## Welcome back to 8.033!

Image courtesy of Wikipedia.

#### **Relativistic dynamics summary:**

### Dynamics toolbox: formula summary

• Mass-energy unification:

$$E = mc^2 = m_0 \gamma c^2$$

• Momentum 4-vector:

$${f P}\equiv m_0{f U}=\left(egin{array}{c} p_x\ p_y\ p_y\ p_z\ E/c\end{array}
ight)$$

• Energy formula:

$$E = \sqrt{(m_0 c^2)^2 + (cp)^2}$$

• Velocity formula:

$$\beta = \frac{cp}{E}$$

### MIT Course 8.033, Fall 2006, Lecture 12 Max Tegmark

### **Today's topics:**

- Atomic, nuclear & particle physics
- Parallel & transverse acceleration & force
- Particle accelerators

#### FOCUS OF PARTICLE PHYSICS COMPONENT OF 8.033:

- 1) Give you basic overview of atomic, nuclear & particle physics so that you can
  - 1) Better see the big picture
  - 2) Get more out of popular talks and articles
  - 3) Pass the "cocktail party test"
- 2) Apply two core relativity results:
  - 1) Mass-energy unification
  - 2) Energy-momentum conservation

# Atomic physics





Image courtesy of Wikipedia.

| 1          |           |          |                              |          |          |           |          |              |           |          |            |                          |          |           |           |          | 2           |  |  |  |
|------------|-----------|----------|------------------------------|----------|----------|-----------|----------|--------------|-----------|----------|------------|--------------------------|----------|-----------|-----------|----------|-------------|--|--|--|
| H          | -         |          |                              |          |          |           |          |              |           |          |            |                          |          |           |           |          | He          |  |  |  |
| 3          | 4<br>D.   |          |                              |          |          |           |          |              |           |          |            | D                        | 0        | N         | ð<br>O    | 7        | 10<br>No    |  |  |  |
| 4.1        | DC<br>12  |          |                              |          |          |           |          |              |           |          |            | 12                       | 11       | 15        | 16        | Г<br>17  | INC 1.0     |  |  |  |
| Na         | Ma        |          |                              |          |          | 15        | 14<br>C: | D            | 10        | CL       | 10         |                          |          |           |           |          |             |  |  |  |
| 10         | 20        | 21       | 22                           | 22       | 24       | 25        | 26       | 27           | 20        | 20       | 20         | 21                       | 22       | 22        | 24        | 25       | 26          |  |  |  |
| 12         | 20<br>Ca  | 21<br>Sc | T                            | 25<br>V  | Cr       | Mn        | Ea       | Co           | ZO<br>NI  | 27<br>Cu | 50<br>7n   | Co                       | 54<br>Ce | 33        | .04<br>Sa | 33<br>Re | - 30<br>K - |  |  |  |
| 37         | 20        | 30       | 40                           | ¥<br>41  | 42       | 43        | 44       | 45           | 46        | 47       | 4.9        | <u>10</u>                | 50       | 51        | 50        | 53       | 54          |  |  |  |
| Dh         | - 30<br>C | v        | 7.                           | NIL      | Ma       | Te        | P.       | Dh.          | P.4       | Aa       | Cd         | In In                    | 50       | ST<br>Ch  | 54<br>Ta  | 35       | V.          |  |  |  |
| 55         | 57        | 71       | 70                           | 72       | 74       | 75        | 74       | <b>R</b> (1) | 70        | 70       | 00         | 01                       | 00       | 02        | 04        | 1 05     | AC<br>QL    |  |  |  |
| 55         | DO<br>Ro  | AT.      | 14                           | 73<br>Ta | VH<br>W/ | 7.J<br>Do | 10       | I.           | / O<br>Dt | Δ        | Ha         | 01<br>T1                 | 04<br>Dh | 0.3<br>R: | Do        | 0.J      | 00<br>Do    |  |  |  |
| 07         | 00        | 102      | 104                          | 105      | 104      | 107       | 100      | 100          | 110       | 111      | 112        | II FO DI FO AT KN        |          |           |           |          |             |  |  |  |
| 0/         | Do        |          | Df                           | Db       | Sa       | Rh        | He       | Me           | Hum       | LL       | 112<br>Uub | #118 just confirmed! 🔶 🔶 |          |           |           |          |             |  |  |  |
| <b>F</b> T | Na        | H        | LT KI DD 3g Bh HS MI OUN OUD |          |          |           |          |              |           |          |            |                          |          |           |           |          |             |  |  |  |
|            |           | 11       | 57                           | 58       | 50       | 60        | 61       | 62           | 63        | 64       | 65         | 66                       | 67       | 68        | 69        | 70       |             |  |  |  |
|            |           |          | La                           | Ce       | Dr       | Nd        | Pm       | Sm           | En        | Cd       | Th         | Dv                       | Ho       | Er        | Tm        | Vh       |             |  |  |  |
|            |           | <b>1</b> | 20                           | 90       | 91       | 92        | 03       | 94           | 05        | 06       | 97         | 98                       | 90       | 100       | 101       | 102      |             |  |  |  |
|            |           |          | Ac                           | Th       | Pa       | 11        | No       | Pu           | Am        | Cm       | BL         | CF                       | Fs       | Em        | Md        | No       |             |  |  |  |
|            |           | 1        | 89<br>Ac                     | 90<br>Th | 91<br>Pa | 92<br>U   | 93<br>Np | 94<br>Pu     | 95<br>Am  | 96<br>Cm | 97<br>Bk   | 98<br>Cf                 | 99<br>Es | 100<br>Fm | 101<br>Md | 10<br>N  | 0           |  |  |  |

Spectral line experiment





Image courtesy of NASA.



Image courtesy of NASA.



#### Emission spectrum of hydrogen:



Image courtesy of Wikipedia.



Image courtesy of Wikipedia.

How do we know what stars are made of?







Figure by MIT OCW.

Photons

### Photoelectric effect

- Einstein's model was that
  - the photon carries energy  $h\nu$
  - a certain work  $W_e$  is required to liberate an electron from the metal



### Photoelectric effect



### Photoelectric effect Lenard 1902



### Photoelectric effect

- Einstein's model was that
  - the photon carries energy  $h\nu$
  - a certain work  $W_e$  is required to liberate an electron from the metal
- This explained both of Lenard's 1902 observations:
  - light with frequency  $h\nu < W_e$  liberates no electrons at all
  - light with frequency  $h\nu > W_e$  liberates electrons with kinetic energy  $h\nu W_e$ .
  - increasing the *intensity* of the light (the photon flux) didn't affect the existence of liberated electrons or their kinetic energy
- Bottom line: we can treat the photon as just another particle.



Image courtesy of Wikipedia.

(PS6, problem 6)

### Working with photons: (PS6, problem 4)

• Photon 4-vector:

$$\mathbf{P}=\hbar\left(egin{array}{c} \mathbf{k}\ k\end{array}
ight),$$

where  $k = \omega/c$ .

- So p = E/c for photons.
- Comparing P with the wave 4-vector K shows that

#### $\mathbf{P}=\hbar\mathbf{K}.$

This relation in fact holds for *all* particles, even massive ones — as you'll see when you get to wave-particle duality in quantum mechanics. If you take a field theory course, you'll see this pop right out of the so-called Klein-Gordon equation.

• Doppler effect is just special case of P-transformation for zero rest mass — show on PS6.

Nuclear physics

### Nuclear physics terminology

- The *atomic number* Z of a nucleus is its number of protons.
- The *atomic weight* A of a nucleus is its number of nucleons (protons + neutrons).
- Z determines the name of the element (its order in the periodic table).
- Nuclei with same Z and different A are said to be different *isotopes* of the same element.
- Notation example: Fe<sup>56</sup> means Z = 26 (iron) and A = 56.
- The mass excess for a nucleus is  $m_0 A$  amu, *i.e.*, its rest mass minus the number of nucleons times amu.
- By this definition, the mass excess of  $C^{12}$  is zero.



### (PS6, problem 1)

### Rest mass and binding energy

- The rest energy of an object is its energy in the frame where it has zero momentum.
- This rest energy is the sum of *all* energy contributions, both positive (like rest masses and kinetic energies of its constituent particles) and negative (like potential energy from force holding constituents together).
- The *binding energy* of a nucleus is rest energy of its neutrons and protons free minus rest energy of the nucleus.

- $m_n \approx 939.6 \text{ MeV} (\text{udd})$
- $m_p \approx 938.3 \text{ MeV} (\text{uud})$
- $m_u \approx 4 \text{ MeV}$
- $m_d \approx 7 \text{ MeV}$
- Electromagnetic  $\approx 1.7 \text{ MeV}$
- So mostly glue!
- Electric repulsion between protons *increases* mass of nucleus.
- Attraction between nucleons (strong force) *decreases* mass of nucleus.
- Only nuclei whose (Z, A) give positive binding energy can exist
- Semi-empirical relationship (von Weizsäcker 1935):

$$\frac{E_{\text{binding}}}{c^2} \approx \left[15.8A - 18.3A^{2/3} - 0.714\frac{Z^2}{A^{1/3}} - 23.2\frac{(A - 2Z)^2}{A} + (-1)^Z \frac{12}{A^{1/2}}\right] \text{MeV}$$

The last term is omitted if A is an odd number.

• Much work remains to be done in this field!



Image courtesy of the National Nuclear Data Center.



Image courtesy of Wikipedia.

|    | Brough |                  |     |     |     |     |     |     |     |     |     |    | ht to you by |     |     |     |    |  |  |  |
|----|--------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|--------------|-----|-----|-----|----|--|--|--|
| 1  | 1      | Tom Lehrer       |     |     |     |     |     |     |     |     |     |    |              |     |     |     | 2  |  |  |  |
| Η  |        | H                |     |     |     |     |     |     |     |     |     |    |              |     |     |     | He |  |  |  |
| 3  | 4      |                  |     |     |     |     | 5   | 6   | 7   | 8   | 9   | 10 |              |     |     |     |    |  |  |  |
| Li | Be     |                  |     |     |     |     | В   | С   | Ν   | 0   | F   | Ne |              |     |     |     |    |  |  |  |
| 11 | 12     |                  |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18 |              |     |     |     |    |  |  |  |
| Na | Mg     |                  |     |     |     |     |     |     |     |     |     |    |              | Р   | S   | Cl  | Ar |  |  |  |
| 19 | 20     | 21               | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31 | 32           | 33  | 34  | 35  | 36 |  |  |  |
| K  | Ca     | Sc               | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga | Ge           | As  | Se  | Br  | Kr |  |  |  |
| 37 | 38     | 39               | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49 | 50           | 51  | 52  | 53  | 54 |  |  |  |
| Rb | Sr     | Y                | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In | Sn           | Sb  | Te  | Ι   | Xe |  |  |  |
| 55 | 56     | 71               | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81 | 82           | 83  | 84  | 85  | 86 |  |  |  |
| Cs | Ba     | Lu               | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl | Pb           | Bi  | Po  | At  | Rn |  |  |  |
| 87 | 88     | 103              | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |    |              |     |     |     |    |  |  |  |
| Fr | Ra     | \Lr              | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Uun | Uuu | Uub |    |              |     |     |     |    |  |  |  |
|    |        |                  |     |     |     |     |     |     |     |     |     |    |              |     |     |     |    |  |  |  |
|    |        | 11               | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66 | 67           | 68  | 69  | 70  |    |  |  |  |
|    |        | $\left( \right)$ | La  | Ce  | Pr  | Nd  | Pm  | Sm  | Eu  | Gd  | Tb  | Dy | Ho           | Er  | Tm  | Yb  |    |  |  |  |
|    |        | 1                | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98 | 99           | 100 | 101 | 102 |    |  |  |  |
|    |        |                  | Ac  | Th  | Pa  | U   | Np  | Pu  | Am  | Cm  | Bk  | Cf | Es           | Fm  | Md  | No  |    |  |  |  |