MIT Course 8.033, Fall 2005, Relativistic dynamics Max Tegmark
 Last revised October 252005

Topics

- Formula summary
- Momentum \& energy
- Acceleration \& force (optional)
- Transformation of force (optional)
- Transformation of acceleration (optional)

Dynamics toolbox: formula summary

- Mass-energy unification:

$$
E=m c^{2}=m_{0} \gamma c^{2}
$$

- Momentum 4-vector:

$$
\mathbf{P} \equiv m_{0} \mathbf{U}=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right)
$$

- Energy formula:

$$
E=\sqrt{\left(m_{0} c^{2}\right)^{2}+(c p)^{2}}
$$

- Velocity formula:

$$
\beta=\frac{c p}{E}
$$

- Optional material:
- Acceleration 4-vector:

$$
\mathbf{A} \equiv \frac{d \mathbf{U}}{d \tau}=\gamma_{u}^{2}\binom{\mathbf{a}}{0}+\gamma_{u}^{4} \frac{\mathbf{u} \cdot \mathbf{a}}{c^{2}}\binom{\mathbf{u}}{c}
$$

- Force 4-vector:

$$
\mathbb{F} \equiv \frac{d}{d \tau} \mathbf{P}=\gamma_{u}\binom{\mathbf{F}}{P / c}=m_{0} \mathbf{A}
$$

- Power:

$$
P=\dot{E}=\mathbf{u} \cdot \mathbf{F}=m_{0} \gamma_{u}^{3} \mathbf{u} \cdot \mathbf{a}
$$

- Force 3-vector:

$$
\frac{\mathbf{F}}{m_{0} \gamma_{u}}=\mathbf{a}+\gamma_{u}^{2} \frac{\mathbf{u} \cdot \mathbf{a}}{c^{2}} \mathbf{u}= \begin{cases}\gamma_{u}^{2} \mathbf{a} & (\mathbf{u} \& \mathbf{a} \text { parallel) } \\ \mathbf{a} & (\mathbf{u} \& \mathbf{a} \text { perpendicular })\end{cases}
$$

- Acceleration 3-vector:

$$
m \mathbf{a}=\mathbf{F}-\frac{P \mathbf{u}}{c^{2}}
$$

- Force transformation:

$$
\begin{aligned}
F_{x}^{\prime} & =\frac{F_{x}-\frac{v}{c^{2}} P}{1-\frac{u_{x} v}{c^{2}}}, \\
F_{y}^{\prime} & =\frac{F_{y}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)}, \\
F_{z}^{\prime} & =\frac{F_{z}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)}, \\
P^{\prime} & =\frac{P-v F_{x}}{1-\frac{u_{x} v}{c^{2}}}
\end{aligned}
$$

Momentum \& energy toolbox:

- Relativistic mass:

$$
m=\gamma m_{0}
$$

- Mass-energy unification:

$$
E=m c^{2}
$$

- Momentum 4-vector (momentum-energy unification):

$$
\mathbf{P} \equiv m_{0} \mathbf{U}=m_{0} \frac{d \mathbf{X}}{d \tau}=m_{0} \gamma_{u}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right)=m\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right),
$$

(Use upper case \mathbf{X}, \mathbf{U} and \mathbf{P} for the 4 -vectors to avoid confusion with the \mathbf{x}, \mathbf{u} and $\mathbf{p} 3$-vectors.)

- Handy velocity formula follows straight from this:

$$
\beta=\frac{c p}{E}
$$

- Rest energy:

$$
E_{0}=m_{0} c^{2}
$$

is total energy of particle in the frame where it is at rest

- Kinetic enery:

$$
K=E-E_{0}=m c^{2}-m_{0} c^{2}=m_{0} c^{2}(\gamma-1)=\frac{1}{2} m_{0} u^{2}+O\left(\frac{u^{4}}{c}\right)
$$

- Rest mass invariant:

$$
m_{0}=\frac{1}{c} \sqrt{-\mathbf{P}^{t} \boldsymbol{\eta} \mathbf{P}}=\frac{1}{c^{2}} \sqrt{E^{2}-c^{2} p^{2}}
$$

giving the handy relations

$$
\begin{gathered}
E=\sqrt{\left(m_{0} c^{2}\right)^{2}+(c p)^{2}} \\
p \equiv|\mathbf{p}|=\sqrt{\frac{E^{2}}{c^{2}}-\left(m_{0} c\right)^{2}} .
\end{gathered}
$$

- Low-speed limit $|\beta| \ll 1$:

$$
\begin{gathered}
E \approx m_{0} c^{2}+\frac{1}{2} m_{0} u^{2}, \\
p=m_{0} \gamma u \approx m_{0} u .
\end{gathered}
$$

- High-speed limit $|\beta| \approx 1\left(\gamma \gg 1, E \gg E_{0}\right)$:

$$
E \approx c p
$$

This becomes exact ($E=c p$) for particles moving with speed of light, like photons and gravitons.

- $-\mathbf{P}^{t} \boldsymbol{\eta} \mathbf{P}=(E / c)^{2}-p^{2}$ is invariant also for system of particles, since

$$
\mathbf{P}_{\mathrm{tot}}^{\prime} \equiv \sum_{i} \mathbf{P}_{i}^{\prime}=\sum_{i} \boldsymbol{\Lambda} \mathbf{P}_{i}=\boldsymbol{\Lambda}\left(\sum_{i} \mathbf{P}_{i}\right)=\boldsymbol{\Lambda} \mathbf{P}_{\mathrm{tot}}
$$

- We derived $\mathbf{p}=m_{0} \gamma u$ only for 1-dimensional collision. But any collision is 1-dimensional in the frame where the total momentum is zero!

Acceleration \& force (optional!)

- The acceleration 4 -vector \mathbf{A} and the Force 4 -vector \mathbb{F} are less useful than their 4 -vector cousins $\mathbf{X}, \mathbf{U}, \mathbf{P}$ and \mathbf{K}. We'll use \mathbb{F} mainly for deriving the force transformation law, which will in turn give us the transformation law for electromagnetic fields. We'll use upper case \mathbf{A} for the acceleration 4 -vector to avoid confusion with the the acceleration 3 -vector a, and the annoying symbol \mathbb{F} for the force 4 -vector to avoid confusion with the the force 3 -vector \mathbf{F}.
- Acceleration 4-vector:

$$
\begin{aligned}
\mathbf{A} & \equiv \frac{d \mathbf{U}}{d \tau}=\gamma_{u} \frac{d \mathbf{U}}{d t}=\gamma_{u} \frac{d}{d t} \gamma_{u}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right)=\gamma_{u} \frac{d}{d t} \gamma_{u}\binom{\mathbf{u}}{c} \\
& =\gamma_{u}^{2}\binom{\dot{\mathbf{u}}}{0}+\gamma_{u} \dot{\gamma}_{u}\binom{\mathbf{u}}{c}=\gamma_{u}\binom{\mathbf{a}+\dot{\gamma}_{u} \mathbf{u}}{\dot{\gamma}_{u} c} \\
& =\gamma_{u}^{2}\binom{\mathbf{a}}{0}+\gamma_{u}^{4} \frac{\mathbf{u} \cdot \mathbf{a}}{c^{2}}\binom{\mathbf{u}}{c}
\end{aligned}
$$

where in the last step, we have used the fact that

$$
\dot{\gamma}_{u}=\gamma_{u}^{3} \frac{\mathbf{u} \cdot \mathbf{a}}{c^{2}}
$$

- Force 4-vector:

$$
\mathbb{F} \equiv \frac{d}{d \tau} \mathbf{P}=\gamma_{u} \frac{d}{d t} \mathbf{P}=\gamma_{u} \frac{d}{d t} m_{0} \mathbf{U}=m_{0} \frac{d}{d \tau} \mathbf{U}
$$

so by definition, we have

$$
\mathbb{F}=m_{0} \mathbf{A}
$$

(Note that this does not apply the Newtonian result $\mathbf{F}=m a!$)

- Interpretation of Force 4-vector:

$$
\mathbb{F}=\gamma_{u} \frac{d}{d t} \mathbf{P}=\gamma_{u}\binom{\dot{\mathbf{p}}}{\dot{E} / c}=\gamma_{u}\binom{\mathbf{F}}{P / c},
$$

where $\mathbf{F}=\dot{p}$ is the familiar force 3 -vector and $P=\dot{E}$ is the power, the energy change per unit time (in Watts).

- Work-energy theorem:

$$
d E=\mathbf{F} \cdot d \mathbf{r}=\mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t=\mathbf{F} \cdot \mathbf{u} d t
$$

so the power satisfies

$$
P=\dot{E}=\mathbf{u} \cdot \mathbf{F}
$$

- Force 3-vector explicitly: Dividing the above equation $\mathbb{F}=m_{0} \mathbf{A}$ by γ_{u} gives

$$
\frac{\mathbf{F}}{m_{0} \gamma_{u}}=\mathbf{a}+\gamma_{u}^{2} \frac{\mathbf{u} \cdot \mathbf{a}}{c^{2}} \mathbf{u}
$$

- Special case where \mathbf{u} and \mathbf{a} are parallel, e.g., for linear motion:

$$
\frac{\mathbf{F}}{m_{0} \gamma_{u}}=\mathbf{a}+\gamma_{u}^{2} \frac{u^{2} \mathbf{a}}{c^{2}}=\left(1+\gamma_{u}^{2} \beta^{2}\right) \mathbf{a}=\gamma_{u}^{2} \mathbf{a} .
$$

- Special case where \mathbf{u} and \mathbf{a} are perpendicular, eg, for circular motion:

$$
\frac{\mathbf{F}}{m_{0} \gamma_{u}}=\mathbf{a}
$$

- Note that in relativity, \mathbf{F} and a are generally not parallel, but that they are parallel for these two special cases.
- Acceleration 3-vector explicitly:

$$
\mathbf{a}=\frac{\mathbf{F}}{m_{0} \gamma_{u}}-\frac{\mathbf{u} \cdot \mathbf{F}}{m_{0} \gamma_{u} c^{2}} \mathbf{u}=\frac{\mathbf{F}}{m}-\frac{P}{m c^{2}} \mathbf{u} .
$$

The last term (the departure from $\mathbf{F}=m \mathbf{a}$) is seen to have the form of a friction term proportional to the power put into the particle. Derivation: the three steps below.

$$
\dot{\gamma}_{u}=\frac{d}{d t} \frac{m_{0} \gamma_{u} c^{2}}{m_{0} c^{2}}=\frac{d}{d t} \frac{E}{m_{0} c^{2}}=\frac{\dot{E}}{m_{0} c^{2}}=\frac{\mathbf{u} \cdot \mathbf{F}}{m_{0} c^{2}}=\frac{P}{m_{0} c^{2}} .
$$

Combining this with the other expression for $\dot{\gamma}_{u}$ above gives

$$
\mathbf{u} \cdot \mathbf{a}=\frac{\mathbf{u} \cdot \mathbf{F}}{\gamma_{u}^{3} m_{0}} .
$$

The above equation for \mathbf{F} now becomes

$$
\frac{\mathbf{F}}{m_{0} \gamma_{u}}=\mathbf{a}+\frac{P}{m_{0} \gamma_{u} c^{2}} \mathbf{u}=\mathbf{a}+\gamma_{u}^{2} \frac{\mathbf{u} \cdot \mathbf{a}}{c^{2}} \mathbf{u} .
$$

Transformation of force

- Let's compute the transformation law for force by transforming to a frame S^{\prime} moving with velocity v in the x-direction relative to S :

$$
\begin{aligned}
\mathbb{F}^{\prime} & =\gamma_{u^{\prime}}\left(\begin{array}{c}
F_{x}^{\prime} \\
F_{y}^{\prime} \\
F_{z}^{\prime \prime} \\
P^{\prime} / c
\end{array}\right)=\boldsymbol{\Lambda} \mathbb{F}=\gamma_{u}\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z} \\
P / c
\end{array}\right) \\
& =\gamma_{u}\left(\begin{array}{c}
\gamma\left[F_{x}-\beta P / c\right] \\
F_{y} \\
F_{z} \\
\gamma\left[P / c-\beta F_{x}\right]
\end{array}\right)=\frac{\gamma_{u^{\prime}}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)}\left(\begin{array}{c}
\gamma\left[F_{x}-\beta P / c\right] \\
F_{y} \\
F_{z} \\
\gamma\left[P / c-\beta F_{x}\right]
\end{array}\right) .
\end{aligned}
$$

In the last step, we used the relation $\gamma_{u^{\prime}}=\gamma_{u} \gamma\left[1-u_{x} v / c^{2}\right]$ which we proved earlier when transforming the velocity 4 -vector U - it followed from the fact that its normalization is Lorentz invariant, i.e., $\mathbf{U}^{\prime t} \boldsymbol{\eta} \mathbf{U}^{\prime}=\mathbf{U}^{t} \boldsymbol{\eta} \mathbf{U}$.

- The 4 components now give our desired force transformation equations:

$$
\begin{aligned}
F_{x}^{\prime} & =\frac{F_{x}-\frac{v}{c^{2}} P}{1-\frac{u_{x} v}{c^{2}}}, \\
F_{y}^{\prime} & =\frac{F_{y}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)}, \\
F_{z}^{\prime} & =\frac{F_{z}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)}, \\
P^{\prime} & =\frac{P-v F_{x}}{1-\frac{u_{x} v}{c^{2}}},
\end{aligned}
$$

where $P=\mathbf{u} \cdot \mathbf{F}$ as usual.

- If we take S to be the rest frame of the particle, then $\mathbf{u}=0$, $P=\mathbf{u} \cdot \mathbf{F}=0$ and this simplifies to $F_{x}^{\prime}=F_{x}, F_{y}^{\prime}=F_{y} / \gamma, F_{z}^{\prime}=$ F_{z} / γ, so in the frame S^{\prime} where the particle is moving, the force is unaffected in the parallel direction and suppressed by γ in the transverse directions.

Transformation of acceleration

- We could derive expressions using an approach like for force, but the results are so messy that it's not particularly useful - it's better to deal with explicit problems as needed.
- Here's a useful special case that you get to derive on a problem set (probably PS7): For an arbitrary acceleration a in S, the acceleration \mathbf{a}^{\prime} in S^{\prime} is related to a via

$$
\begin{aligned}
a_{x} & =\frac{a_{x}^{\prime}}{\gamma^{3}\left(1+v u_{x}^{\prime} / c^{2}\right)^{3}} \\
a_{y} & =\frac{a_{y}^{\prime}}{\gamma^{2}\left(1+v u_{x}^{\prime} / c^{2}\right)^{2}}
\end{aligned}
$$

with the important caveat that the expression for a_{y} is only valid for the case where either $u_{y}^{\prime}=0$ or $a_{x}^{\prime}=0$.

