MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

Solutions to Problem Set \#8

Problem 1: Dust Grains in Space
a) \mathcal{H} is separable: the 6 variables are statistically independent.

$$
\begin{gathered}
p\left(\theta_{1}, \theta_{2}, \theta_{3}, L_{1}, L_{2}, L_{3}\right)= \\
\left(\frac{1}{2 \pi}\right)\left(\frac{1}{2 \pi}\right)\left(\frac{1}{2 \pi}\right) \frac{1}{\sqrt{2 \pi I_{1} k T}} \exp \left(-L_{1}^{2} / 2 I_{1} k T\right) \frac{1}{\sqrt{2 \pi I_{2} k T}} \exp \left(-L_{2}^{2} / 2 I_{2} k T\right) \frac{1}{\sqrt{2 \pi I_{3} k T}} \exp \left(-L_{3}^{2} / 2 I_{3} k T\right)
\end{gathered}
$$

b) $<L_{1}^{2}>=<L_{2}^{2}>=I_{1} k T><L_{3}^{2}>=I_{3} k T$
$\Rightarrow \vec{L}$ is almost \perp to axis 3 , the long axis.
c)

$$
\begin{aligned}
& Z_{R}=\left(Z_{1, R}\right)^{N}=\left[(2 \pi)^{9 / 2} \sqrt{I_{1} I_{2} I_{3}}(k T)^{3 / 2}\right]^{N} \\
F_{R}= & -N k T \ln Z_{1, R} \\
S_{R}= & -\left(\frac{\partial F_{R}}{\partial T}\right)_{N}=N k \ln Z_{1, R}+N k T \frac{1}{Z_{1, R}} \frac{3}{2} \frac{1}{T} Z_{1, R} \\
= & N k \ln Z_{1, R}+\frac{3}{2} N k
\end{aligned}
$$

d) $3^{r d}$ law is violated: $\lim _{T \rightarrow 0} S_{R}=N k \ln (0)=-\infty$. At very low temperatures one must switch to a quantum treatment of the rotational motion. Such a treatment will lead to a result consistent with the $3^{\text {rd }}$ law.
e) There is no energy gap behavior because there is no gap in the classically allowed rotational energies. The quantum result, however, will show an energy gap.

Problem 2: Adsorption On a Stepped Surface
a) $Z_{1}=\underline{\sum_{\text {states }} \exp \left(-\epsilon_{\text {state }} / k T\right)=0.01 M+0.14 M \exp (-\Delta / k T)+0.85 M \exp (-1.5 \Delta / k T)}$
b)

$$
\frac{n_{\text {face }}}{n_{\text {corner }}}=\frac{p_{\text {face }}}{p_{\text {corner }}}=\frac{0.85 M \exp (-1.5 \Delta / k T)}{0.01 M}=85 \exp (-1.5 \Delta / k T)
$$

c) Consider only the 2 lowest energy levels

$$
\begin{aligned}
E & =N\left\langle\epsilon_{\text {One }}\right\rangle \\
& =N\left[(0) \frac{0.01 M}{0.01 M+0.14 M \exp (-\Delta / k T)}+(\Delta) \frac{0.14 M \exp (-\Delta / k T)}{0.01 M+0.14 M \exp (-\Delta / k T)}\right] \\
& \approx 14 N \Delta \exp (-\Delta / k T) \\
C_{A} & =\left(\frac{\partial E}{\partial T}\right)_{A}=14 N \Delta\left(\frac{\Delta}{k T^{2}}\right) \exp (-\Delta / k T)=14 N k\left(\frac{\Delta}{k T}\right)^{2} \exp (-\Delta / k T)
\end{aligned}
$$

d) All states are equally likely $\Rightarrow \underline{p_{\text {face }}=0.85}$.
e) M possible states for each atom $\Rightarrow \lim _{T \rightarrow \infty} S=N k \ln M$.
f) One expects energy gap behavior because there is an energy gap for the excitation of a single atom.

Problem 3: Neutral Atom Trap
a) First write down the Hamiltonian for one atom.

$$
\mathcal{H}_{1}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m}+a r
$$

Then compute the partition function

$$
\begin{aligned}
Z_{1} & =\frac{1}{h^{3}} \underbrace{\int_{-\infty}^{\infty} e^{-\frac{p_{x}^{2}}{2 m k T}} d p_{x}}_{\sqrt{2 \pi m k T}} \underbrace{\int_{-\infty}^{\infty} e^{-\frac{p_{y}^{2}}{2 m k T}} d p_{y}}_{\sqrt{2 \pi m k T}} \underbrace{\int_{-\infty}^{\infty} e^{-\frac{p_{z}^{2}}{2 m k T}} d p_{z}}_{\sqrt{2 \pi m k T}} \underbrace{\int_{V} e^{-\frac{a r}{k T}} r^{2} \sin \theta d r d \theta d \phi}_{4 \pi \int_{0}^{\infty} \exp [-a r / k T] r^{2} d r} \\
& =\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} 4 \pi\left(\frac{k T}{a}\right)^{3} \underbrace{\int_{0}^{\infty} y^{2} e^{-y} d y}_{2} \\
& =8 \pi k^{3}\left(\frac{2 \pi m k}{h^{2}}\right)^{3 / 2} T^{9 / 2} a^{-3}
\end{aligned}
$$

In order to emphasize the dependence on the important variables, this can be written in the form $Z_{1}=A T^{\alpha} a^{-\eta}$ where

$$
A=8 \pi k^{3}\left(\frac{2 \pi m k}{h^{2}}\right)^{3 / 2} \quad \alpha=9 / 2 \quad \text { and } \underline{\eta=3} .
$$

b) Remember to include correct Boltzmann counting.

$$
\begin{aligned}
Z & =\frac{1}{N!} Z_{1}^{N} \\
F & =-k T \ln Z=-k T\left(N \ln Z_{1}-N \ln N+N\right) \\
& =-N k T \ln \left(Z_{1} / N\right)-N k T \\
S & =-\left(\frac{\partial F}{\partial T}\right)_{N} \\
& =N k \ln \left(Z_{1} / N\right)+N k+N k T \frac{1}{Z_{1} / N}(9 / 2) \frac{Z_{1} / N}{T} \\
& =N k \ln \left(Z_{1} / N\right)+(11 / 2) N k
\end{aligned}
$$

c)

$$
\begin{aligned}
d Q & =0 \quad \text { no heat is exchanged with surroundings } \\
d Q & =d S / T \quad \text { process is said to be reversible } \\
& \Rightarrow d S=0, \quad S \text { is constant } \\
& \Rightarrow Z_{1} \text { is constant, using the result from b) } \\
& \Rightarrow T^{9 / 2} / a^{3} \text { is constant and }=T_{0}^{9 / 2} / a_{0}^{3} \\
\left(\frac{T}{T_{0}}\right)^{9 / 2} & =\left(\frac{a}{a_{0}}\right)^{3} \\
T & =T_{0}\left(\frac{a}{a_{0}}\right)^{2 / 3}
\end{aligned}
$$

Problem 4 Two-Dimensional H_{2} Gas
a)

$$
\begin{aligned}
& \epsilon_{m}=\left(\hbar^{2} / 2 I\right) m^{2} \\
& Z_{\mathrm{ROT}, 1}=\sum_{\text {states }} \exp [-\epsilon(\text { state }) / k T]=\sum_{m=-\infty}^{\infty} \exp \left[-\left(\hbar^{2} / 2 I k T\right) m^{2}\right] \\
& =\underline{\underline{1+2 \sum_{j=1}^{\infty} \exp \left[-\left(\hbar^{2} / 2 I k T\right) j^{2}\right]}}
\end{aligned}
$$

b)

$$
\frac{p(m=3)}{p(m=2)}=\frac{Z^{-1} \exp \left[-9 \hbar^{2} / 2 I k T\right]}{Z^{-1} \exp \left[-4 \hbar^{2} / 2 I k T\right]}=\exp \left[-(5 / 2) \hbar^{2} / I k T\right]
$$

c)

$$
\begin{aligned}
p\left(m=3 \mid \epsilon=9 \hbar^{2} / 2 I\right) & =\frac{Z^{-1} \exp \left[-9 \hbar^{2} / 2 I k T\right]}{2\left(Z^{-1} \exp \left[-9 \hbar^{2} / 2 I k T\right]\right)}=\underline{1 / 2} \\
p\left(m=1 \mid \epsilon \leq \hbar^{2} / 2 I\right) & =\frac{Z^{-1} \exp \left[-\hbar^{2} / 2 I k T\right]}{Z^{-1}+2\left(Z^{-1} \exp \left[-\hbar^{2} / 2 I k T\right]\right)}=\frac{1}{\underline{\left.2+\exp \left[\hbar^{2} / 2 I k T\right]\right)}}
\end{aligned}
$$

d)

$$
\begin{aligned}
Z_{\mathrm{ROT}, 1} & =\sum_{m=-\infty}^{\infty} \exp \left[-\left(\hbar^{2} / 2 I k T\right) m^{2}\right] \rightarrow \int_{-\infty}^{\infty} \exp \left[-\left(\hbar^{2} / 2 I k T\right) m^{2}\right] d m \\
& =\int_{-\infty}^{\infty} \exp \left[-\frac{m^{2}}{2\left(I k T / \hbar^{2}\right)}\right] d m=\underbrace{\left(\frac{2 \pi I k T}{\hbar^{2}}\right)^{1 / 2}}_{\text {Gaussian normalization }} \propto \beta^{-1 / 2} \\
E_{\mathrm{ROT}} & =N<\epsilon>=N\left(-\frac{1}{Z_{1}} \frac{\partial Z_{1}}{\partial \beta}\right) \\
& =N\left(-\frac{1}{Z_{1}}\right)\left(-\frac{Z_{1}}{2 \beta}\right)=(1 / 2) N \frac{1}{\beta}=\underline{(1 / 2) N k T}
\end{aligned}
$$

Problem 5: Why Stars Shine
a) The electostatic potential outside the charged sphere depends only on r, the magnitude of the distance from the center of the sphere.

$$
\phi(r)=\frac{|e|}{r} \quad r \geq R
$$

The potential energy of another proton, considered to be a point particle, in this field is

$$
V(r)=q \phi(r)=\frac{e^{2}}{r}
$$

Then the minimum energy that the second proton must have to get within a radial distance R of the first is

$$
E_{\min }=V(R)=\frac{e^{2}}{R}=\frac{\left(4.8 \times 10^{-10}\right)^{2}}{1.2 \times 10^{-13}}=\underline{1.92 \times 10^{-6} \mathrm{ergs}}
$$

b) In problem 4 of problem set 2 we found the following expression for the kinetic energy of a particle in a three dimensional classical gas.

$$
p(E)=\frac{2}{\sqrt{\pi}} \frac{1}{k T} \sqrt{\frac{E}{k T}} \exp [-E / k T]
$$

Now find the probability p_{+}that a given proton in the stellar plasma has an energy greater than $E_{\text {min }}$.

$$
\begin{aligned}
p_{+} & \equiv \operatorname{prob}\left(E>E_{\min }\right)=\int_{E_{\min }}^{\infty} p(E) d E \\
& =\frac{2}{\sqrt{\pi}} \frac{1}{k T} \int_{E_{\min }}^{\infty} \sqrt{\frac{E}{k T}} \exp [-E / k T] d E=\frac{2}{\sqrt{\pi}} \int_{y_{\min }=E_{\min } / k T}^{\infty} \sqrt{y} \exp [-y] d y \\
& \approx \frac{2}{\sqrt{\pi}} \sqrt{y_{\min }} \exp \left[-y_{\min }\right]
\end{aligned}
$$

This is going to turn out to be a very small number, probably too small to be represented on a hand calculator. Therefore, let's work toward getting its logarithm.

$$
\begin{aligned}
\log _{10}\left(p_{+}\right) & =\log _{10}\left[\frac{2}{\sqrt{\pi}} \sqrt{\frac{E_{\min }}{k T}}\right]+\log _{10}\left[\exp \left[-E_{\min } / k T\right]\right] \\
\log _{10}\left[\exp \left[-E_{\min } / k T\right]\right] & =-\frac{E_{\min }}{k T} \log _{10}(e)=-(.4343) \frac{E_{\min }}{k T} \\
\frac{E_{\min }}{k T} & =\frac{1.920 \times 10^{-6}}{1.381 \times 10^{-16} \times 4 \times 10^{7}}=3.476 \times 10^{2} \\
\log _{10}\left(p_{+}\right) & =1.323-1.510 \times 10^{2}=-149.6 \\
p_{+} & =\underline{0.2 \times 10^{-149}}
\end{aligned}
$$

c)

$$
\begin{aligned}
<v> & =\sqrt{\frac{8 k T}{\pi m}} \\
& =\left(\frac{8 \times 1.381 \times 10^{-16} \times 4 \times 10^{7}}{\pi \times 1.67 \times 10^{-24}}\right)^{1 / 2}=\underline{9.18 \times 10^{7} \mathrm{~cm} / \mathrm{sec}} \\
\sigma & =\pi(2 R)^{2}=\pi\left(2.4 \times 10^{-13}\right)^{2}=1.81 \times 10^{-25} \mathrm{~cm}^{2} \\
n & =\frac{\rho}{M_{\text {proton }}}=\frac{100}{1.67 \times 10^{-24}}=5.99 \times 10^{25} \text { protons } / \mathrm{cm}^{3} \\
L & =(n \sigma)^{-1}=\underline{9.22 \times 10^{-2} \mathrm{~cm}} \\
\tau_{\text {collision }} & =L /<v>=\underline{1.01 \times 10^{-9} \mathrm{sec}}
\end{aligned}
$$

d) The fusion rate per proton is p_{+}times the collision rate per proton. But in general a rate equals the reciprocal of the characteristic time between events, so

$$
\tau_{\text {fusion }}=\tau_{\text {collision }} / p_{+}=\frac{1.01 \times 10^{-9}}{0.2 \times 10^{-149}}=\underline{5 \times 10^{140} \mathrm{sec}}
$$

The universe is about 15 billion years old, corresponding to a time

$$
T_{\text {universe }}=15 \times 10^{9} \times 365 \times 24 \times 60 \times 60=4.7 \times 10^{17} \mathrm{sec}
$$

If the mass of the sun is 2×10^{33} grams then the number of protons it contains is given by

$$
N_{\text {protons }}=\frac{2 \times 10^{33}}{1.67 \times 10^{-24}}=1.2 \times 10^{57}
$$

Then for the entire sun, the total number of fusions per second is found as follows.

$$
\begin{aligned}
\text { number of fusions per second } & =N_{\text {protons }} \times \text { fusion rate per proton } \\
& =N_{\text {protons }} / \tau_{\text {fusion }} \\
& =1.2 \times 10^{57} / 5 \times 10^{140}=\underline{2 \times 10^{-84} \mathrm{sec}^{-1}}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

