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PROFESSOR: Hi everyone. Spring has regressed. So, we have-- we're going to have a guest at

the end of lecture today, which should kind of entertaining. Just as a warning, if you

see someone come in. So questions, before we get started? No questions about

anything? At all? Math? Nothing? Yeah?

AUDIENCE: Can you explain the physical significance of the crystal momentum?

PROFESSOR: Yeah. OK. Let me go over that. That's a good question. So the question is what

again is the significance of the crystal momentum? So let me answer that in a

slightly backward way. So this is a form of the explanation I haven't given you. It's

going to be a slightly different one.

Let's step back and think about the momentum, and ask what the momentum is.

Now you guys showed on a problem set, the following fact. That if you have a wave

function, sine of x, such that, the expectation value in the state SI of x in the state SI

is equal to x naught, and the expectation value of p in the state SI is p naught. Hat,

hat. Then if you want to change the momentum, increase momentum by h bar k,

the way to do that is to take SI and build a new wave function, SI tilda, is equal to e

to the i, k x, SI of x. And then the expectation value of x is the same, SI tilda, still

equal to x naught, because this phase goes away from the two complex, from the

wave function is complex content we give the inner product. But the expectation

value, the momentum is shifted in state SI tilda, is shifted by each h bar k, p naught

plus h bar k.

So all the intuition you have about momentum, you can translate into intuition about

the spatial variation of the phase of the wave function. Yeah?

AUDIENCE: [INAUDIBLE]
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PROFESSOR: OK, good. OK, good, So we have a sneaky [INAUDIBLE]. So, the information about

the momentum can be encoded in these spatial variation of the phase of the wave

function. So another way to answer the question of what is momentum, apart from

it's the thing that-- so what are ways to answer the question, what is momentum,

you could ask well what is momentum? It's the thing that commutes with p or with x

by i h bar.

That's one way to answer it. Another way to answer is to say that translations by l

can be expressed in terms of momentum as e to the minus i upon h bar p l. So

these are both ways of describing what the momentum is. But another way of

talking about the momentum is the momentum p governance the spatial variation,

the x dependence of the phase of the wave function. So these are always talking

about what the momentum is.

So now let's turn this around, and let's ask about the crystal momentum. Oh, and

one last thing, a last defining property of the momentum, a central property from the

Schrodinger equation is at the time variation d dt of p is equal to the expectation

value of minus d the potential of x d x. Also known as the force. So this is the

Ehrenfest Theorem Statement that the classical equation of motion, p dot, is equal

to the minus d v d x is equal to the force, Ehrenfest's

Theorem tells us that the classical equations of motion are realized as expectation

values. And equivantly, if there's no potential, the potential is constant, this tells us

that the momentum expectation value is time independent. Right? A familiar fact. So

these are all true lovely and things about the momentum.

So let's turn all these facts around into the crystal momentum. So let's talk about

crystal momentum. Which was the question, what is the crystal momentum? So the

crystal momentum is defined from beginning, from the following property. If we have

a potential v of x, which is invariant under shifting, by one lattice spacing, by some l,

v of x, then this tells us that the energy operator is invariant if we shift by l. If we

translate by l equals zero. And from this fact, we deduced via block or a la block,

that the wave functions are really the energy eigenfunctions, can be written in the
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form e cubed is equal to e to the i q x, u of x, where u, we're going to take to be a

periodic function.

So what is this parameter q doing? Q is governing the spatial variation of the phase

of the wave function. Cool? So in precisely this sense, the momentum difference is

space of the wave function. Here, in the case of a periodic potential, the crystal

momentum q is governing the spatial variation of the phase of the wave function. So

q is the thing the governs the phase as a function of x. Well what about-- another

fact about the crystal momentum which you show in your problems set, is that if you

impose an external force d q d t, and really d h bar q. d t is equal to-- d dt of the

expectation value of h bar q, is equal to the expectation value of the force. I'll just

write-- OK?

So again, this is a quantity, and this was assuming that we had a sharply peaked

wave packet. So this is for a wave packet sharply peaked at q naught. And so let me

just write this as h bar q naught. So the central value of your wave packet-- so this is

what you've shown on the problem set that the central value of your wave packet,

the peak of your wave packet varies in time according to the external force. And so

in particular, if the force is zero, we turn no external driving force, your wave packet

maintains its crystal momentum. It's time independent. So the crystal momentum is

something that time independent, unless an external force is applied, just like the

momentum. And it's something that governs the phase of the wave function just like

the momentum. However, it's different in a crucial way.

It is not the eigenvalue p on five sub e q is not equal to a constant p naught times 5

sub e q. Because when we take-- when we active p or we active the derivative, you

pick up a term from here, which gives us a constant, but we also have this overall

periodic piece. And its spatial variation is generically non-zero. And if the potential is

nontrivial, it's always non constant. So when the momentum operator hits this guy, it

will generically not give us zero. It'll get two terms and we will not get an eigenvalue

equation. So q is not the eigenvalue h bar q is not the eigenvalue of p. And what's

the last important property of q that's different from the momentum?
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It comes from the commutator, which tells us that the thing that's conserved is the

expectation value of p l is really the precise statement. And in particular, what this

tells us is that the eigenfunction, or the eigenvalue of our wave function, under

translations by l, is a quantity that can be determined simultaneously with knowing

the energy. However, the eigenvalue of t sub l, on this state, is equal to e to the i q l.

Which means that q is only defined for determining the eigenvalue up to 2 pi over l.

If you have q, which is 0, and you increase it to pi over l, that value, pi over l, is

effectively the same as the value minus pi over l. Because at least they're the same

eigenvalue. But that's really strange because that means that q itself, it's not strictly

conserved. It's conserved mod 2 pi over l. When you have momentum conservation,

momentum is strictly conserved if there's no force. And even if there is a force, it's

increasing control by the force as you turn on the force, it just constantly increases.

For the crystal momentum, that's not the case. You turn on a force, it increases

according to the conservation law.

But it's not increasing constantly. It's periodic. It's periodically defined. So it

increases then it ends up at a smaller value. It increases and ends up at a smaller

value. OK? So it carries many of the same properties. It governs the phase. It's time

independent unless there's an external force applied. It's the eigenvalue. Controls

the eigenvalue of an operator that commutes with the energy when you have a

periodic potential, in the same way that the momentum commutes with the energy

when you have no external force, when you have a constant potential.

Does that help? Good. OK. So developing an intuition for the crystal momentum, I

think, is best done by just playing with examples. And you'll do that more in the

course on solids, which I encourage you all to take. Because it's really beautiful

stuff. But for our purposes, this is going to be the full set of ideas we'll need for 8.04.

Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Ah. So good. So thank you. So this involves a slight subtlety, which I've been

glossing over in the entire story here. Which of the following. So, is u of x a real
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function? Well, so when we started out asking what are the eigenfunctions of the

transit by l operator, all we showed was that, and I'm going to do this on a separate

board just to make it clearer. Tell me if this turns off, because it kept bumping. OK.

So when we started with translate by l, and we constructed it's eigenfunctions, we

said that translate by l q Phi sub cubed is equal to some phase, and this is unitary,

so we're talking about they must be an actual phase in the i alpha of Phi sub q of x.

And let's just suppose that this is true. Then this tells us that Phi sub q times e to the

minus i q l equals u. So, I'm just going to use this to define a new function, u sub q.

Or just u. I'll use sub q. Fine. of x. So this defines a new function, sub q. I take an

eigenfunction, I multiply it by some phase. Sorry, minus i q x. If we choose q l to be

equal to alpha, then acting on u sub q, by translate by l, on u sub q, of x, is equal to-

- well, if we act on Phi sub q with translate by l, what happens to Phi sub q we pick

up a phase e d i alpha. What happens to e to the minus i q x? x goes to x plus l.

We pick up a phase e to the minus i q l. So if q l is equal to alpha, those two phases

cancel, and we just get u back. u sub q of x. But translate by l, if u sub q, by

definition, is equal to u sub q of x plus l. So we've determined is that if we take q l is

equal to alpha, then Phi sub q if eigenvalue label by its eigenvalue, q, can be written

in the form e to the i q x u sub q of x, where this is periodic. Everybody agree with

that? OK. So that's step one.

Step two is to say well look, since the eigenvalue of this guy, under t sub l, e d i

alpha is equal to e to the i q l. Since this is periodic under shifts of q, by 2 pi upon l, I

can just choose to define q up to 2 pi over l. So 2 q, I will take to be equivalent to q

plus 2 pi over l. And the reason I'm going to do that is because it gives the same

eigenvalue, and if I want to label things by eigenvalues, it's sort of redundant to give

multiple values to the same eigenvalue.

Now there's a subtlety, here though. And this little thing here is this. Suppose we

have a free particle. Does a free particle respect translation by l? So if we have a

free particle, the potential is zero. That constant function is also periodic under shifts

by l. Right? Because it's just zero. So it's stupidly periodic, but it's periodic
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nonetheless. So now I'm going to ask the following question. What are the common

eigenfunctions of the energy and translate by l for the free particle?

We did this last time. So the common eigenfunctions of translate by l and the energy

are the wave functions Phi sub q, comma e, are equal to e to the i q x times some

function u of x, on general grounds. But we know what these eigenfunctions are.

They're just e to the i k x. Where k squared upon 2 m is e. [INAUDIBLE] So we know

that these are the correct eigenfunctions, but we're writing them in the form e v i q x

u.

Now you say that's fine. There's nothing wrong with this. We just say u is constant

and q is equal to k. These functions are of this form, but they're of this form with e v

i q x being e d i k x and u of x being constant. Right? There's nothing wrong with

that. Everyone agree? Perfectly consistent.

However, I thought we said that q is periodic by 2 pi? If q is periodic by 2 pi, then

that would seem to imply that k is periodic by 2 pi, and we know that's not true

because any k is allowed for a free particle. So if we want to think about q is periodic

by 2 pi upon l, then we cannot require that u is real. Because it must be the phase

that makes this up. It must be, so I can always write this as e to the i q x where q is

less than 2 pi upon l.

I'm sorry, where q is between 2 pi or pi upon l and minus pi upon l. So that it's

defined only after this periodically thing. But times some additional phase, e to the i

k minus q x This is trivially equal to e to the i k x. But now u is not a real function. On

the other hand, if we hadn't imposed the requirement that q is periodic, we wouldn't

have needed to make u real. We could just taken q to be equal to k, for any value k,

and then u would be constant. u would be real. So this is important for answering

the excellent question that our fearless restation instructor provoked me to answer.

Which is that so what-- we'll come back to the question in just a second. But what I

want to emphasize this, that if we're going to take q to be not periodic, Sorry. If

we're going to take q to be defined only up to shifts by 2 pi over l, it's important that

we allow u to be not real. It must be able to be an overall phase. But if we want u to
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be always real, we can do that. We just can't impose this periodicity. Different values

of q mean different wave functions.

And this is really what's going on when you see those plots, sometimes you see the

plots as parabolas. The bands are represented by parabolas with wiggles, and

sometimes they're folded up. And that's the difference. The difference is that when

you fold them up, you're imposing this periodicity and you're labeling the

eigenfunctions by q, and the overall amount of the number effectively of k phases

that you're subtracting off. Yeah?

AUDIENCE: So is this an arbitrary choice? [INAUDIBLE]

PROFESSOR: Yeah. I mean, how to say? It's exactly akin to a choice of variables. In describing the

position of this particle, should we use Cartesian coordinates, or should we use

Spherical coordinates? Well it can't possibly matter. And so you'd better make sure

in any description of your system, that changing your coordinates doesn't change

your results. And here, that's exactly what's going on. Do we want to define our

variable to be periodic by 2 pi upon l?

Well, OK then. But u can't be real. Or we could take q to be not periodic by 2 pi l and

impose that u is real. It's just a choice of variables. But it can't possibly give different

answers. The point is, this is a subtle little distinction it we gloss over, and is glossed

over into my knowledge every book on intro to quantum mechanics that even

covers periodic potentials. It can be very confusing. Anyway, the reason that I had

to go through all this, is that in order to answer the very, very good question

professor Evans posed, I'm going to need to deal with this fact.

So for the moment, let me deal with-- let's work with u real. And q, q an

unconstrained, real number. OK. So not periodic. Are we cool with that for the

moment? So if we do that, then notice the falling nice property of our wave function.

Our wave function, Phi sub q, is equal e to the i q x times u of q, or u of x. Which is

real.

So when we can construct the current-- remember that j boils down to the imaginary
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part, h bar over 2 m i. Well, h bar over m times the imaginary part of SI complex

conjugate derivative, with respect to x, which is the current, in the x direction of SI.

And we need this to be imaginary, or we will get no current. You show this in a

problem set, if you have a pure, real wave function, for example. A single real

exponential, that's decaying, as on the wrong side of a barrier. Then you get no

current. Nothing flows. And that make sense. It's exponentially decaying. Nothing

gets across.

So we need the wave function to be real. So if q were zero we would get zero. And

what you can immediately do from this, compute from this, is that while the

derivative, if the derivative doesn't hit e to the i q x, if it hits u, than the phase e to

the i q x cancels. And so the contribution from that term vanishes. So the only term

that's going to contribute in here is when the derivative hits the e to the i q x. But

then this is going to be equal to h bar q. And we want the imaginary parts, that's

going to be e to the I over m. And then we're left with u squared of x. So this is the

current, but we have to do it-- we had take advantage in order for this to be sort of

clean, we had to take advantage of u being real. Everybody cool with that?

Now there's one last twist on this, which is that if I have k-- if I have q. So this is a

side note. Going back up here, to this logic. If I have q, and I want, I can always

write it as some q naught plus n pi over l. And so now what I want to do is I want to

take sort of a hybrid of these two pictures. And I want to say Phi sub q is going to be

equal to e to the i q naught x. Where this is the value that's periodic by 2 pi. e to the

I n pi over l x u. And so now really what's going to happen, what I'm doing here is

I'm labeling q, not by a single number. I'm labeling my wave function not by single

number q, but by q naught and an integer n. Comma n. So q naught and n. So now

q naught is periodic. It's defined up to shifts by 2 pi. n is an additional integer, and

what it's telling you is how many times did you have to shift back to get into that

fundamental zone between pi and minus pi.

And this fits nicely into this story, because now all we're going to get here is q, which

is q naught plus n pi. So the current depends on both the part defined mod 2 pi over

l, and the integer, which tells you how many factors of 2 pi over l did you have to
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subtract off to get into that fundamental domain. So let's think back to our band

structure. So what is this n quantity? Let's think back to our band structure. In our

band structure, we had something that looks like this.

And here's the value of q. But am I plotting q? No. I'm plotting here q naught. I'm

plotting the part that's periodically defined up to 2 pi over l. So this is pi over l. This

is minus 2 pi over l. Or minus pi over l. OK. And what we see is that there isn't a

single energy.

Because this is the energy the vertical direction for the band pictures. There isn't a

single energy for a given value of q. In fact, the set of energy eigenvalue-- or the set

of allowed states or energy eigenvalues for an allowed value of q would say this

particular value of q naught, how many of them are there. Well, there are as many

as there are integers. One, two, three, four, count. So to specify a state, I don't just

have to specify q NAUGHT, I also have to specify N.

Which one of these guys I'm hitting. And when you unfold this into the parabola

picture, remember where these came from. These came from these curves. Came

from shifting over. And the higher up you go, the more you had to shift over. And

that's exactly the integer piece in n pi over l. And so we can write the current now, in

terms of h bar q naught upon m, u squared-- I'm sorry. h bar q naught upon m plus

n pi h bar upon m u squared of x. So we get a contribution from the crystal

momentum and from which we're in. OK? So sort of an elaborate story to answer

the phase question. Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Good. So here we had SI-- so SI-- I'm sorry. I should have done this for Phi. But I

meant this wave function, right. This is Phi, this is Phi q. So from here we're going to

get the imaginary part. So we get the imaginary part of this wave function which is u

to the minus i q x u of x derivative of e to the i q x u of x. Now the term that

contributes is when the derivative hits the e to the i q. x pulls down a factor of i q,

and the two phases cancel from these guys, leaving us with a u of x here, and a u of

x here.
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AUDIENCE: [INAUDIBLE]

PROFESSOR: Oh sorry. This is a potential. Good. That's the point. So this is the potential. So in

this statement that what we have this translation by x. So this is just some function.

It has nothing to the potential. It's defined in terms of the wave function. The

eigenfunction of translate by l. So the logic here goes, if we know we have a

function of translate by l, then I construct a new function u. Nothing to do with the

potential, just a new function.

Which is e to the minus i q x times it. You can't stop me. You hand me a function, I

will hand you a different function. And then we pick q felicitously, to show that u is

periodic. So u is just some periodic function which is contained which is defined from

the wave function. From the energy. From eigenfunction of t l. Did that answer your

question? OK. So here, it just came from the fact that u is Phi is the e to the i q x u,

x and then a factor of u for each of these. Other questions. Yeah.

AUDIENCE: [INAUDIBLE]

PROFESSOR: So this picture, when it's unfolded, first off, you know what it is for a free particle. So

we want the energy as a function of q. So what is it for a free particle? Parabola.

Yeah, exactly. And now let's add in-- let's make this a function of q, not q naught,

but so here's pi over l. Here's 2 pi over l. Here's 3 pi over l. And I need to do this

carefully, because it's incredibly difficult to get the straight. OK.

My artistic skills are not exactly the thing of legend. OK. So here's the parabola that

would have been, if we had not turned on a periodic potential. As we turn on the

periodic potential, we know that the energies change. And so in the first band it's

easy to see, because for minus pi over l, it's pi over l. We don't have to do anything.

So it look exactly the same as the lowest band over here. So in particular-- OK? So

what about this second band?

Well what I want to know what's the allowed, the other allowed energy that's say,

plus pi over l. Plus pi over l, it's going to be something greater than this value. But

plus pi over l, we already know the answer from that diagram, because plus pi over l
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is the same as minus pi over l, so what's the value over here? Well, the value over

there for the second band is slightly above, and then it increases and decreases. So

slightly above, and then it increases.

Shift by pi over l. Whoops. Did I shift by pi over l for this guy? That's one, two. Yes. I

did. Good. And it goes the other way. So just noting that it goes away from the top. I

have a hard time drawing these things. So for every value of q, there's an allowed

energy. But it's different than it would have been for the free particle. And then we

do the same thing for the next state. And it looks like this. So now imagine what

happens when we take this, and we it over one two. What we get is a band the

looks-- that should look like this. That's what the second band should look like. And

indeed, when we put it in the fundamental domain, this is what we get. This is what

the first band and the second band together look like. And then the third band, we'll

move this over once, and then twice, it's going to look like this. And this guy, move it

over once, twice, looks like whoops. Yeah?

AUDIENCE: If we wanted to plot u with respect to k instead, would that just be a parabola dotted

line? If so, why do we not have really--

PROFESSOR: If we just wanted-- sorry. Say it again?

AUDIENCE: E as a function of k instead of q.

PROFESSOR: Oh. Yeah. E as a function of k is always going to look like that. But k is not a well--

so what is k? K is just defined as h bar squared, k squared upon 2 m is equal to e.

So this doesn't tell you anything. Right. Because any allowed k. Sure any allowed k

is some valid value of e. But this didn't tell you which values of e are allowed. Only

some values of e are allowed, right? There are no values of e-- there are no energy

eigenstates with energy in between here and here, right? And so that tells you

they're no allowed k's because k is just defined, it's just completely defined by e. So

this doesn't tell you anything about which states you're at. It just that given an e,

there's some quantity that could define k. This is a definition of k, in terms of e.

What this diagram is telling you is which e's are allowed.
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AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes. Yes. There should be. Let's see. What's

AUDIENCE: [INAUDIBLE]

PROFESSOR: Oh, here. Yes. Yes, you're absolutely right. Over out. Thank you. Excellent. That's

exactly right. Yeah. Oh man. I made a dimensional mistake. Thank you. Jesus. OK.

Good. Yeah.

AUDIENCE: Could you like re-explain how imperfections and a lattice leads to actual

conduction?

PROFESSOR: Yeah. I'm going to do that. So that's an excellent question. The question is could

you explain again how imperfections and a lattice leads to actual conduction. As we

talked about last time, when you have a perfect lattice, there is actually no current

flowing in response to an applied electromagnetic field. If you put on a capacitor,

played across your perfect lattice, you don't get any current. So the particle, the

charged particle in your lattice, just oscillates back and forth in a block oscillation,

running up the band, and down the band, and up the band, and down the band. So,

let me slightly change your question, and turn it into two other questions.

The first question is given that that's obviously not what happens in real materials,

why don't we just give up on quantum mechanics and say it totally failed? And so

this is a totally reasonable question, and I want to emphasize something important

to you. Which is the following. That model led to a prediction, which is that if you put

a capacitor plate across a perfect crystal, then you would get no current flowing

across, you would just see that the electron wave packets oscillate. Or block

oscillations as we discussed last time. And that is manifestly what happens with

copper. But the experimentalist comes back to you and says look dude. That is a

ridiculous model because the copper isn't in fact perfect, it's messy.

So how do you test the model? Well there are two ways to test-- to deal with the

situation. One is you improve the model to incorporate properties that copper

actually has. And see if you can actually get the same conductivity that you see. But
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the other is you could improve the material, instead of improving the theory. So let's

make up what-- can we actually build a perfect crystal? This is actually something

that I'm doing research on right now.

Not on the building side, but on the theory side, because I'm a theorist and you

should not let me in a lab. But I collaborate with experimentalists, so they're nice

people. They're very good physicists. So here's something you can do. You can

build a system that has exactly a periodic potential. It turns out it's very difficult to do

this with quantum systems. But what you can do is you can do it with lattices not of

atoms, but lattices of dielectric.

So the equation. Here's a cool fact, the equation for light going through a dielectric,

where the dielectric has different constants, like wave guides. You've got glass, you

got air. You've got glass, you got air. That equation can be put in exactly the same

form as the Schrodinger equation for the time evolution of a wave function. They're

both waves. And so it's not so surprising these two wave equations are related to

each other a nice way. Meanwhile, the index of the dielectric turns into the potential

for the quantum mechanical problem.

So if you have a periodic potential, what do you want? You want a periodic dielectric

constant. Yeah. And so you can build a system which incredibly, cleanly, has a

periodic dielectric constant and no disorder. And then you can put light into the

system, and you can ask what happens to this system. So here's the idea,

I take a system which is a periodic-- I'm going to draw the potential here. So I'm

going to draw the dielectric constant. So small, large, small, large, small, large,

small, large, et cetera. But instead of having it be a one dimensional lattice, I'm

going to make it a two dimensional lattice. So now, basically, I've got a set of wave

guides. Let me draw this differently.

So does everyone get the picture here? So literally what you have, is you have

glass, glass with a different index, glass, glass with a different-- if you can think of

those as a line of glass fibers. Optical fibers. And you shine your light that's

reasonably well localized, in both position, and in phase variation, or crystal
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momentum. Because you can control the phase of the light. So you send this wave

packet in and you ask what happens.

Well not a whole lot happens. It's a wave packet. It's going through a wave guide,

but we haven't implemented an electric field. To handle an electric field, you need

the potential to be constantly varying. Uh huh. So it's at a linear ramp into the

potential. Instead of making it just perfectly periodic, let's make the index ramp just

a little bit.

And this experiment has been done. In this experiment, so as the wave packet

moves along, what's discovered is that the position-- if I draw the x as a function of

t, so now the role of t is being played by the distance it's moved along the wave

guide, what you find is that it does this. It exhibits beautiful block oscillations.

And this has been proved in a very small number of real honest quantum

mechanical systems. The most elegant experiment that I know of was done by

Wolfgang Ketterle, who's here at MIT. And he got three data points because it was

preposterously difficult and declared victory.

So I talked to him about this in the hallway one day. And he said yes, this was

ridiculous, but we got three data points. We got small, we got large. Victory. We

declared victory. But it really needs to be done well. So one of the interesting

questions in this part of the field right now is we know that it's true. But we want to

see it. We want to feel it, so various people around the world are working on making

a truly beautiful demonstration of this bit of physics. Yeah.

AUDIENCE: [INAUDIBLE]

PROFESSOR: It's totally impractical, because any interference is just going to kill you.

Unfortunately. So, you have to work ridiculously hard to make systems clean. So the

question is really a question about quantum computation, which we'll come to next

week. But, the basic question is how robust is this. And the answer is it's not robust

at all. But which you can tell because everything in the real world has enough

impurity that it conducts. Or as an insulator. Yeah.
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AUDIENCE: What place sort of like the larger role in sort of like the perfection of a lattice like

temperature or impurities.

PROFESSOR: That's a very good question. So the question is what's the most important property?

What's most important disordering property that leads to conduction? And there's

temperature fluctuations, there are impurities in the lattice. There are decohereing

effects which is a more complicated story. And that's actually, it depends on the

situation, it depends on the system. And exactly how it depends is something that is

an active area of research.

Now there are many, many ways to probe this physics. So we know that these block

oscillations are true. We see them in all sorts of different systems that are

analogous. So there's lots of [INAUDIBLE], it's not like this is an ambiguous bit of

physics. But it's one that turns out to be surprisingly difficult to tease apart. The

reason I bring all this up is to emphasize the following, our model made a prediction

that disagreed explicitly with the connectivity property of copper and other materials.

So don't throw away the model. Observe that you've modeled the wrong system. If

you find a system that fits your-- that is-- that shares the assumptions of your

model, that's when you ask did it work. And it worked like a champ. OK.

So now let's talk about real materials. This is going to close up our discussion bands

and solids. And this is actually what I wanted to get to at the beginning of the

lecture. But that's OK. There are lots of questions and they were good questions. So

this is an extremely brief. But I want to ask you the following question.

What happens in the following three systems? So first, imagine we take why don't

we take a system with built out of single wells, which have some set of energy

eigenstates, and then we build the periodic array out of them. What do we expect?

And let me draw this bigger. What do we expect to see when we build a lattice? We

expect that this is going to-- that these states are going to spread out into bands a

funny way

Yeah and let's just talk about the 1 d potential. So what we'll find is that this band

turns into-- I'm sorry. This state, this single state turns into a band of allowed energy
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turns into-- I'm sorry. This state, this single state turns into a band of allowed energy

eigenstates. There's now a plot of the energy. And similarly, this state is going to

lead to another band with some width. And this state is going to lead to another

band, which is even wider. Everyone cool with that? Quick question? In 1 d, do

these bands ever overlap? No. By the node theorem. Right?

OK. Now let's take a single electron, and let's put in-- let's take a single electron,

and let's put it in the system. What will happen? Well if we put it in the system, what

state will this single electron fall into? Yeah one event. But which state?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yeah, if you kick the system around, you let it relax a little bit. It's going to fall down

to the ground state. You have to couple to something else like hydrogen has to be

coupled with an electromagnetic field to decay. But couple it, kick it, and let it decay.

It'll settle down to its ground state. So you get an electron down here in the ground

state, and looking back at that band, we know that the band for that ground state

looks like this.

So, here it is. There's our electron. It's sitting in the lowest energy eigenstate. Is it

moving? Well, it's in a stationary state. Is the expectation value of the position

changing in time? No. The expectation values don't change in time, in the stationary

state. That's part of what it is to be a stationery state, to be an energy eigenstate.

OK. Great. it's not moving.

Now, in order to make it move, what do you have to do? What kind of state

corresponds to the position changing in time? Yes. Superposition. Right? From the

superpositions we'll get interference terms. So if we put in a superposition of say,

this state, and this state, which corresponds to different energies.

If we put it in a superposition of these guys, then it's meaningfully moving. It has

some meaningful, well defined time variation of its position expectation value. So in

order to induce a current, in order to induce a current of this system where the

electron wave packet carries a little bit of momentum is changing in time it's

position, what do I have to do to the electron in the ground state? I have to excite it,
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so that it's in a superposition of the grounds state and some excited state.

Or more generally, into a superposition of other states. Yes? In order to induce the

current, I must put the electron into a higher energy state and in a particular

superposition of higher energy states. Everyone down with that? Here's why this is

so important.

Imagine each one of these wells is actually not some square well, but it's an atom.

And let's say the atom is hydrogen, just for-- this doesn't actually happen, but just

imagine-- in particular what it means is it has the ion, the nucleus is charge plus 1.

And so in order for the system to be neutral, I must have one electron for every well.

So if I have n wells, I must have n electrons in the system. Everybody agree with

that? In order to be neutral. Otherwise, the thing's charged and all sorts of terrible

things-- electrons will get ripped off from nearby cad. So we must have an electron

per well. How many states are in this band? For n wells? n. Right? OK. So if I put in

the n electrons I need to neutralize a system, where do those n electrons go? Yeah,

they fill up the first band. And if we let the system relax with lowest energy

configuration, every state in this lowest band will be filled, and none of these states

will be filled. Everyone down with that?

So here's my question. When I've got that ground state configuration of this lattice

of atoms with one electron per well, in these distributed wave functions, filling out

these bands, is anything moving? Wow, you guys are so quiet today. Is anything

moving? This system is in an energy eigenstate. In particular, it's in a completely

antisymmetrized configuration, because they're identical fermions.

So, nothing is moving. If we want to induce a current, what do we have to do? Yeah.

We have put them in a superposition. But where's the next allowed energy

eigenstate? Next band. So it's in the next band. The next allowed energy

eigenstate. So the configuration we have now is that these guys are all filled, these

guys are all empty, but in order to take an electron from here and put it into this

excited state, we have to put in a minimum amount of energy, which is the gap

between those two bands.
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Right? So now think about it this way. Suppose I take light and I send my light at this

crystal. In order for the light to scatter off the crystal, you must have electrons in

superposition states so that they can have a dipole and absorb and radiate that

energy. Yeah.

But in order for that to happen, the light has to excite an electron across the gap. It

has to give it this macroscopic amount of energy. Well, it's not macroscopic. it's

large. It's not infinitesimally small. That means that there's a minimum amount of

energy that that incident light must have in order to excite the electron in the first

place. So very long wavelength light will never do that. Light along wavelength will

not have enough energy to excite an electron across this gap into the next band to

allow there to be a current, which could oppose the electric field. So the only for light

to scatter off of this crystal, is if the energy, h bar omega, of the light is greater than

or equal to, let's say greater than approximately, the band gap delta e. That cool?

We've just discovered something. Crystals are transparent unless you look at

sufficiently high frequencies. That's cool. Right? A crystal is transparent unless you

look at sufficiently high frequencies.

If you look at low frequencies, your crystal should be transparent. Well that's really

interesting. In particular, we immediately learn something cool about two different

materials. Consider diamond and copper. These are both crystals.

They're solids made out of a regular array, perhaps not perfect, but extraordinarily

good, regular array of atoms of the same time. Array in a particular structure.

Diamond, anything and I think face inner cubic. I don't remember. I really should

know that. Anyway, copper. It's a lattice. That's embarrassing. I really should know

that. So we have these two materials which one has the larger band gap? Diamond,

because it's transparent.

At in the visible. So the band gap, delta e of diamond is much larger than the band

gap for copper. But in fact, this is a little more subtle, because copper in fact,

doesn't even have a band gap. We made an important assumption here.
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So I want to think about-- we're going to come back to copper in a second, but I

want to point out the nice thing here. Which is that diamond has to have a band

gap. It's transparent. It must have band gap. It must be such that when you fill up all

the electrons you need for it to be neutral, there is a gap to the next energy states.

And that gap must be larger than visible wavelengths of light.

Yeah. That's cool. And that must be true of all the transparent crystals that you see.

Otherwise, they wouldn't be transparent. They would respond by having free

electrons that could respond like a metal. Yeah.

AUDIENCE: So, [INAUDIBLE]

PROFESSOR: Yeah. Are diamonds good conductors? No. They're terrible conductors. In fact,

there preposterously-- if you compare the number of-- I'll get into this later. But yes,

they're terrible.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Uh, that's a slightly more complicated story, which let me come back to. Hold on to

that, and if I don't answer today, ask me after in office hours because it's a little

more-- what? Really? Wow. Well, MIT. It's all about the intellect. And everything else

has to-- OK.

So, this is pretty good, but here's the thing. In one dimensional crystals, the only

thing that can happen is, look if you have each band come from allowed energy

state and each energy state, each well comes with one electron, or two electrons, or

three electrons, you will always have filled bands, and then a gap and filled bands

and then a gap. Does everybody agree with that? You can't have a partially filled

band if each band comes from a bouncy, in a single well, and each well comes with

an integer number of electrons. You just-- you're stuck. Yeah.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Oh. I'm lying about spin. But spin in one dimension is little-- I'm lying about spin. But

do you really want me to get in spin? Man. OK. So if we include spin, and we have
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splitting, then it becomes a more subtle story. If we include spin, then there are two

states for every allowed energy eigenstate of the potential.

However, there are generically going to be interactions between the-- there are

generically going to be magnetic interactions which split the energy of those two

spin states. Electrons spin up, and electrons spin down, will generically have

different energies.

Now in 3D, this isn't such a big deal, because those splittings are tiny, and so the

states can sort of overlap. But in 1D they can't. So I mean, that's also not exactly

true, but it depends on exactly the details. It depends on the details of the system, is

what I wanted to get to. Curse you. So let me talk about the same phenomena in an

easier context, where we don't have to worry about spin, which we haven't

discussed in detail, in the class. Which is in three dimensions. Where the story

changes in a dramatic way. Yeah.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Oh. It's not. Generically, no, it's not. It will depend.

AUDIENCE: [INAUDIBLE]

PROFESSOR: You say it happens to be the salient one. Yeah, exactly. That is exactly right. There

the gaps are not the same. That they do not remain constant. OK. So let's talk more

about this system, but let's talk about it in three dimensions. So in three dimensions,

you guys did an interesting thing, when you studied, you didn't know this was about

the structure of solids, but it really was. When you studied the rigid rotor.

And when you studied the rigid rotor, you found that you had energy eigenstates

and they were degenerate with degeneracy 2 l plus 1. The various different l z

eigenstates. Yeah. And then we turned on an interaction which was the energy

costs, the energy penalty for having angle momentum in z direction. Which added

an l z term to the energy.

And what you found is that as a function of the coefficient, which I think we called
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epsilon, of that perturbation of the energies of the energy was equal to l squared

over 2 i plus epsilon l z. What you found is that these guys split. So this remained

constant. And this split into, so this is the [INAUDIBLE] l equals 1. So l equals zero.

So this is one, this is three, this is five. So the l equals zero state, nothing happens. l

equals 1.

There's one that changes, one that doesn't. And then this guy has five. One, two,

three, four, five. OK. And what we found here is that these guys could cross. States

from different multiplates, with different values of l, had energies that could cross as

a function of the strength of the deformation of your system. Right? The

deformation is where you have a sphere and you stick out your arm. So it's no

longer symmetric top.

So here we can have states crossing. There's no nodes here in three dimensions.

So as a consequence, when you have a three dimensional material built out of

atoms. So here's my sort of pictorial description of three dimensional system built

out of atoms. You have a potential well, potential, potential well. Now, if the energy

in one particular potential well, is like this, and like this, and like this, then when we

add in a lattice we get bands again.

The structure's a little more intricate because it depends on the momentum. But

these bands now can overlap. OK. Everybody see that? Because there's nothing

preventing states from different-- in different multiplates from having the same

energy in three dimensions. There's no nodes here that tells you have to keep the

ordering constant as you turn on the potential. Now we turn on the multiple particle

potential, and they can interact, they can overlap.

As a consequence, when we fill up, let's say we two electrons per potential, or per

well, when we filled those first two bands, well, there is the first-- so the first band is

now filled. The second band and part of the first-- part of the third band and most of

the second band are going to be filled. But part of the second band is now available,

and much of the third band is now available. We filled in 2n electrons, but we

haven't filled up this band, because it's really two bands jammed together. Or really
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bands from two different orbitals jammed together. They happened to overlap.

So as a consequence here, if this is the length of the energy of the last electron that

you put in, how much energy do you have to give the system, do you have to add

the system, to excite the energy-- or to excite the electrons into excited states, in

particular into superpositions so that the electrons can move?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yeah. Preposterously small amount. An amount that goes like one over the number

of particles. So in the continuum limit, it's zero. There's an arbitrarily nearby energy.

So how much energy does it take to excite an electron and cause a current that

opposes the induced electric field? Nothing.

Any electric field that you send in will be opposed by an induced current. So this

behaves like a classical conductor. You turn on an electric field, and the charges will

flow to oppose that externally imposed electric field. You get charges then building

up on the walls of your capacitor plates. So, this is where we have a conductor.

Because there's an unfilled band. And back here , we had an insulator because we

had filled bands separated by gap. The gap between the filled band and the next

available band. This is actually called a band insulator. Because there are other

ways of being an insulator.

So from this so far, just from the basic quantum mechanics of a particle and a

periodic potential, we now understand why some crystals are transparent. Why

some materials conduct. Why the materials that are transparency are also

insulators. And the things that conduct are not transparent, generally. Yeah.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Excellent. Excellent question. So what's so special about diamond and differ from

copper? And so the answer goes like this. So what determined the exact band

structure in for a 1D periodic potential? Two properties. One was l, the periodicity.

And that came in the q l and k l. And the second is the detailed shape of the
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potential. Now in three dimensions, the story's going be a little more complicated. In

three dimensions, the things that are going to determine the potential are not just

the distance between atoms, but you have a three dimensional lattice.

And the three dimensional lattice could have different shapes. It could be cubic, it

could be hexagonal, could be complicating in all sorts of different ways. Right? It

could be bent, it could be rhomboidal, and it could have all sorts of different

crystallographic structures. So that's going to go into it, in the same way that l went

into it, which is the only parameter in one dimension. In the same way that l goes

into it. So the crystal structure, the shape of the lattice, is going to determine it.

Secondly, the structure of the orbitals is different. Different atoms are different wells,

so they'll give you different band structure. So different materials for example,

diamond versus copper, are going to give you different bands allowed energies,

because the potential is different.

It has different shape. And so when you solve the problem for the energy

eigenvalues is a function of now the three different components of the crystal

momentum, you'll just get a different set of equations. And working those out is not

terribly hard. But it's a computation that must be done, and it is not trivial. And so

one of the sort of, I don't know if I'd say exciting, but one of the things that one does

when one takes a course in solids, is you go through a bunch of materials. And you

understand the relationship between the potential, at the atomic orbital structure of

the individual atom, the crystal structure, and the resulting band structure. And

there's some sort of nice mnemonics, and there are calculations you do to get the

answer.

AUDIENCE: [INAUDIBLE]

PROFESSOR: You will almost always find overlapping bands in three dimensions in sufficiently

high energy. I can't off the top of my head give you a theorem about that, but yeah,

it's generic. Yeah.

AUDIENCE: --analog to conductor in one dimension? You have these like, non-zero band
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depths?

PROFESSOR: Yeah. And this is why Matt was barfing at me. So the answer to that is yeah. There

aren't [INAUDIBLE]. But what would we need?

What we need is one of two things. We need either the band gap coincidentally is

ridiculously small. What's a good example of that? A free particle. In the case of a

free particle, these band gaps go to 0. Right? And so that's a conductor. Just an

electron. Right. It conducts, right? OK.

So that can certainly happen. But that's sort of stupid. I mean, it's not totally stupid.

But it's sort of stupid. But a better answer would be, well, can you have a system

where there are bands but you didn't have one electron per potential well? And

yeah. You could orchestrate that in lots of ways.

Now it involves orchestration. So it's not the generic system that we were talking

about here. But you can't orchestrate it. So spin is a useful thing that gives you an

extra handle. If you have twice as many states per well then you can have half a

band filled. So that's one way to do it.

Then it becomes dependent on details of the system, which is what I didn't want to

get into. But yeah, you can orchestrate it. It's just not a generic thing from what

we've done. And it's really not for spin-less systems.

On the other hand, accidental small gaps. Easy. That happens. That certainly

happens.

So that brings me to the last thing I wanted to talk about before getting to

entanglement, which is accidental small gaps. So what happens to a system which

is-- so there are some systems that are neither conductors nor insulators. They are

reasonably good conductors and reasonably bad insulators. But they're not perfect.

And these materials are called semiconductors. I want to talk about why they're

called semiconductors and what that means. So this is going to be very brief. Then
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I'm going to give you-- we're going to get into entanglement.

So consider a system exactly using the same logic we've used so far which has the

following property. We have two bands. And the bottom band is filled because we've

got just the right number of charged particles. Bottom band is filled. And this guy is

empty, but the gap is tiny. OK. Delta e is very small.

Now delta e has dimensions. It has units, right? So when I say small, that doesn't

mean anything. I need to tell you small compared to what. So what's a salient thing

that controls an energy scale for a real material? Well the temperature. If you have

a hot piece of copper, then the lattice is wiggling around. And every once in a while,

an ion can hit one of the electrons and excite it, give it some momentum. And so

there's an available reservoir of energy for exciting individual electrons.

You have it really hot, what happens is every once in a while an electron will get

nailed by a little thermal fluctuation in the system and get excited above the gap.

And now it's in a super-- and generically, it's going to be in a superposition state of

one of these excited states. So it's in general going to be moving. It can radiate. It

will eventually fall back down.

But you're constantly being buffeted. The sea of electrons is constantly being

buffeted by this thermal fluctuation. And as a result, you constantly have electrons

being excited up, cruising around, falling back down. So you end up with some

population of electrons. And they can ask-- and both when asked, although not

quite in this language, how likely are you to get an electron up here? How likely is

an electron to be excited up thermally? And those of you taking 8.04 will know the

answer to this.

The probability goes as e to the minus delta e over kt. So let's think of this where

this is the Boltzmann constant. So what does this mean? At very low temperatures,

if the gap isn't 0, then this is 0. It doesn't happen. But at large temperatures, the

denominator here is large. If the temperature is large compared to the width of the

gap, then this is a small number. And e to the minus of a small number is close to 1.
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So at high temperature, you're very likely to excite electrons up here. And now if you

have electrons up here, you have a bunch of available states down here-- also

known as holes-- and you have a bunch of available electrons up here with lots of

available states. So at a high temperature, a material with a small gap-- or at least

at temperatures high compared to the size of the gap-- it's basically a conductor.

And at low temperatures, it's basically an insulator.

This is called a semiconductor. And there are notes on the Stellar web page that

discuss in a little more detail what I just went through and show you how you build a

transistor out of a semiconductor. And the important bit of physics is just this. OK.

So that finishes us up for the band gap systems for periodic potentials. We've done

something kind of cool. We've explained why diamonds are transparent. We've

explained why they don't conduct. We've explained why copper does and it's

opaque. And that's pretty good for 15 minutes of work. It's not bad.

But along the way, we also talked about the analogous system of what are called

photonic crystals. Systems of periodic arrays of dielectrics. Like wave guides. And

those have the same structure. They have bands of allowed energy and gaps of

disallowed energies where no waves propagate through.

So you might think that's a little bit of a ridiculous example. So just to close this off,

you've all seen a good example of a photonic crystal flying past you. You know that

highly reflective at very specific frequency structure on the surface of a butterfly

wing that makes it shiny and blue? It looks metallic. It looks like it's a crystal

reflecting in a specific frequency. At some sharp blue.

And the reason is, it's a photonic crystal. It is exactly this form. If you look at it under

a microscope, you see little rays of protein which have different dielectric than air.

And they form exact crystals-- or not exact, but very good crystals-- that reflect at

very specific wavelengths. And as a consequence, they have a metallic sheen.

So why would a butterfly put a photonic crystal on its surface? Well it's extremely

light. It's fairly rigid. It looks shiny and metallic without actually being shiny and
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metallic. And it's not a pigment, so it doesn't absorb light and decay over time. It's

like the best thing you could ever do if you wanted to be a shiny, fluttery, flying thing.

Anyway. So there's an incredible amount of physics in this story of the band gaps.

And consider this an introduction to the topic. OK. So that's it for band gaps. And I

want to move on to the remainder, the last topic of our course. Which is going to be

entanglement and quantum computation. And here I need to give you one quick

observation and then move on to the punchline of today.

The one quick observation is this. We've talked about identical particles before. And

we've talked about identical particles in funny states. So for example, imagine I have

two particles described by a wave function where the first particle could be in the

state a and the second particles in the state b.

And I can build a wave function for the first particle being in state a and the second

particle in state b in the following way. So let's say position a and position b. I could

take a single particle wave function, chi of a, and a single particle wave functions phi

of b. And we've talked about what this tells us. And you've studied this on your

problem set.

What this tells you is that the probability of finding the particle at point A is given by

chi a squared. And this is normalized, so when we integrate against it, we get 1. And

similarly, the probability that we find the second particle at b is this thing norm

squared. And it's independent of what a is.

But we also studied-- and so this was called the distinguishable. We also studied the

symmetric configuration, which was equal to 1 over root phi, root 2. Chi of a. Phi of

b. Symmetric, plus chi of b phi of a. And this tells us something totally awesome.

What's the probability that I find the first particle at a? It's the norm squared of chi of

a phi of b, right?

If we integrate over all phi b, this is the norm squared integrates to 1. So it's fine. So

there's a factor of one half. We either find it at chi of a or chi of b.

However if I tell you that I've measured the first particle and I find it in the state chi,
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what can you say about the second particle? It's in the state phi. If you know the first

particle's in the state chi, the second part is in the state phi. Because we measured

it and it's not in the state-- the first particle's not in the state phi.

So measuring one particle tells you something about the second particle. And this is

deeply disconcerting, because I could've taken these particles, put them in this

entangled state, and sent one particle off to a distant planet and the second particle

to my sister in DC. And my sister measures this second particle and determines

what state it's in and is immediately determined what state the first particle is in over

in this distant planet Zorg, right?

So that's deeply disconcerting. And to those of us who have studied quantum

mechanics up to this point-- which we all in this room have-- to those of us who

have studied quantum mechanics to this level of development and understand that

it is a correct description of many experiments, this should be yet another moment

of serious discomfort. We've run into a bunch of these over the semester. But this

one should be troubling to you.

Because look. How can something here dramatically change the state, the

configuration, the initial configuration, of a particle arbitrarily far away? Isn't that

deeply concerning? And if you think about relativity, this should be all the more

deeply disconcerting. Because how does relativistic causality fit into this? So there

was a person that roughly this time, a little earlier, who was troubled by this

problem. And his name was Einstein.

And so one of the things that's kind of amazing is that he created a thought

experiment which we're going to study in detail next week called the EPR

experiment. And there's a beautiful historical story about the setting and the

meaning and the particular person. And unfortunately, I'm not a historian so I can't

tell you that story. It sure would be nice if we had someone who wrote a biography

of Einstein to tell you a little bit about that story. Oh look, it's Tom Levenson who

wrote a biography about Einstein. So Tom is--

TOM LEVENSON: Oh, I need a microphone. Those of who have taken courses in [INAUDIBLE]-- and
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I'm sure that's all of you because of the GIRs-- know this is larger than the usual

[INAUDIBLE] class. So I'm very used to microphones, but not in this context. OK.

Is this-- yeah, it's on. Can you hear me? All right. So there are lots of ways to slice

the story of Einstein by the time he reaches the EPR experiment, which is Einstein,

Podolsky, and Rosen for the three people who actually wrote the paper.

Just to dot the I's and cross the T's on the paper itself, Rosen is apparently for

person who first came to Einstein. Podolsky and Rosen were two young physicists in

Princeton after Einstein moved to Princeton. Einstein moved to Princeton in 1933.

About three weeks before-- I'm sorry, he moved to Princeton '33.

He left Germany in 1932 December, about three weeks before Hitler took power.

And he did so with decisiveness and dispatch and a head of almost all of his-- in

fact, I think all of his German-Jewish physicist colleagues and those German

physicists for whom the Hitler regime was unacceptable. Which shows that Einstein

really was smarter than most of his peers. That's one of many different ways you

can ascertain that.

And so he came to Princeton in '33. He actually went to Caltech before we went to

Princeton. As part of an ongoing visitor-ship he had there. Came back to Europe,

hung with the queen of Belgium who was a friend of his. Went to England. And then

headed across the Atlantic and took up residency in Princeton at the Institute for

Advanced Studies where he stayed for the rest of his life.

And over the course of the-- that was '33, he died in '55, I think. I should know that,

but I think that's right. 22 years. He worked with a lot of different, mostly younger

physicists. And Podolsky and Rosen were early members of that chain. So Rosen

was talking with him some day and starts to frame this experiment. Einstein

develops it. The three of them talk about it. They write the paper and they put it out.

And I want to share with you, actually, a really lovely description of the way the

problem was represented in a way by-- this is from a book that I recommend to all

of you. It's actually really hard to find. It's really sweet. Jeremy Bernstein, who is a
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physicist. He's sort of been around. A physicist and writer. He's in his eighties now.

He lives in Aspen. He worked with CERN for a number of years. He's always been

independent. He wrote for the New Yorker.

Anyway. So you've all heard of the physicist Bell, I assume? Bell's inequality? OK.

So Bell had a lovely way to describe-- I'm trying to find. I had this marked and then I

lost my piece of paper. I have already lost it. That's terrible.

So Bell has this wonderful way of describing this problem of entanglement. And it's

based on his description of an actual person. I was going to read you his actual

quote. Now I'm just going to paraphrase it for you. He had a friend named, I think,

Bartelstein. Or at least someone known to him. Who had two quirks. An unusual

color sense and a taste for mismatched socks.

And so Bell used to say, if you saw Bartelstein and you could only see one leg and

that sock was pink, you knew to a certainty that the other sock was not pink. He

comes up I think-- I'm trying to remember who this is originally attributed to.

Same thing. If you have a coin and you cut it in half down the-- so you've got two

coin shape disks. You cut the disk in half, not-- and you have one side that's the

head and the other side that's the tail. And they're separated. They get handed to

two different gamblers. And one gambler tries to cheat the gambling establishment

by tossing in his half coin. And you see the head that you know somebody--

somebody at some other casino is cheating by tossing in the half coin that only has

a tail on it.

So there are lots of ways to represent this. And many physicists being very witty

indeed have come up with different metaphors for it. So Allan just described for you

the basic claim in EPR. Its weirdness. That you have two particles that are

entangled in some way and then go their separate ways. And thus you have-- if you

have knowledge of what's the state of one, you have certain knowledge of the state

of the other, violating relativistic ideas of locality. And just kind of making you queasy

if you're sort of approaching it naively.
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What Einstein, Podolsky, and Rosen argued was actually something a little bit-- in

fact, the paper comes to an end on that note of queasiness. But what they argue is

a little bit more subtle. Because what they said is, OK. You perform this thought

experiment. You send the two particles off. You measure position of one, you know

absolutely the position of the other.

You've conferred-- and the paper turns on a discussion of the connection between a

measurement-- a physical measurement-- and a property of physical reality. And

they have definition for what reality is. And that is something whose-- if you can

perform a measurement, you know that quantity absolutely. I don't have the

mathematics to express that properly. But that'll do for this hand waving.

You can then do another experiment and measure a complementary property. And

you know that piece of reality. But you can't do the-- so on the one hand, quantum

mechanics says you can't know physical reality to this level of precision. And on the

other hand, the fact that you can do that measurement violates the relativistic

picture of reality. So you have what they claimed was a paradox.

And this paper was published. And it received a range of reactions from indifference

by younger physicists who said, we don't care that it's weird. We're going to keep on

doing quantum mechanics and performing experiments and making measurements.

And just see where this leads us. Remember, this is happening in the mid '30s.

1935. One of these three books will tell me precisely in a moment.

And the quantum theory, as it turned into quantum mechanics, developed in its first

period between '23 and '27. And by '35, you have enormous numbers of productive

results and unexpected things and the prediction of the positron and then its

observation. And I mean, the theory is enormously, dramatically, excitingly

productive. So those who are really heads down doing the work are, for the most

part, saying, this is fine. We'll get back to it when we're old and retired and bored.

But that wasn't the uniform case. And most notably Niels Bohr found this paper

really troubling. And spent about six weeks, apparently, discussing this and trying to

come up with a response to it. And what he responded was essentially that-- in
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some ways, it was the same reaction as his younger colleagues. Get over it.

But more precisely, it was he said, there's no description of reality that excludes the

measuring apparatus anymore. You can't make statements about physical reality

unless you include a description of the measuring apparatus. And you've said that

we can measure this one quantity with precision and know the other thing. And then

we can subsequently, in a separate observation, measure a complimentary quality

and know the other one. You still can't know much them at the same time.

It's still true that the complementarity in essence means that once you know one

part of the picture, you know some other part the picture. And that's just the nature

of the quantum world. Einstein had argued that the EPR paradox suggested that

quantum mechanics was incomplete. And Bohr essentially responded in effect that

Einstein's description of quantum mechanical explanation was inadequate.

The important thing to remember-- and I want to just spend a couple minutes going

back into the pre-history of all this, and then a couple minutes speculating on why

Einstein reached the position he did. And what that might tell you about the practice

of science as a lived experience as opposed to one reflected in your textbooks.

But the thing to remember is that there's nothing logically wrong with the EPR

paper. Right? You know. It does what it says it does and there's no overt error in it.

And there's nothing wrong with Bohr's response. And in fact, when the experiments

were-- Bell formalized the-- what Bell's inequality really does is it formalized the two

arguments. It says, if Bohr is right, you will observe this in the experiment. And if

Einstein is right, you would observe something different.

The experiments were done, and I imagine are still being done, as sort of

demonstrations. And they showed that Bohr's interpretation was correct and that

yes, quantum mechanics produces results that are non-local just as Allan described

to you. And that the world really is as strange as people first glimpsed in 1925, '26,

and '27.

And the question of whether or not that strangeness is adequately explained without
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the explanations that you're going to learn in this class and subsequent ones are

quote "complete" or not. And completeness is a very funny, very, very tricky

concept. But the question whether or not the framework of quantum mechanics is

somehow unsatisfactory in any kind of formal a technical sense is one that's at least

partly dependent on your scientific temperament, I think.

So that's the cartoon version of what happened in '35. Einstein with his two young

colleagues proposes-- really you should understand the EPR paper as a description

in detail of a consequence of quantum theory as it was then expressed with the

conclusion-- and I just want to read you this thing-- no reasonable definition of

reality could be expected to permit such a result. In fact, it's called a paradox, but it

isn't. It's a complaint. You know, it's a memo to the Flying Spaghetti Monster that

the universe shouldn't be this way if, in fact, experiments turn out to show that it is

and they have.

The oddity here for a biographer of Einstein opposed to a physicist is given what

you know about Einstein between 1879 when he's born and say, 1925 or so when

he completes the last of his really great physics. How could-- I mean, I actually

keep-- I've been working on Einstein off and on for years and years. I keep finding

out new ways in which he's just inconceivably bright and on target and with a nose

for the right problem and insightful.

And yet by the 1935, 10 years later, he's still a relatively young man. He's in his

'50s. Which being in my '50s I think is an extremely young man. Just 10 years after

doing work that's right on the edge of modern quantum mechanics that is essential

to its foundation. That's really extraordinary.

10 years after that, he's saying, no reasonable definition of reality should be

permitted to behave this way. Where does that come from? Well the first thing I

want to tell you-- again, this is all going to be a really cartoon version. Because

there's not much time, I understand. Is that Einstein-- I mean, how much are you

aware of Einstein's role in the creation of the quantum theory? A lot. I mean, a lot?

None? OK.
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I mean, I'm going to make a claim that except for Heisenberg, Schrodinger, maybe

Bohr. Maybe Born. Maybe a couple of others. There's no one more important to the

quantum theory than Einstein. And you could maybe even argue that from a sort of

foundational point of view that without Einstein, rigorous thinking about quantum

mechanics would have taken much, much longer. I mean, he's really central to it.

Planck in 1900 publishes as an ad hoc solution to the black body problem the first

quantum theory. In 1905, Einstein says it's not an ad hoc thing. If you look at the

photoelectric effect is the particular problem he's dealing with in explanation. But

that's really-- the behavior of the photoelectric effect is really presented as the

confirmation of this idea that light exists as quanta with particular kinds of behavior.

And from 1905 on, he spends probably more time on quantum problems than he

did on any other physics problems. Certainly more than on relativity. Though he

spent enormous energy on special and general relativity. One of most amazing

things about Einstein, in fact, is that despite the fact that he's seen and appears by

1935 to be this hidebound old guy who can't accommodate himself to the new world

is he had an extraordinary capacity to do what the Red Queen did in Alice in

Wonderland. and believe two impossible things before breakfast.

Just think in 1905. April, he publishes The Quantum Theory Of Light. June he

publishes Special Relativity, which treats light as a wave. And makes no mention of

his revolutionary-- I mean, he called it revolutionary in a private letter in 1905. So he

knew what he had in the quantum theory of light. But in special relativity, go read

the special relativity paper. It's actually lovely reading. And you'll see he doesn't

even nod in that direction. He doesn't say, you know this is a hero-- he says

nothing.

So he's capable of doing excellent-- and there's a reason that year is called the

annus mirabilis, the year of miracles. And in part it's because Einstein is able to

actually really focus on these things. And I realize class is almost over. So there's

several more steps in Einstein's quantum journey.
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But you know, what you should take away is that Einstein's ability to deal with the

problems of quantum pictures extends to the point-- he's the first person to suggest

there might be a problem with causality in quantum mechanics. He does this in

1917, eight years before quantum mechanics is invented. When he starts looking at

what the quote "classical" quantum theory tells you about the emission of radiation

from an excited atom. He realized you can't predict it precisely. Radioactive decay

has the same problem. He says, well-- he writes in a letter. I don't want to give up

causality, but we may have to.

So he's aware of these things. So I see class is over now at 12:30. OK, sorry. So

juts to finish off, the question here is why does Einstein give up on this. And the

answer, I think, is because in addition to his-- as he started at the beginning of his

career, he says with the quantum theory of light and with special relativity, ignore

your physical pictures. Try and look at the phenomena and explain those.

And by 1935, that becomes very difficult for him. Because the phenomenology

becomes too strange. One of the things that quantum mechanics does is it takes

away the immediate ability to visualize physical systems. There. English is my first

language sometimes.

And that's an aesthetic failure on Einstein's part. He had the intellectual capacity

and explicitly said, quantum mechanics is a logically consistent theory that incredibly

powerfully describes lots of problems. He said that in print. He nominated

Schrodinger and Heisenberg for Nobel Prizes twice. I mean, he wasn't stupid. He

was Albert Einstein. But he was aesthetically incapable of pursuing this new physics

in ways that were possible under the research possibilities of the time. And that is

what I would leave you with. Physics is an aesthetic as well as an intellectual pursuit.

So thank you all.

[APPLAUSE]
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