Welcome

back

to 8.033!

Leonhard Euler, Swiss, 1707-1783

Summary of course so far: See study guide

Main focus: be able to solve problems that involve converting between different inertial frames

MIT Course 8.033, Fall 2006, Lecture 8 Max Tegmark

Today: Geodesics, calculus of variations

- The Euler-Lagrange equation
- Deriving it
- Using it:
- metrics, Euclidean space geodesics
- Minkowski space geodesics
- gravitational redshift
- brachistochrone problem
-caternary

Photograph of a brachistochrone experiment. Image removed due to copyright restrictions.

Brachistochrone flicks

Figure by MIT OCW.

Metrics and geodesics

- In an n-dimensional space, the metric is a (usually position-dependent) $n \times n$ symmetric matrix \mathbf{g} that defines the way distances are measured. The length of a curve is $\int d \sigma$, where

$$
d \sigma^{2}=d \mathbf{r}^{t} \mathbf{g} d \mathbf{r}
$$

and \mathbf{r} are whatever coordinates you're using in the space. If you change coordinates, the metric is transformed so that $d \sigma$ stays the same ($d \sigma$ is invariant under all coordinate transformations).

- Example: 2D Euclidean space in Cartesian coordinates.

$$
\begin{gathered}
\mathbf{g}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
d \sigma^{2}=d \mathbf{r}^{t} \mathbf{g} d \mathbf{r}=\left(\begin{array}{cc}
d x & d y
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{d x}{d y}=d x^{2}+d y^{2}, \\
\int d \sigma=\int \sqrt{d \mathbf{r}^{t} \mathbf{g} d \mathbf{r}}=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+y^{\prime}(x)^{2}} d x
\end{gathered}
$$

Applying the Euler-Lagrange equation to this shows that the shortest path between any two points is a straight line.

- Example: 4D Minkowski space in Cartesian coordinates $(c=1$ for simplicity)

$$
\begin{aligned}
& \mathbf{g}=\boldsymbol{\eta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \\
d \tau^{2} & =-d \sigma^{2}=d \mathbf{x}^{t} \mathbf{g} d \mathbf{x}= \\
& =\left(\begin{array}{lll}
d x & d y & d z
\end{array} d t\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
d x \\
d y \\
d z \\
d t
\end{array}\right) \\
& =d t^{2}-d x^{2}-x y^{2}-d z^{2}, \\
\Delta \tau & =\int d \tau=\int \sqrt{d t^{2}-d x^{2}-d y^{2}-d z^{2}}=\int \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}} d t \\
& =\int \sqrt{1-u^{2}} d t=\int \frac{d t}{\gamma} .
\end{aligned}
$$

Applying the Euler-Lagrange equation to this shows that the extremal interval between any two events is a straight line though spacetime.

