Welcome

 back
to 8.033!

Christian Doppler

1803-1853, Austrian

Image Courtesy of Wikipedia.

Why opposite sense?

Summary of last lecture:

- Time dilation
- Length contraction
- Relativity of simultaneity
- Problem solving tips

MIT Course 8.033, Fall 2006, Lecture 6 Max Tegmark

Today: Relativistic Kinematics

- Space/time unification: η, imaginary rotations, etc.
- Proper time, rest length, timelike, spacelike, null
- More 4-vectors: U, K
- Velocity addition
- Doppler effect
- Aberration

Velocity
 addition

Transformation toolbox: velocity addition

- If the frame S^{\prime} has velocity v_{1} relative to S and the frame $S^{\prime \prime}$ has velocity v_{2} relative to S^{\prime} (both in the x-direction), then what is the speed v_{3} of $S^{\prime \prime}$ relative to S ?

SIMPLER

- $\mathbf{x}^{\prime}=\boldsymbol{\Lambda}\left(v_{1}\right) \mathbf{x}$ and $\mathbf{x}^{\prime \prime}=\boldsymbol{\Lambda}\left(v_{2}\right) \mathbf{x}^{\prime}=\boldsymbol{\Lambda}\left(v_{2}\right) \boldsymbol{\Lambda}\left(v_{1}\right) \mathbf{x}$, so
- $\boldsymbol{\Lambda}\left(\mathbf{v}_{3}\right)=\boldsymbol{\Lambda}\left(v_{2}\right) \boldsymbol{\Lambda}\left(v_{1}\right)$, i.e.

$$
\begin{aligned}
\left(\begin{array}{cccc}
\gamma_{3} & 0 & 0 & -\gamma_{3} \beta_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma_{3} \beta_{3} & 0 & 0 & \gamma_{3}
\end{array}\right) & =\left(\begin{array}{cccc}
\gamma_{2} & 0 & 0 & -\gamma_{2} \beta_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma_{2} \beta_{2} & 0 & 0 & \gamma_{2}
\end{array}\right)\left(\begin{array}{cccc}
\gamma_{1} & 0 & 0 & -\gamma_{1} \beta_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma_{1} \beta_{1} & 0 & 0 & \gamma_{1}
\end{array}\right) \\
& =\gamma_{1} \gamma_{2}\left(\begin{array}{cccc}
1+\beta_{1} \beta_{2} & 0 & 0 & -\left[\beta_{1}+\beta_{2}\right] \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\left[\beta_{1}+\beta_{2}\right] & 0 & 0 & 1+\beta_{1} \beta_{2}
\end{array}\right)
\end{aligned}
$$

- Take ratio between $(1,4)$ and $(1,1)$ elements:

$$
\beta_{3}=-\frac{\boldsymbol{\Lambda}\left(v_{3}\right)_{41}}{\boldsymbol{\Lambda}\left(v_{3}\right)_{11}}=\frac{\beta_{1}+\beta_{2}}{1+\beta_{1} \beta_{2}} .
$$

- In other words,

$$
v_{3}=\frac{v_{1}+v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}} .
$$

Transformation toolbox:

perpendicular velocity addition

- Here's an alternative derivation of velocity addition that easily gives the non-parallel components too
- If the frame S^{\prime} has velocity v in the x-direction relative to S and a particle has velocity $\mathbf{u}^{\prime}=\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)$ in S^{\prime}, then what is its velocity u in S ?
- Applying the inverse Lorentz transformation

$$
\begin{aligned}
x & =\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y & =y^{\prime} \\
z & =z^{\prime} \\
t & =\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{aligned}
$$

to two nearby points on the particle's world line and subtracting gives

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y & =d y^{\prime} \\
d z & =d z^{\prime} \\
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y & =d y^{\prime} \\
d z & =d z^{\prime} \\
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right)
\end{aligned}
$$

- Answer:

$$
\begin{aligned}
& u_{x}=\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\frac{d x^{\prime}}{d t^{\prime}}+v}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{y}=\frac{d y}{d t}=\frac{d y^{\prime}}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\gamma^{-1} \frac{d y^{\prime}}{d t^{\prime}}}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{y}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{z}=\frac{d z}{d t}=\frac{d z^{\prime}}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\gamma^{-1} \frac{d z^{\prime}}{d t}}{1+\frac{v t}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{z}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}}
\end{aligned}
$$

Unification of

 space \& time
"Everything is relative" - or is it?

- All observers agree on rest length
- All observers agree on proper time
- All observers (as we'll see later) agree on rest mass

Transformation toolbox:

boosts as generalized rotations

- A "boost" is a Lorentz transformation with no rotation
- A rotation around the z-axis by angle θ is given by the transformation

$$
\left(\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- We can think of a boost in the x-direction as a rotation by an imaginary angle in the $(x, c t)$-plane:

$$
\boldsymbol{\Lambda}(-v)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \eta & 0 & 0 & \sinh \eta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \eta & 0 & 0 & \cosh \eta
\end{array}\right)
$$

where $\eta \equiv \tanh ^{-1} \beta$ is called the rapidity.

- Proof: use hyperbolic trig identities on next page
- Implication: for multiple boosts in same direction, rapidities add and hence the order doesn't matter

Hyperbolic trig reminders

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2} \\
& \sinh x=\frac{e^{x}-e^{-x}}{2} \\
& \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) \\
& \sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \\
& \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \\
& \cosh \tanh ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \\
& \text { sinh tanh }{ }^{-1} x=\frac{x}{\sqrt{1-x^{2}}} \\
& \text { sing }=1
\end{aligned}
$$

Transformation toolbox:

boosts as generalized rotations

- A "boost" is a Lorentz transformation with no rotation
- A rotation around the z-axis by angle θ is given by the transformation

$$
\left(\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- We can think of a boost in the x-direction as a rotation by an imaginary angle in the $(x, c t)$-plane:

$$
\boldsymbol{\Lambda}(-v)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \eta & 0 & 0 & \sinh \eta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \eta & 0 & 0 & \cosh \eta
\end{array}\right)
$$

where $\eta \equiv \tanh ^{-1} \beta$ is called the rapidity.

- Proof: use hyperbolic trig identities on next page
- Implication: for multiple boosts in same direction, rapidities add and hence the order doesn't matter

The Lorentz invariant

- The Minkowski metric

$$
\boldsymbol{\eta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is left invariant by all Lorentz matrices $\mathbf{\Lambda}$:

$$
\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}=\boldsymbol{\eta}
$$

(indeed, this equation is often used to define the set of Lorentz matrices - for comparison, $\boldsymbol{\Lambda}^{t} \mathbf{I} \boldsymbol{\Lambda}=\mathbf{I}$ would define rotation matrices)

- Proof: Show that works for boost along x-axis. Show that works for rotation along y-axis or z-axis. General case is equivalent to applying such transformations in succession.
- All Lorentz transforms leave the quantity

$$
\mathbf{x}^{t} \boldsymbol{\eta} \mathbf{x}=x^{2}+y^{2}+z^{2}-(c t)^{2}
$$

invariant

- Proof:

$$
\mathrm{x}^{\prime t} \boldsymbol{\eta} \mathrm{x}^{\prime}=(\boldsymbol{\Lambda} \mathrm{x})^{t} \boldsymbol{\eta}(\boldsymbol{\Lambda} \mathrm{x})=\mathrm{x}^{t}\left(\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}\right) \mathrm{x}=\mathrm{x}^{t} \boldsymbol{\eta} \mathrm{x}
$$

(Also easy to see directly from top equation)

- (More generally, the same calculation shows that $\mathbf{x}^{t} \boldsymbol{\eta} \mathbf{y}$ is invariant)
- So just as the usual Euclidean squared length $|\mathbf{r}|^{2}=\mathbf{r} \cdot \mathbf{r}=\mathbf{r}^{t} \mathbf{r}=$ $r^{t} \operatorname{Ir}$ of a 3 -vector is rotaionally invariant, the generalized "length" $\mathrm{x}^{t} \boldsymbol{\eta} \mathbf{x}$ of a 4 -vector is Lorentz-invariant.
- It can be positive or negative

4-vectors are null, spacelike or timelike:

- For events x_{1} and x_{2}, their Lorentz-invariant separation is defined as

$$
\Delta \boldsymbol{\sigma}^{2} \equiv \Delta \mathbf{x}^{t} \boldsymbol{\eta} \Delta \mathbf{x}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-(c \Delta t)^{2}
$$

- A separation $\Delta \sigma^{2}=0$ is called null
- A separation $\Delta \sigma^{2}>0$ is called spacelike, and

$$
\Delta \sigma \equiv \sqrt{\Delta \sigma^{2}}
$$

is called the proper distance (the distance measured in a frame where the events are simultaneous)

- A separation $\Delta \sigma^{2}<0$ is called timelike, and

$$
\Delta \tau \equiv \sqrt{-\Delta \sigma^{2}}
$$

is called the proper time interval (the time interval measured in a frame where the events are at the same place)

The Three Types of 4-Vectors:

SPACELIKE

$$
\begin{array}{cc}
\Delta \mathrm{X}^{\mathrm{t}} \eta \Delta \mathrm{x}>0 & \Delta \mathrm{X}^{\mathrm{t}} \eta \Delta \mathrm{x}=0 \\
|\Delta \mathrm{x}|>\mathrm{c} \Delta \mathrm{t} & |\Delta \mathrm{x}|=\mathrm{c} \Delta \mathrm{t}
\end{array}
$$

NULL

TIMELIKE

Timelike, spacelike or null?

Transformation toolbox:

perpendicular velocity addition

- Here's an alternative derivation of velocity addition that easily gives the non-parallel components too
- If the frame S^{\prime} has velocity v in the x-direction relative to S and a particle has velocity $\mathbf{u}^{\prime}=\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)$ in S^{\prime}, then what is its velocity u in S ?
- Applying the inverse Lorentz transformation

$$
\begin{aligned}
x & =\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y & =y^{\prime} \\
z & =z^{\prime} \\
t & =\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{aligned}
$$

to two nearby points on the particle's world line and subtracting gives

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y & =d y^{\prime} \\
d z & =d z^{\prime} \\
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y & =d y^{\prime} \\
d z & =d z^{\prime} \\
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right)
\end{aligned}
$$

- Answer:

$$
\begin{aligned}
& u_{x}=\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\frac{d x^{\prime}}{d t^{\prime}}+v}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{y}=\frac{d y}{d t}=\frac{d y^{\prime}}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\gamma^{-1} \frac{d y^{\prime}}{d t^{\prime}}}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{y}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{z}=\frac{d z}{d t}=\frac{d z^{\prime}}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\gamma^{-1} \frac{d z^{\prime}}{d t}}{1+\frac{v t}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{z}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}}
\end{aligned}
$$

Application:
$\mathrm{d} \tau$ is invariant

Transformation toolbox: velocity as a 4 -vector

- For a particle moving along its world-line, define its velocity 4vector

$$
\mathbf{U} \equiv \frac{d \mathbf{X}}{d \tau}=\gamma_{u}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right)
$$

where

$$
\gamma_{u} \equiv \frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}
$$

- This is the derivative of its 4 -vector x w.r.t. its proper time τ, since $d \tau=d t / \gamma_{u}$
- $\mathrm{U}^{\prime}=\mathbf{\Lambda} \mathbf{U}$:

$$
\mathbf{U}^{\prime}=\frac{d \mathbf{X}^{\prime}}{d \tau^{\prime}}=\frac{d \mathbf{\Lambda} \mathbf{X}}{d \tau}=\boldsymbol{\Lambda} \frac{d \mathbf{X}}{d \tau}=\mathbf{\Lambda} \mathbf{U}
$$

since the proper time interval $d \tau$ is Lorentz-invariant

- This means that all velocity 4 -vectors are normalized so that

$$
\mathbf{U}^{t} \boldsymbol{\eta} \mathbf{U}=-c^{2}
$$

- This immediately gives the velocity addition formulas:

$$
\begin{aligned}
\mathbf{U}^{\prime} & =\gamma_{u^{\prime}}\left(\begin{array}{c}
u_{x}^{\prime} \\
u_{y}^{\prime} \\
u_{z}^{\prime} \\
c
\end{array}\right)=\mathbf{\Lambda}(-\mathbf{v}) \mathbf{U}=\gamma_{u}\left(\begin{array}{cccc}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right) \\
& =\left(\begin{array}{c}
\gamma_{u} \gamma\left[u_{x}+v\right] \\
\gamma_{u} u_{y} \\
\gamma_{u} y_{z} \\
\gamma_{u} \gamma\left[1+\frac{u_{x} v}{c^{2}}\right] c
\end{array}\right)=\gamma_{u^{\prime}}\left(\begin{array}{c}
\frac{u_{x}+v}{1+u_{x} v / c^{2}} \\
\frac{u_{y} / \gamma}{1+u_{x} v / c^{2}} \\
\frac{u_{u} / \gamma}{1+u_{v} v / c^{2}} \\
c
\end{array}\right),
\end{aligned}
$$

where $\gamma_{u^{\prime}}=\gamma_{u} \gamma\left[1+\frac{u_{x} v}{c^{2}}\right]$ - this last equation follows from the fact that the 4 -vector normalization in Lorentz invariant, i.e., $\mathbf{u}^{\prime t} \boldsymbol{\eta} \mathbf{u}^{\prime}=$ $\mathbf{u}^{t} \boldsymbol{\eta} \mathbf{u}=-1$.

- The 1st 3 components give the velocity addition equations we derived previously.

This is how it is in the frame S'.
But how does it look?

Transforming a wave vector

- A plane wave

$$
\begin{equation*}
E(\mathbf{x})=\sin \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right) \tag{1}
\end{equation*}
$$

is defined by the four numbers

$$
\mathbf{k} \equiv\left(\begin{array}{c}
k_{x} \\
k_{y} \\
k_{z} \\
\omega / c
\end{array}\right)
$$

- If the wave propagates with the speed of light c (like for an electromagnetic or gravitational wave), then the frequency is determined by the 3D wave vector $\left(k_{x}, k_{y}, k_{z}\right)$ through the relation $\omega / c=k$, where $k \equiv \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}$
- How does the 4 -vector k transform under Lorentz transformations? Let's see.

Using the Minkowski matrix, we can rewrite equation (1) as

$$
E(\mathrm{x})=\sin \left(\mathrm{k}^{t} \boldsymbol{\eta} \mathbf{x}\right)
$$

Let's Lorentz transform this: $\mathbf{x} \rightarrow \mathbf{x}^{\prime}, \mathbf{k} \rightarrow \mathbf{k}^{\prime}$. Using that $\mathbf{x}^{\prime}=\mathbf{\Lambda} \mathbf{x}$, let's determine \mathbf{k}^{\prime}.
$E^{\prime}=\sin \left(\mathbf{k}^{\prime t} \boldsymbol{\eta} \mathbf{x}^{\prime}\right)=\sin \left(\mathbf{k}^{\prime t} \boldsymbol{\eta} \boldsymbol{\Lambda} \mathbf{x}\right)=\sin \left[\left(\boldsymbol{\Lambda}^{-1} \mathbf{k}^{\prime}\right)^{t}\left(\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}\right) \mathbf{x}\right]=\sin \left[\left(\boldsymbol{\Lambda}^{-1} \mathbf{k}^{\prime}\right)^{t} \boldsymbol{\eta} \mathbf{x}\right.$

This equals E if $\boldsymbol{\Lambda}^{-1} \mathbf{k}^{\prime}=\mathbf{k}$, i.e., if the wave 4 -vector transforms just as a normal 4-vector:

$$
\mathrm{k}^{\prime}=\boldsymbol{\Lambda} \mathrm{k}
$$

This argument assumed that $E^{\prime}=E$. Later we'll see that the electric and magnetic fields do in fact change under Lorentz transforms, but not in a way that spoils the above derivation (in short, the phase of the wave, $\mathbf{k}^{t} \boldsymbol{\eta} \mathbf{x}$, must be Lorentz invariant)

So a plane wave k in S is also a plane wave in S^{\prime}, and the wave 4 -vector transforms in exactly the same way as x does.

Aberration and Doppler effects

- Consider a plane wave propagating with speed c in the frame S :

$$
\mathbf{k}=k\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta \\
1
\end{array}\right)
$$

where $c k$ is the wave frequency and the angles θ and ϕ give the propagation direction in polar coordinates.

Let's Lorentz transform this into a frame S^{\prime} moving with speed v relative to S in the z-direction: $\mathbf{k}^{\prime}=\boldsymbol{\Lambda} \mathbf{k}$, i.e.,

$$
\mathbf{k}^{\prime}=k^{\prime}\left(\begin{array}{c}
\sin \theta^{\prime} \cos \phi^{\prime} \\
\sin \theta^{\prime} \sin \phi^{\prime} \\
\cos \theta^{\prime} \\
1
\end{array}\right)=k\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \gamma & -\gamma \beta \\
0 & 0 & -\gamma \beta & \gamma
\end{array}\right)\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta \\
1
\end{array}\right)
$$

so

$$
\begin{aligned}
\phi^{\prime} & =\phi \\
\cos \theta^{\prime} & =\frac{\cos \theta-\beta}{1-\beta \cos \theta} \\
k^{\prime} & =k \gamma(1-\beta \cos \theta)
\end{aligned}
$$

- This matches equations (1)-(4) in the Weiskopf et al ray tracing handout
- The change in the angle θ is known as aberration
- The change in frequency $c k$ is known as the Doppler shift - note that since $k=2 \pi / \lambda$, we have $\lambda^{\prime} / \lambda=k / k^{\prime}$.
- If we instead take the ratio $\sqrt{k_{x}^{\prime 2}+{k^{\prime}}_{y}^{2}} / k_{z}^{\prime}$ above, we obtain the mathematically equivalent form of the aberration formula given by Resnick (2-27b):

$$
\tan \theta^{\prime}=\frac{\sin \theta}{\gamma(\cos \theta-\beta)}
$$

- Examine classical limits
- Transverse Doppler effect: $\cos \theta=0$ gives $\omega^{\prime}=\omega \gamma$, i.e., simple time dilation

