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Final Exam

Problem 1 (20 points) Binary Alloy

A binary alloy (ZnCu is an example) consists of N α atoms and N β atoms. At low
temperatures the system can be modeled as follows. There are N stationary, well defined α-
sites which are normally occupied by α atoms and N β-sites normally occupied by β atoms.
At T = 0 there is perfect order in the system, but at finite temperature n α atoms are
displaced to β-sites. (An equal number of β atoms must then be displaced to the vacated
α-sites.) The energy of the system associated with the disorder is given by U = ε n. If ε
is a constant, the thermodynamic state of the system is given by a single thermodynamic
variable which can be chosen to be either n or U .

To specify one of the many microscopic states of the system consistent with a fixed value of
n one must indicate which specific α-sites are occupied by the n β atoms and which specific
β-sites are occupied by the n α atoms. For example if n = 1 there are N possible sites from
which the α atom may be taken, and N possible sites in which it could be placed.

a) Find the number of different ways of choosing the n α-sites to be vacated and occupied
by β atoms.

b) Find the number of different ways of choosing the n β-sites from which to take the β
atoms.

c) Find the entropy of the system as a function of n.

d) Find U(T,N).
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Problem 2 (20 points) DNA Model
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A strand of DNA can be modeled as a zipper with links between N base-pairs. Each link
has the energy 0 in the closed state and the energy ε in the open state. Assume the zipper
can only open from one end, so that the nth link can open only if all the links 1, 2, ..., n−1
are open. Also assume that N is very large and the system is at temperature T .

a) Find the partition function for a single strand Z1(T ) and leave it in the form of a sum
which you need not evaluate analytically.

b) Find the average number of open links 〈n〉 at very low temperatures where kT � ε.

c) By converting a sum to an integral find an expression for Z1(T ) where Nε� kT � ε.

d) Find the average number of open links 〈n〉 at high temperatures where
Nε� kT � ε.
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Problem 3 (20 points) Spin Waves

At low temperatures the coupling between the electronic spins in a solid may cause the
moments to align spontaneously in a ferromagnetic state, even in the absence of an applied
magnetic field. In the simplest model of ferromagnetism all the spins point in exactly the
same direction at T = 0. As the temperature is raised, the deviations of the spins from this
direction are not localized on single atoms, but rather are spread as correlated disturbances
throughout the entire sample. These “normal modes” of the spin system are called spin
waves. They are analogous to phonons: spin waves are oscillations in the relative orientations
of spins on a lattice; phonons are oscillations in the relative positions of atoms on a lattice.

~The spin wave modes are indexed only by their wavevector k. For a sample with di-
mensions Lx, Ly and Lz, the wavevectors allowed by periodic boundary conditions are
~k = (2π/Lx)mx̂ + (2π/Ly)nŷ + (2π/Lz)lẑ where m, n and l can take on all positive and
negative integer values. Each spin wave mode is represented by a quantum mechanical har-

~monic oscillator with radian frequency ω(k). [The statistical mechanics of a single quantum
harmonic oscillator are summarized on the information sheet.]

~ ~a) What is the density of allowed wavevectors D(k) such that D(k)dkxdkydkz gives the
~number of allowed wavevectors in the volume dkxdkydkz around the point k in k-space?

b) Assume that the dispersion relation for the spin waves is isotropic and quadratic in the
~wavevector (a good approximation for cubic lattices at low temperatures): ω(k) = a k2

where k ≡ |~k| and a is a constant. Find an expression for the density of states as a
function of frequency D(ω). Sketch D(ω).

c) Find the spin wave contribution to the heat capacity of the solid CV (T, V ). Leave your
answer in terms of a dimensionless integral which you need not evaluate. Since the
zero point energy terms do not depend on temperature, you may leave them out from
the beginning.

d) Does the answer you found in c) exhibit energy gap behavior? If so, explain why; if
not, explain why it does not.
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Problem 4 (20 points) Graphene

Graphene is a sheet of tightly bound carbon atoms exactly one atomic layer thick. Electrons
in the conduction band travel in this sheet as a two-dimensional gas with a unique dispersion

~relation: it is linear in the magnitude of the wavevector k.

~ε(k) = ~v|~k|

For a sample with dimensions Lx by Ly the wavevectors allowed by periodic boundary
~conditions are k = (2π/Lx)mx̂ + (2π/Ly)nŷ where m and n can take on all positive and

negative integer values.

~a) What is the density of allowed wavevectors D(k) in wavevector space?

b) Each electron has a spin degeneracy of 2. Find the density of states in the conduction
band as a function of energy, Dc(ε).

c) There is also a valence band (where the electrons have negative energies) with a density
of states Dv(ε) that is the mirror image of the result you found in b). The two bands
just touch; there is no gap. The total density of states is the sum of these two

D(ε) = Dc(ε) +Dv(ε) where Dv(ε) = Dc(−ε)

as would be the case in the following illustration.

D(ε)

ε0

Make a similar sketch of the total density of states using your result from b).

d) At T = 0 the valence band is completely full and the conduction band is completely
empty. Where is the chemical potential µ at T = 0? As T increases, will µ move to
higher energies, stay where it is, or move to lower energies? Explain the reason for
your answer.

e) Find an expression for the internal energy U(T,A) of the electrons, defining
U(T=0, A) = 0 for the purposes of this problem. Leave your answer in terms of a
dimensionless integral. Do not try to evaluate the integral. [Note that it takes twice
as much energy to move an electron from −|ε| to |ε| as it does to move it from 0 to |ε|.]

f) Based on your result in e), what is the exponent n for the temperature in the low
temperature constant area heat capacity CA(T,A) ∝ T n for the electrons in graphene?
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Problem 5 (20 points) BEC

The density of states as a function of energy for spinless atoms in three dimensions is given
by

V
D(ε) =

(2π)2

(
2m

2

)3/2√
ε

~

a) Derive the general relationship between the temperature T , number density n ≡ N/V ,
and chemical potential µ, for a gas of non-interacting bosons. [The expression for the
mean occupation number of any single particle state 〈n(ε)〉 is given on the information
sheet.] Leave your answer in terms of a dimensionless integral. It will be helpful to
introduce the dimensionless variable βµ ≡ y. Your integral will be a function of y:
I(y). Do not try to evaluate the integral.

b) Using the result you just derived, find the relationship between the temperature and
density at which Bose-Einstein condensation begins. Again, do not evaluate the inte-
gral.

As was pointed out in lecture, the chemical potential, µ, for a Bose gas is negative or zero.
It is sometimes mistakenly stated that the chemical potential tells us how much the internal
energy of a system changes when a particle is added. If true, this would be particularly
troubling for a Bose gas since it would say that the internal energy of a Bose gas decreases
when a particle is added.

c) Show, with the help of a Maxwell relation, that the correct expression is

∂U
∣∣∣ ∂µ ∣∣ ∂y

=
∂N ∣ µ

T,V

− T = where y = βµ ,
∂T N,V ∂β

∣∣
N,V

and use this to show that ∂U/∂N ,

∣ ∣
|T V =

∣
0 in the

∣
Bose condensed phase.

d) Now consider temperatures and pressures where there is no condensate. Use the results
of part a) to show that ∂U/∂N |T,V can never be negative for a Bose gas.
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PARTIAL DERIVATIVE RELATIONSHIPS

Let x, y, z be quantities satisfying a functional relation f(x, y, z) = 0. Let w be a function
of any two of x, y, z. Then (

∂x
) (
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)
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COMBINATORIAL FACTS

There are K! different orderings of K objects. The number of ways of choosing L objects
from a set of K objects is

K!

(K − L)!

if the order in which they are chosen matters, and

K!

L!(K − L)!

if order does not matter.

STERLING’S APPROXIMATION

When K � 1
lnK! ≈ K lnK −K or K! ≈ (K/e)K

DERIVATIVE OF A LOG

d 1 du(x)
lnu(x) =

dx u(x) dx

VOLUME OF AN α DIMENSIONAL SPHERE
OF RADIUS R

πα/2
Rα

(α/2)!
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Work in simple systems

Hydrostatic system −PdV
Surface film γ dA
Linear system FdL
Dielectric material EdP
Magnetic material HdM

Thermodynamic Potentials when work done on the system is dW = Xdx

Energy U dU = TdS + µdN +Xdx
Helmholtz free energy F = U − TS dF = −SdT + µdN +Xdx
Gibbs free energy G = U − TS −Xx dG = −SdT + µdN − xdX
Enthalpy H = U −Xx dH = TdS + µdN − xdX
Thermodynamic potential Φ = F − µN dΦ = −S dT −N dµ+X dx

Statistical Mechanics of a Quantum Harmonic Oscillator

ε(n) = (n+ 1)~ω n = 0, 1, 2, . . .
2

p(n) = e−(n+
1 )
2

~ω/kT/Z(T )
1~ ~Z(T ) = e− ω/kT (1− e− ω/kT )−12

〈 〉 1~ ~ ~ε(n) = ω + ω(e ω/kT
2

− 1)−1

Mean Occupation Number of Single-Particle Quantum States

1〈n(ε, T )〉 =
e(ε−µ)/kBT ± 1

where the + sign applies to Fermions and the - sign to Bosons

Integrals Definite Integrals∫
eax

eax For integer n and mdx =∫ a
ax

x eax
e xne−x = n!dx (ax− dx= 1)∫ a2 0

ax

∫ ∞
∫ ∞ e−xe dx = πx2 eax dx = (a2x2

a3
− 2ax+ 2)

√

∫ [ 0

√
x

dx ex
]

1/2

∫ ∞
2

x2n
2

(2πσ2)− e−x /2σ dx = 1= ln
1 + ex 1 + ex

· 3 · 5 · · · (2n− 1)σ2n∫ −∞
∞

2

x e−x
1

dx =∫0 2
1

m n n!m!
x (1 x) dx =

0

−
(m+ n+ 1)!
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