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Heuristic approach to the Schwarzschild geometry 
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Abstract. In this article I will present a simple Newtonian heuristic for “deriving” 

a weak-field approximation for the spacetime geometry of a point particle. The 

heuristic is based on Newtonian gravity, the notion of local inertial frames [the Einstein 

equivalence principle], plus the use of Galilean coordinate transformations to connect 

the freely falling local inertial frames back to the “fixed stars”. Because of the heuristic 

and quasi-Newtonian manner in which the spacetime geometry is obtained, we are 

only justified in expecting it to be a weak-field approximation to the true spacetime 

geometry. However, in the case of a spherically symmetric point mass the result is 

an exact solution of the vacuum Einstein field equations — it is the Schwarzschild 

geometry in Painlevé–Gullstrand coordinates. 

This result is much stronger than the well-known result of Michell and Laplace 

whereby a Newtonian argument correctly estimates the value of the Schwarzschild 

radius — using the heuristic of this article one obtains the entire Schwarzschild 

geometry. Unfortunately the heuristic construction does not seem to generalize; it 

does not give the correct result for the Reissner–Nordström geometry (though it gets 

rather close), and does not seem capable of generating the Kerr geometry. Thus it 

is at this stage still somewhat unclear as to whether there is anything deeper to the 

heuristic than a remarkable but fortuitous coincidence. 
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1. Introduction 

The heuristic construction presented in this article arose from combining three quite 

different trains of thought: 

•	 For an undergraduate course, I wanted to develop a reasonably clean motivation for 

looking at the Schwarzschild geometry suitable for students who had not seen any 

formal differential geometry. These students had however been exposed to Taylor 

and Wheeler’s “Spacetime Physics” [1], so they had seen a considerable amount of 

Special Relativity, including the Minkowski space invariant interval. They had also 

already been exposed to the notion of local inertial frames [local “free-float” frames], 

which notion is equivalent to introduction of the Einstein equivalence principle. But 

there is no justification in the framework of [1] for introducing the Schwarzschild 

geometry. 

•	 Additionally, I was of course aware of the Newtonian idea of a “dark star”; this 

notion going back to the Reverend John Michell (1783) [2, 3], and popularized by 

Pierre Simon Maquis de Laplace (1799) [4], who noted that in Newtonian physics 

the escape velocity from the surface of a star can exceed the speed of light when 

1 2 GM 1 2 v = > c	 . (1) 
2 escape R 2 

That is, in Newtonian physics, (adopting the “corpuscular model” [5]), light cannot 

escape from the surface of a star once 

2GM 
R < Rescape = ,	 (2) 

c2 

and this critical radius is (in suitable coordinates) exactly the same as the 

Schwarzschild radius of General Relativity. 

•	 Finally, from exposure to the “analogue models” of General Relativity [6, 7, 8, 9], 

I was aware of the large number of different ways in which effective Lorentzian 

spacetime geometries can arise in quite different physical systems. In particular, 

Bondi accretion [10] (spherically symmetric accretion onto a gravitating point mass) 

leads to an “acoustic geometry” qualitatively similar to the Schwarzschild geometry. 

By combining these ideas I found it was possible to develop a good heuristic for the weak

field metric, which can be presented at a level appropriate for undergraduate students. 

(Though some of the technical comments made below are definitely not appropriate 

at this level.) The remarkable feature of this heuristic is that for the Schwarzschild 

geometry it happens to be exact. This appears to be a coincidence, but is a good way 

of introducing students who may not intend to specialize in General Relativity to the 

notion of a black hole. 



� 

3 Heuristic approach to the Schwarzschild geometry 

2. The heuristic 

2.1. Free float frames: 

Start with a mass M which has Newtonian gravitational potential 

GM 
Φ = − . (3) 

r 

Take a collection of local inertial frames [local free-float frames] that are stationary out 

at infinity, and drop them. In the Newtonian approximation these local free-float frames 

pick up a speed 

2GM 
�v = − r. ˆ (4) 

r 

In the local free-float frames, physics looks simple, and the invariant interval is simply 

given by the standard Special Relativity result 

2 2 dt2 2 2 2dsFF = −c FF + dxFF + dyFF + dzFF , (5) 

where I want to emphasise that these are locally defined free-fall coordinates. 

2.2. Rigid frame: 

Let us now try to relate these freely falling local inertial coordinates to a rigidly defined 

surveyor’s system of coordinates that is tied down at spatial infinity — that is, we want 

a coordinate system connected to the “fixed stars”. Call these coordinates trigid, xrigid, 

yrigid, and zrigid. Since we know the speed of the freely falling system with respect to the 

rigid system, and we assume velocities are small, we can write an approximate Galilean 

transformation: 

dtFF = dtrigid; (6) 

d�xFF = d�xrigid − �v dtrigid. (7) 

Warning: Most relativists will quite justifiably be concerned by the suggestion that 

there is a rigid background to refer things to. The only reason we have for even hoping 

to get away with this is because all of the discussion is at this stage in the slow-speed 

weak-field approximation. For students with a Special Relativity background who have 

not been exposed to the mathematics of differential geometry the existence of these rigid 

coordinates is “obvious” and it is only the mathematically sophisticated students that 

have problems here. � 

2.3. Approximate “metric”: 

Substituting, we find that in terms of the rigid coordinates the spacetime interval takes 

the form 

dsrigid 
2 = −c 2dtrigid 

2 + ||d�xrigid − �v dtrigid||
2 . (8) 
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Expanding 

ds 2 = −[c 2 − v 2]dt2 − 2�v · d� . (9) rigid rigid x dtrigid + ||d�xrigid||
2 

That is 

2GM 2GM 
ds 2 = − c 2 − dt2 + 2 . (10) rigid rigid drrigid dtrigid + ||d�xrigid||

2 

r r 

This is only an approximation — we have used Newton’s gravity, Galileo’s relativity, 

and the notion of local inertial frames. There is no fundamental reason to believe this 

spacetime metric once GM/r becomes large. 

2.4. The miracle: 

Dropping the subscript “rigid”, the invariant interval 

2GM 2GM 
ds 2 = − c 2 − dt2 + 2 dr dt + ||d�x||2 (11) 

r r 

is an exact solution of Einstein’s equations of general relativity, Rab = 0. It is the 

Schwarzschild solution in disguise. In spherical polar coordinates we have 

2GM 2GM � � 

ds 2 = − c 2 − dt2 + 2 dr dt + dr 2 + r 2 dθ2 + sin2 θdφ2 . (12) 
r r 

This is one representation of the space-time geometry of a Schwarzschild black hole, in a 

particular coordinate system (the Painlevé–Gullstrand coordinates) [11, 12, 13]. There 

are many other coordinate systems you could use. 

Warning: I emphasise that this is a heuristic that happens to give the exact result. 

I do not view this as a rigorous derivation of the Schwarzschild geometry from Newto

nian physics, and on this issue disagree with reference [14]. The heuristic does however 

provide a good motivation for being interested in this specific geometry, even if for ped

agogical reasons you do not yet have the full vacuum Einstein equations available. � 

Exercise: More advanced students could at this stage be asked to (1) find the coor

dinate transformation required to bring the above into standard curvature coordinate 

form (see for instance [8]); and/or (2) use a symbolic algebra package to verify that the 

Ricci tensor is zero. � 

2.5. Schwarzschild radius: 

You can now easily see that something interesting happens at 

2GM 2 2GM 
= c ; rS = ; (13) 

rS c2 
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where we essentially recover the observations of Reverend John Michell (1783) and Pierre 

Simon Marquis de Laplace (1799). In Einstein’s gravity the coefficient of dt2 goes to rigid 

zero at the Schwarzschild radius; in Newton’s gravity the escape velocity 

2GM 
vescape = (14) 

R 

reaches the speed of light once R = rS. 

Warning: This is a good point at which to introduce the difference between 

“coordinate velocity” and “physical velocity”. For ingoing and outgoing null rays 

dr 2GM 
= − ∓ c. (15) 

dt r 

At the event horizon the coordinate velocity of the infalling local inertial frames (relative 

to the “fixed” coordinates) exceeds the speed of light — but this is perfectly acceptable 

in General Relativity as it is only a statement about coordinate systems, not a state

ment about physical objects. The coordinate velocity of the outgoing light ray goes to 

zero. In addition, all physical velocities are limited by the speed of light and must lie 

in or on the light cone defined by the spacetime metric. � 

Warning: Some students will at this stage take the notion of a “gravitational aether” 

a little too seriously. This is the major drawback of this heuristic, which can best be 

ameliorated by pointing out that this heuristic is not fundamental physics. The heuristic 

does not work well for the Reissner–Nordström black hole and fails utterly for the Kerr 

black hole. � 

3. Discussion 

Overall, I feel that the benefits of this heuristic outweigh the risks — once the specific 

spacetime geometry has been motivated in this way, students not intending to specialize 

in General Relativity can simply be told that this is the Schwarzschild solution, and 

the properties of this spacetime investigated in the usual manner [15, 16, 17]. Two key 

points are: 

• This sort of argument should work generically for weak fields. 

• That it is exact for Schwarzschild seems to be an accident. 

I expand on these points below. Some of the issues raised below are very definitely 

nontrivial and not suitable for an undergraduate audience. Suitably modified, some 

points may be of interest for mathematically sophisticated students who do not have a 

significant physics background. 



� 

6 Heuristic approach to the Schwarzschild geometry 

3.1. Spherical symmetry: 

That the heuristic presented above, or some variant thereof, has some chance of working 

for general spherically symmetric geometries, can be seen by appropriately choosing the 

coordinates. Spherical symmetry by itself is enough to yield [17] 

ds 2 = −a(r, t) dt2 + 2b(r, t) dr dt + c(r, t) dr 2 + d(r, t) dΩ2 . (16) 

The usual procedure at this point is to use the coordinate freedom in the r-t plane to 

eliminate the off-diagonal term, and also to normalize the dΩ2 coefficient, to locally 

obtain 

ds 2 = −a(r, t) dt2 + c(r, t) dr 2 + r 2 dΩ2 . (17) 

Warning: Coordinate arguments will only tell you that you can do this in suitably 

defined local coordinate patches; that global coordinate systems of this type exist for 

stars is a deep result that requires some assumptions about the the regularity of the 

centre, the nature of matter and dynamical information from the Einstein equations — 

specifically if the null energy condition holds then there are no “wormhole throats” and 

the coordinate r is continuously increasing as one moves away from the center [18, 19]. � 

In contrast, one could use the dΩ2 coefficient to define a new r-coordinate and then 

use the remaining coordinate freedom in the r-t plane to set [20, 21, 22, 23] 

ds 2 = −a(r, t) dt2 + 2b(r, t) dr dt + dr 2 + r 2 dΩ2 . (18) 

One then defines functions N(r, t) and β(r, t) so that 

ds 2 = −[N(r, t)2 − β(r, t)2] dt2 + 2β(r, t) dr dt + dr 2 + r 2 dΩ2 . (19) 

The interpretation is that in spherical symmetry one can always [patchwise] choose 

coordinates to make space [not spacetime] flat. In the language of the ADM 

decomposition (see for instance [19, 24]), you bury all of the spacetime curvature in 

the lapse and shift functions, N(r, t) and β(r, t). The heuristic argument above consists 

of setting N(r, t) = c2 and β(r, t) = − 2GM/r, but we now see that by choosing 

suitable ansatze for the lapse and shift we would be able to fit arbitrary spherically 

symmetric spacetimes. 

Coordinates of this type are known as Painlevé–Gullstrand coordinates [11, 12, 13] 

and have many pedagogically and computationally useful properties [20, 21, 22, 23]. 

A particularly nice feature is that infalling observers cross the event horizon in finite 

coordinate time, so that one does not have to confront the pseudo-paradox encountered 

in standard coordinates where one has to wait an infinite amount of coordinate time 

(but finite proper time) in order for a test particle to reach the event horizon. 

Historically the Painlevé–Gullstrand coordinates were developed in an attempt to 

show there was something wrong with the Schwarzschild coordinates [11, 12]. (More 

recently, see also [14].) However, as emphasised by Lemâıtre [13], these are just specific 

coordinates [albeit somewhat unusual ones] and their adoption or rejection cannot affect 

the underlying physics. 
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The heuristic applied to a generic spherically symmetric field yields 

ds 2 = − c 2 + 2Φ(r) dt2 + 2 −2Φ(r) dr dt + dr 2 + r 2dΩ2 . (20) 

If there is a well defined surface beyond which the object is vacuum, then in that region 

Newtonian physics gives Φ(r) = −GM/r and so our heuristic reproduces the Birkhoff 

theorem [24]. But in general, in Newtonian gravity the gravitational acceleration in a 

situation with spherical symmetry is 

Gm(r)
�g = − r. ˆ (21) 

r2 

Integrating, this now implies 

Gm(r)
Φ(r) = g dr = − + G ρ(r) r dr (22) 

r 

As long as the density falls off sufficiently rapidly at spatial infinity, ρ(r) → C/r3+ǫ, the 

second term is sub-dominant near spatial infinity, ρ(r) r dr → C/r1+ǫ, and we can (in 

the weak field limit) write 

ds 2 = − c 2 − 
2Gm(r)

dt2 + 2 
2Gm(r)

dr dt + dr 2 + r 2 
� 

dθ2 + sin2 θdφ2
� 

. (23) 
r r 

This geometry, while reasonably general, is not the most general weak-field metric 

possible in General Relativity. For this reason our heuristic will not be able to exactly 

reproduce all spherically symmetric geometries. [You could also come to a similar 

conclusion, but without some of the interesting intermediate results, by noting that the 

general spherically symmetric geometry is specified by two arbitrary functions N(r, t) 

and β(r, t) whereas the heuristic depends on only one arbitrary function Φ(r, t).] 

3.2. Reissner–Nordström geometry: 

The exact Reissner–Nordström geometry [24] corresponds to the choice N(r, t) = c2 and 

β(r, t) = − 2GM/r − Q2/r2 so that 

ds 2 = − 

� 

c 2 − 
2GM 

+ 
Q

r2

2
� 

dt2 + 2 
2GM 

− 
Q

r2

2 

dr dt + dr 2 + r 2dΩ2 . (24) 
r r 

Unfortunately, while we can put the Reissner–Nordström geometry into the Painlevé– 

Gullstrand form appropriate for our heuristic analysis, the precise details do not quite 

work out correctly. For a charged particle surrounded by an electric field we could argue 

that the equivalence of mass and energy requires 

ρ = M δ3(�x) + 
1 

E2 = M δ3(�x) + 
1 Q2 

, (25) 
8π 8π r4 

so that 

1 Q2 

m(r) = M − . (26) 
2 r 

Unfortunately this now implies 

M 1 Q2 M Q2 

Φ = g dr = G − dr = −G − , (27) 
r2 2 r3 r 4r2 
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and the coefficient of the Q2 term does not match the exact Reissner–Nordström 

geometry, being off by a factor of 2. That is, the heuristic argument yields 

ds 2 = − 

� 

c 2 − 
2GM 

+ 
Q2 

� 

dt2 + 2 
2GM 

− 
Q2 

dr dt + dr 2 + r 2dΩ2 , (28) 
r 2r2 r 2r2 

instead of the exact result of equation (24). Though the heuristic does not exactly 

reproduce the Reissner–Nordström geometry, it does get remarkably close. There is a 

completely ad hoc “fix”: Simply assert that in spherically symmetric General Relativity 

you should [in arbitrarily strong fields] replace the Newtonian potential by 

Gm(r)
Φ → . (29) 

r 
While this last statement is “true” in certain situations its derivation requires the full 

Einstein equations, which is exactly what we were trying to avoid. 

3.3. Kerr geometry: 

The heuristic approach definitely fails for the Kerr geometry — most fundamentally 

because the Kerr geometry is not spherically symmetric. More technically, the Painlevé– 

Gullstrand coordinates require the existence of flat spatial slices, and the Kerr geometry 

does not possess such a slicing. In fact the Kerr geometry does not even possess a 

conformally flat spatial slicing [25]. The closest that one seems to be able to get to 

Painlevé–Gullstrand coordinates seems to be Doran’s form of the metric [26], for which 

a brief computation shows that N(r, θ) = c2; the lapse function is a constant independent 

of position. Unfortunately the spatial slices in Doran’s coordinates are very definitely 

not flat. More critically I have not been able to find any useful set of coordinates that 

would make the Kerr geometry amenable to treatment along the lines of the heuristic 

approach considered above. For this reason, among others, the heuristic approach should 

not be thought of as fundamental physics. 

3.4. Bondi acoustic geometry: 

A particularly nice feature of the heuristic analysis is the clean relationship with the 

acoustic geometry occurring in Bondi accretion [10]. Consider a fluid with a linear 

equation of state 

ρ(p) = ρ0 + 
c

p 
2
; p = (ρ − ρ0) c 2 s; (30) 

s 

undergoing spherically symmetric accretion onto a compact object [10]. Here cs is the 

speed of sound, assumed constant. Then as long as backpressure can be neglected, the 

infalling matter satisfies v = − 2GM/r r̂. Sound waves travelling on the background 

of this infalling matter will then travel at speed 

�� 
− 2GM/rr̂ + cs n̂�� 

(31) 

with respect to the fixed stars. This situation is tailor-made for application of the


acoustic geometry formalism [8, 9], and as long as the backpressure is negligible the
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effective acoustic geometry is exactly the Schwarzschild geometry with the speed of 

light replaced by the speed of sound; that is, with the substitution c → cs. 

3.5. Spatially flat geometries: 

Recently Nurowski, Schücking, and Trautman have used metrics with flat spatial 

slices (which include as a subset all of the spherically symmetric geometries in 

Painlevé–Gullstrand coordinates) to investigate general relativistic spacetimes with 

close Newtonian analogues [27]. That approach, since it starts from the full Einstein 

equations, is in some sense the converse of the heuristic developed here. Metrics with 

flat spatial slices also occur ubiquitously in the various “analogue model” geometries, 

not just the spherically symmetric ones. A necessarily incomplete set of references 

includes [6, 7, 8, 9, 28, 29]. The class of spatially flat geometries appear to be of interest 

in its own right, even if it is not general enough to contain the Kerr geometry. 

3.6. Open questions: 

•	 Is there something more fundamental going on here that we do not yet understand? 

Or is it all just a glorious accident? 

•	 Is it possible, despite my negative comments above, to get a modified version of 

this argument that works “cleanly” for the Reissner–Nordström geometry? 

•	 Is it possible, despite my very negative comments above, to get a drastically 

modified version of this argument that works “cleanly” for the Kerr geometry? 

3.7. Summary: 

The basic heuristic discussed in the first few pages of this article can easily be explained 

to undergraduate students who have no intention of specializing in General Relativity, 

and can be used to motivate interest the Schwarzschild geometry and black hole physics. 

The remarkable feature of the heuristic is that it leads directly to an exact solution 

of the full Einstein equations — the Schwarzschild geometry in Painlevé–Gullstrand 

coordinates. As we have seen in the commentary, this leads naturally to a number of 

rather technical issues and questions hiding in this rather innocent looking heuristic. 
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