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Exam #4 

Problem 1 (35 points) Cooling of a White Dwarf Star 
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Just after a white dwarf star is formed it begins a long slow radiational cooling process 
which will eventually reduce it to a cold dark ember. In this problem you will find 
its temperature as a function of time. You may assume that 

• There are no longer any heat sources in the star, 

•	 The thermal conductivity is so high that the temperature T is essentially uni­
form throughout the star, 

•	 The heat capacity is that of the nearly degenerate (kT << εf ) electron gas and 
has the form CV = γV T n where V is the volume and γ is a constant, 

• The surface of the star is a perfect absorber of radiation at all frequencies. 

a) What is the value of the exponent n in the expression for the heat capacity? 

b)	 Find an expression for the derivative of the total energy of the star with respect to 
temperature, dE/dT . 

c)	 Find an expression for the derivative of the total energy of the star with respect to 
time, dE/dt. 

d)	 Find the differential equation which determines the time evolution of the temper­
ature. Give your result in terms of γ, the radius of the star R, and any physical 
constants which you think necessary. Check to see that the equation is consistent 
with your common sense expectation for T (t). 

Hint: The correct differential equation is not hard to solve. By solving it you can 
check your result against the behavior plotted in the figure. 
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Problem 2 (35 points) Two-Dimensional Electron Gas 

Consider a gas of non-interacting, spin 1/2 electrons confined to move in two dimen­
sions. For a rectangular sample with dimensions Lx and Ly , the wavevectors allowed 

by periodic boundary conditions are �k = (2π/Lx)m x̂ + (2π/Ly )n ŷ where m and n 
can take on all positive and negative integer values. 

a) Find D(�k), the density of allowed wavevectors as a function of �k. 

b)	 Find D(ε), the density of single particle states as a function of their energy ε. 
Make a carefully labeled sketch of your result. 

Researchers have proposed a novel system for 
studying the properties of a highly degenerate 
two-dimensional electron gas. The electrons can 
be accumuated on the inside surface of a spherical 
bubble in liquid helium, as shown in the figure. 
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The equilibrium radius of the bubble is found by minimizing its energy E(R) with 
respect to its radius R. 

E(R) =  ECoulomb + ESurface Tension + EpdV + EElectron Gas 

c)	 Find at T = 0  the contribution to this sum from the kinetic energy of the two­
dimesional electron gas, EElectron Gas, as a  function of R and N , the number of 
electrons in the bubble. 

d)	 Find at T = 0  the total magnetic moment of the bubble, M (H), as a function 
of the applied magnetic field H. Make a carefully labeled sketch of M (H) for all 
positive values of the field. [Recall that the manetic moment of a single electron 
is quantized, µz = ±µ0, and its contribution to the energy is −µz Hz ] 
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Problem 3 (30 points) Classical Paramagnet 

Consider a collection of N non-interacting classical mag­
netic moments. Each moment µ has a fixed magni­
tude µ0 and its orientation is specified by the two an­
gles 0 ≤ θ < π and 0 ≤ φ <  2π. In the presence of 
a magnetic field of magnitude H pointing in the z di­
rection, the energy of an individual moment is given by 
ε = −µ · H = −µ0H cos(θ). 

z 

x 

y 

Applying the canonical ensemble one finds that 

p(θ, φ) =  Z1 
−1 exp(

µ0H 
cos(θ)) where p(θ, φ) sin(θ) dθ dφ = 1. 

kT 

The partition function for a single moment Z1 can be expressed in terms of the 
dimensionless combination of parameters η = µ0H/kT : 

2π π 4π 
Z1(η) =  dφ e η cos θ sin(θ) dθ = sinh(η). 

0 0 η 

a)	 Using the information given above, find an expression for the magnetic moment 
of the sample, M = N < µz >, in terms of an appropriate derivative of the 
single moment partition function. 

b) Find an analytic expression for M in terms of µ0, N , and η. 

c)	 Find expressions for the temperature dependence of M in both the high temper­
ature and low temperature regimes. Use these results to make a careful sketch 
of M as a function of T for a fixed value of H. 

d)	 Two concepts used to explain the properties of the quantum paramagnet were 
Curie Law behavior and energy gap behavior. 

i) Does the classical paramagnet exhibit Curie Law behavior? Explain. 

ii) Does the classical paramagnet exhibit energy gap behavior? Explain. 

e)	 In the classical paramagnet, as in the quantum paramagnet, the link between 
statistical mechancs and thermodynamics is provided by the Gibbs free energy: 
−kT ln Z = G(T,H). Find an expression for the entropy of the system in terms 
of Z1(η) and its derivatives. You do not have to carry out any derivatives of 
Z1(η) that might be involved. 
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Work in simple systems 

Hydrostatic system −PdV 
Surface film S/dA 
Linear system F dL 
Dielectric material E dP 
Magnetic material HdM 

Thermodynamic Potentials when work done on the system is dW = Xdx 

Energy

Helmholtz free energy

Gibbs free energy

Enthalpy


E dE = TdS + Xdx 
F = E − TS  dF = −SdT + Xdx 
G = E − TS  − Xx  dG = −SdT − xdX 
H = E − Xx  dH = TdS − xdX 

Results from hyperbolic trigonometry 

sinh(u) = (e u − e −u)/2 cosh(u) = (e u + e −u)/2 

tanh(u) =  sinh(u)/ cosh(u) coth(u) = 1/ tanh(u) 

d du d du 
dx 

(sinh u) =  (cosh u) 
dx 

(cosh u) =  (sinh u)
dx dx 

Limiting behavior of as u → 0 as u → ∞  

sinh(u) u eu/2 
cosh(u) 1 + u2/2 eu/2 
tanh(u) u 1 
coth(u) 1/u + 1 
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Radiation laws 

1Kirchoff’s law: e(ω, T )/α(ω, T ) =  
4 
c u(ω, T ) for all materials where e(ω, T ) is the 

emissive power and α(ω, T ) the absorptivity of the material and u(ω, T ) is the uni­
versal blackbody energy density function. 

Stefan-Boltzmann law: e(T ) =  σT 4 for a blackbody where e(T ) is the emissive power 
integrated over all frequencies. (σ = 56.9 × 10−9 watt-m−2K−4) 
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