset of the Riemann curvature elements. The 
subset of {Rt

µtν , R
r
µrν , R

θ
µθν , R

φ
µφν }. 

Now, we compute the non-vanishing components of the Ricci tensor. The first example 
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is 

Rtt = Rt
ttt + Rr

trt + Rθ
tθt + Rφ

tφt 

= 0 + g rr gttR
t
rtr + g θθ gttR

t
θtθ + g φφ gttR

t
φtφ 

= e2(Φ−Λ)(−∂rΦ ∂rΛ + ∂r 
2φ + (∂rΦ)2 + 2r−1∂rΦ) 

A similar calculation for the other elements of Rαβ , shows that all the off-diagonal elements 
are zero. The complete set of diagonal Ricci tensor elements for the Schwarzschild metric 
works out to be 

Rtt = e2(Φ−Λ)(−∂rΦ ∂rΛ + ∂r 
2φ + (∂rΦ)2 + 2r−1∂rΦ) 

Rrr = ∂Φ ∂rΛ − ∂2Φ − (∂rΦ)2 + 2r−1∂rΛ;r 

Rθθ = −e−2Λ [1 + r(∂rΦ − ∂rΛ)] + 1 

Rφφ = sin2 θ{−e 2Λ [1 + r(∂rΦ − ∂rΛ)] + 1} 

Lastly, we need to calculate the scalar curvature R = gµν Rµν 

R = g ttRtt + g rrRrr + g θθRθθ + g φφRφφ 

2 1 2 
R = 2e−2Λ −∂rΦ ∂rΛ + ∂r 

2Φ + (∂rφ)2 + (∂rΦ − ∂rΛ) + 
2 

+ 
2r r r

Finally, we calculate the Einstein tensor, Gµν = Rµν − 1 gµν R2 

2 1 1 
Gtt = e2(Φ−Λ)∂rΛ − 

2 
e2(Φ−Λ) + 

2 
e 2Φ


r r r

2 1 2Λ 1 

Grr = ∂rΦ − 
r2 

e + 
r2r 

1 
Gθθ = r 2 e−2Λ ∂r 

2Φ + (∂rΦ)2 + (∂rΦ − ∂rΛ) − ∂rΦ∂rΛ 
r 

1 
Gφφ = sin2 θr2 e−2Λ ∂r 

2Φ + (∂rΦ)2 + (∂rΦ − ∂rΛ) − ∂rΦ∂rΛ 
r 

For the case of the Schwarzschild metric, in the space outside the spherically symmetric 
mass distribution the stress-energy-momentum tensor Tµν vanishes, and therefore the Ein­
stein equation reduces to Gµν = 0. Hence, each of the four elements listed above vanishes. 
The first two of these simple differential equations (see bottom of page 7) are sufficient to 
find Λ and Φ, and hence complete the Schwarzschild metric: 

2GM dr2 

c 2dτ 2 = 1 − c 2dt2 � 
2GM 

� − r 2dθ2 − r 2 sin2 θdφ2 

c2r 
− 

1 − 
c2r 

From this metric we will derive a number of the famous effects of General Relativity that 
you may have heard about. These include the gravitational red shift, bending of light, the 
advance of the perihelion of Mercury’s orbit, and the Shapiro time delay. 
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For a more serious introduction to General Relativity, the interested reader is directed 
to such texts as: 
“Gravitation and Cosmology”, by Steven Weinberg (Wiley) 
“Gravitation”, by Charles Misner, Kip Thorne, and John Archibald Wheeler (Freeman) 
“A First Course in General Relativity”, by Bernard Schutz 
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