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Topics 

The FRW metric • 

Interpretation of FRW metric (curvature, expansion, comoving ob• 
jects, geodesics, redshift) 

The Friedmann equation • 

Cosmological parameters: Ωγ , Ωm, Ωk, ΩΛ, Ωb, Ωd, h • 

Age of the Universe • 



Key formula summary 

FRW metric: • 
� 

dr2	 �
dτ 2 = dt2 − a(t)2 

1 − kr2 
+ r 2dθ2 + r 2 sin2 θdϕ2

Hubble parameter: •	
ȧ


H ≡

a 

Dimensionless current Hubble parameter: • 

h ≡ H0/(100km s−1Mpc−1) ≈ H0 × 9.7846Gyr 

Friedmann equation: • 

8πG kc2 

H2 = 
3 

ρ − 
a2 

= H0
2 
�
Ωγ (1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

� 

Cosmological parameter measurements (2006): • 

– Ωb ≈ 0.04, 

– Ωd ≈ 0.21, 

– ΩΛ ≈ 0.75, 

– Ωk ≈ 0, 

– h ≈ 0.7, 

– Ωm ≡ Ωb + Ωd ≈ 0.25, 

Age of the Universe at redshift z: • 
� ∞ dz�

t(z) = 
(1 + z�)H(z�)z 



The FRW metric 

Observations indicate that the Universe is homogeneous and isotropic • 
on large scales, i.e., that if we smooth out the density field suffi
ciently, we can approximate it as a independent of position: ρ(r, t) = 
ρ(t). 

One can prove that the most general metric that is homogeneous • 
and isotropic is the FRW metric 

� 
dr2 �

dτ 2 = dt2 − a(t)2 

1 − kr2 
+ r 2dθ2 + r 2 sin2 θdϕ2

for a function a(t) called the cosmic scale factor (describing how 
the Universe expands over time) and a constant k that equals 1, 0 
or −1. 

Interpretation of the FRW metric 

Lines through spacetime where r, θ and φ are all constant are • 
geodesics. You will prove this for the k = 0 case on PS8. Objects 
moving along such geodesics are called “comoving” and the posi
tion vector defined by r, θ and φ in polar coordinates is called the 
“comoving position” of an object. To first approximation, galaxies 
are comoving, i.e., stay at a fixed comoving position. 

The physical distance between any two comoving objects changes • 
over time, proportional to a(t). One can therefore think of all 
galaxies as being at rest in (comoving) space, with physical space 
simply stretching uniformly over time proportionally to a(t). 

If k = 1, then the FRW metric can be interpreted as that of the • 
surface of a 4-dimensional hypersphere of radius a(t), and the an
gles of a triangle will add up to more than 180◦. 

If k = −1, then the FRW metric can be interpreted as that of • 
the surface of a 4-dimensional hyperboloid of radius a(t), and the 
angles of a triangle will add up to less than 180◦ (like on a saddle 
or Pringles’ potato chip). 

If k = 0, then the FRW metric can be interpreted as that of an • 
expanding flat 3-dimensional space, and can be rewritten in Carte
sian coordinates as 

dτ2 = dt2 − a(t)2 
�
dx2 + dy2 + dz2

� 
. 

In any metric, light rays have dτ = 0. For a photon moving radially • 
out from the origin r = 0 (with constant θ and φ), the FRW metric 
thus gives 

dr dt √
1 − kr2 

= 
a(t) 

. 

(In one of the optional problems on PS8, you can integrate this to 
calculate a photon trajectory.) 



In cosmology, a is often used as a convenient time-variable in place • 
of t. 

Cosmological redshift: Light emitted at time a1 and observed • 
at a later time a2 has a redshift given by 

λ2 a2 
. 

λ1 
≡ 

a1 

Interpretation: as it travels to us, light has its wavelength stretched 
out together with space itself. 

The redshift z is defined by the relation • 

λ21 + z ≡ ,
λ1 

so if the emission occurs at some early epoch with scale factor a 
and the observation occurs today with scale factor a0, then 

1 + z ≡ 
a0 

. 
a 

In observational cosmology, the most commonly used time-variable • 
of all is z, since it is the quantity that is directly observable when 
we look out in space and back in time When cosmologists say that 
something happened “at redshift z”, they mean that it happened 
at the time when light would have had to be emitted to reach us 
with a redshift z. z = 0 is today, z = ∞ is the Big Bang and 
z = −1 is the infinite future. The most distant objects observed 
(2005) have z just above six. Cosmic microwave background images 
depict z ≈ 103 . 



The Friedmann equation 

The FRW metric satisfies the Einstein field equations (the 2nd part • 
of GR, specifying how matter affects the metric) if and only if the 
function a(t) satisfies the so-called Friedmann equation: 

8πG kc2 

H2 =
3 

ρ − 
a2 

, 

where the Hubble parameter is defined as 

ȧ
.H ≡ 

a 

Amazingly, the correct form of the Friedman equation can derived • 
from Newtonian gravity (you’ll do this on PS8), but in that case 
there’s of course no spatial curvature whatever the value of k is. 

As space expands, the contents of space generally gets diluted and • 
so ρ drops. Different types of matter dilute differently as space 
expands. Here are four popular examples: 

–	 ργ (a) ∝ a−4 ∝ (1 + z)4 (photons), 

–	 ρm(a) ∝ a−3 ∝ (1 + z)3 (ordinary matter, dark matter), 

–	 ρk(a) ∝ a−2 ∝ (1 + z)2 (spatial curvature, i.e., the k-term 
above), 

–	 ρΛ(a) constant (vacuum energy, i.e., cosmological constant) 

With these four components, we can therefore rewrite the Fried• 
mann equation as 

H(z)2 =
8πG �

ργ (0)(1 + z)4 + ρm(0)(1 + z)3 + ρk(0)(1 + z)2 + ρΛ

� 
,

3 

where we have absorbed the k-term above by defining ρk ≡ − 3kc2 

8πGa2 . 
This means that H2 equals a quadratic polynomial in (1+z) whose 
coefficients specify the current (z = 0) densities of various types. 
(Dark energy warning: There are also models for dark energy where 
ρΛ(a) is not constant but evolves, measurements so far are consis
tent with “vanilla” dark energy where ρΛ is simply a constant.) 



Cosmological parameters 

The current critical density is defined as • 

3H 
ρcrit ≡ 

8πG 
. 

Note that since ρcrit(0) = ργ (0) + ρm(0) + ρk(0) + ρΛ, space will be 
flat (ρk = 0) if the total density of “stuff” (ργ + ρm + ρΛ) equals 
the critical density. 

The “Omega” for something is simply its current density over the • 
current critical density: 

ργ (0) ρm(0) ρk(0) ρΛ(0)
Ωγ = , Ωm = , Ωk = , ΩΛ = . 

ρcrit(0) ρcrit(0) ρcrit(0) ρcrit(0) 

The total Omega of “stuff” (everything except curvature) is • 

Ωtot ≡ Ωγ + Ωm + ΩΛ. 

This means that, by definition, 1 = Ωγ +Ωm +Ωk +ΩΛ = Ωtot +Ωk,• 
i.e., the curvature is given by 

Ωk = 1 − Ωtot. 

For an FRW Universe with Ωtot > 1, space is finite like the surface 
of a 4-dimensional hypersphere (k = 1) and for Ωtot ≤ 1, space is 
infinite (at all times, even right after the Big Bang). 

Determining Ωtot (and whether space is infinite or finite) has been • 
one of the key challenges in cosmology for decades. There’s been a 
sudden breakthrough using measuremends of the cosmic microwave 
background combined with other measurements like galaxy clus
tering, and the latest (2005) constraint is 

Ωtot = 1.01 ± 0.02, 

i.e., beautifully consistent with perfectly flat space, Ωtot = 1. 



The best (2005) measurements of the cosmological parameters above • 
are 

– Ωγ ≈ 0.0001, 

– Ωm = 0.30 ± 0.05, 

– ΩΛ = 0.71 ± 0.05, 

– Ωk = −0.01 ± 0.01, 

– h = 0.70 ± 0.05. 

Here h is the dimensionless current Hubble parameter (“Hubble 
constant”), defined as 

h ≡ H0/(100km s−1Mpc−1) ≈ H0 × 9.7846Gyr 

The matter density is made of both ordinary baryonic matter • 
(atoms) and dark matter (presumably some yet to be discovered 
particle that has no strong or electromagnetic interaction): 

Ωm = Ωb + Ωd, 

with the best (2005) measurements indicating 

– Ωb ≈ 0.05, 

– Ωd ≈ 0.25. 



Age of the Universe 

With this notation, we can rewrite the Friedmann equation as • 

H(z)2 = H0
2 
�
Ωγ (1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

� 
.


Because H = a−1da/dt and a = (1 + z)−1 implies dt = da/aH =
• 
−dz/(1 + z)H, the age of the Universe at redshift z is


� ∞ dz� 
� ∞ H0

−1dz

t(z) = = . 

z (1 + z�)H z (1 + z�) [Ωγ (1 + z�)4 + Ωm(1 + z�)3 + Ωk(1 + z�)2 + ΩΛ]1/2 

The nice Javascript calculator at • 
http://www.astro.ucla.edu/∼wright/CosmoCalc.html 
performs this integral for cosmological parameters of your choice. 

http://www.astro.ucla.edu/�wright/CosmoCalc.html

