MIT OpenCourseWare
http://ocw.mit.edu
8.21 The Physics of Energy

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.21 Lecture 6

Quantum Mechanics I

September 21, 2009

The QUANTUM WORLD is a STRANGE PLACE!

$\leadsto \backsim$
Position of an object is not well-defined

Objects can tunnel through barriers

Energy, momentum, etc. become discretized

But quantum physics is crucial for energy processes

- Discrete quantum states \Rightarrow entropy \Rightarrow thermo \Rightarrow limits to efficiency
- Nuclear processes: fission + fusion depend on tunneling
- Absorption of light by matter (atmosphere, photovoltaics, etc.): depends on discrete quantum spectrum

This lecture: QM rapid immersion

Quantum wavefunctions

Classically, particles have position x, momentum p

In quantum mechanics, particles are described by wavefunctions

Wavefunction obeys (time-dependent) Schrödinger wave equation $i \hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t)=-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}} \psi(\mathbf{x}, t)+\frac{\partial^{2}}{\partial y^{2}} \psi(\mathbf{x}, t)+\frac{\partial^{2}}{\partial z^{2}} \psi(\mathbf{x}, t)+V(\mathbf{x}) \psi(\mathbf{x}, t)\right]$

Why do we believe this wacky notion?

- Vast range of experiments over last 100 years
- Foundation of most of modern physics.

2-slit experiment. Shoot particles through one or two slits at screen

Destructive + constructive interference \Rightarrow particles are waves

2-slit experiment. Shoot particles through one or two slits at screen

Destructive + constructive interference \Rightarrow particles are waves

Many phenomena described by waves
frequency significance

$$
\begin{array}{clc}
\text { light (EM) } & \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\nabla^{2} \mathbf{E} & \text { color } \\
\text { sound (pressure) } & \frac{1}{v_{s}^{2}} \frac{\partial^{2}}{\partial t^{2}} p=\nabla^{2} p & \text { pitch } \\
\text { QM (wavefunction) } & \frac{\partial}{\partial t} \psi=\frac{i \hbar}{2 m} \nabla^{2} \psi & \text { energy }
\end{array}
$$

Wave equation is linear:
$\psi_{1}(\mathbf{x}, t)$ and $\psi_{2}(\mathbf{x}, t)$ solve \Rightarrow linear combination $a \psi_{1}(\mathbf{x}, t)+b \psi_{2}(\mathbf{x}, t)$ solves

Exhibit constructive and destructive interference for phases in/out of sync.

Violin string: $\rho \frac{\partial^{2}}{\partial t^{2}} Y(x, t)=T \frac{\partial^{2}}{\partial x^{2}} Y(x, t)$
Solutions: sine modes

$$
\begin{array}{ll}
Y_{n}=\cos \left(n \omega_{1} t\right) \sin \left(n \cdot \frac{\pi}{L} x\right) & \omega_{n}=n \omega_{1} \\
Y_{3}=\cos \left(3 \omega_{1} t\right) \sin \left(3 \cdot \frac{\pi}{L} x\right) & \omega_{3}=3 \omega_{1} \\
Y_{2}=\cos \left(2 \omega_{1} t\right) \sin \left(2 \cdot \frac{\pi}{L} x\right) & \omega_{2}=2 \omega_{1} \\
Y_{1}=\cos \left(\omega_{1} t\right) \sin \left(\frac{\pi}{L} x\right) & \omega_{1}=\frac{\pi}{L} \sqrt{\frac{T}{\rho}}
\end{array}
$$

- Modes-higher harmonics ($n=2,4,8, \ldots$ up by octaves)
- $\omega_{n} \sim n(2 \partial / \partial t$'s, $2 \partial / \partial x$'s $)$
- Pluck string - get superposition (linear combination) of modes

Quantum particle in a 1D box: $i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)$
Sine modes again

$$
\begin{array}{ll}
\psi_{n}=e^{-i E_{n} t / \hbar} \sin \left(n \cdot \frac{\pi}{L} x\right) & E_{n}=n^{2} \hbar \omega_{1} \\
\cdots & \cdots \\
\psi_{2}=e^{-i E_{2} t / \hbar} \sin \left(2 \cdot \frac{\pi}{L} x\right) & E_{2}=4 \hbar \omega_{1} \\
\psi_{1}=e^{-i E_{1} t / \hbar} \sin \left(\frac{\pi}{L} x\right) & E_{1}=\hbar \omega_{1}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}
\end{array}
$$

- Each mode - state of fixed energy
- $E_{n} \sim n^{2}(1 \partial / \partial t, 2 \partial / \partial x$'s)
- General state - superposition (linear combination) of modes

Quantum wavefunctions are complex - Review of complex numbers

Define $i^{2}=-1$
Complex number: $z=x+i y$
Often write $z=r e^{i \theta}=r(\cos \theta+i \sin \theta)$

$$
r=\text { magnitude, } \theta=\text { phase }
$$

Useful properties of complex numbers:
Addition: $(x+i y)+(a+i b)=(x+a)+i(y+b)$
Multiplication: $(x+i y) \times(a+i b)=(x a-y b)+i(y a+x b)$

$$
\left(r e^{i \theta}\right)\left(s e^{i \psi}\right)=r s e^{i(\theta+\psi)}
$$

Complex conjugation: $\bar{z}=z^{*}=x-i y$
Norm: $|z|=\sqrt{x^{2}+y^{2}}, \quad\left|r e^{i \theta}\right|=r, \quad|z|^{2}=z \bar{z}=r^{2}$

General quantum wavefunction

Quantum particle has "energy basis" spatial wavefunctions $\psi_{i}(\mathbf{x})$ $\psi_{i}(\mathbf{x})$ have fixed energies E_{i}

General (time-dependent) state is superposition

$$
\psi(\mathbf{x}, t)=a_{1} e^{-i E_{1} t / \hbar} \psi_{1}(\mathbf{x})+a_{2} e^{-i E_{2} t / \hbar} \psi_{2}(\mathbf{x})+\cdots
$$

For macroscopic (classical) systems, combine many quantum states

- Destructive interference outside small region \Rightarrow classical localization

- Wavefunction nonzero through classical barriers \Rightarrow tunneling
- For micro systems (e.g. atoms) individual quantum states relevant.

Rules of Quantum Mechanics: 4 Axioms

Energy in quantum mechanics

Axiom 1: Any finite/physical quantum system has a discrete set of "energy basis states", which we denote $s_{1}, s_{2}, \ldots, s_{N}$. These states have values of energy $E_{1}, E_{2}, \ldots, E_{N}$.

Example: hydrogen atom

Example: semiconductor

- important for photovoltaics
- Values of E : "spectrum"
- Physicists' job: compute spectrum of physical systems
- Often deal with ∞ state approximation

Simplest quantum system: "Qubit" = 2-state system (electron spin)

Earth spins

Classically any ω seems ok

$$
\Rightarrow \text { any } L, E_{\mathrm{rot}}
$$

Electron spins

$$
L_{z}= \pm \frac{1}{2} \hbar
$$

- 2 states
- $\hbar \cong 1.0546 \times 10^{-34} \mathrm{Js}$ -fundamental quantum unit

Electron in magnetic field $\mathbf{B}=B \hat{z}$

Confirmed by experiment

Axiom 2: The state of a quantum system at any point in time is a linear combination ("quantum superposition") of basis states

$$
|s\rangle=z_{1}\left|s_{1}\right\rangle+z_{2}\left|s_{2}\right\rangle+\cdots+z_{n}\left|s_{n}\right\rangle
$$

- Can think of like a vector: $\mathbf{r}=x \hat{i}+y \hat{j}+z \hat{k}$
- Convention: unit normalization $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1$

What does a quantum superposition mean?

Axiom 3: If you measure the system's energy (assume E_{i} distinct) $\operatorname{probability}\left(E=E_{i}\right)=\left|z_{i}\right|^{2}$, after measurement state $\Rightarrow s_{i}$

Example:

Puzzle: If measurements give random results, how is E conserved?

Example: 2 separated electrons in B field, total $E=0$

Both states: $E=E_{+}+E_{-}=0$

Assume system in state $\frac{1}{\sqrt{2}}|+-\rangle+\frac{1}{\sqrt{2}}|-+\rangle$
Measure spin of first particle
50% : Particle 1 in state $|+\rangle$: system in state $1, E_{1}=E_{+}, E_{2}=E_{-}$
50% : Particle 1 in state $|-\rangle$: system in state $2, E_{1}=E_{-}, E_{2}=E_{+}$ BUT TOTAL ENERGY IS CONSERVED!

Time Dependence

Axiom 4: If at time t_{0} a state $\left|s\left(t_{0}\right)\right\rangle$ has definite energy E then at time t the state is

$$
|s(t)\rangle=e^{-i E\left(t-t_{0}\right) / \hbar}\left|s\left(t_{0}\right)\right\rangle \quad[\circlearrowleft \Rightarrow \bigoplus]
$$

Time evolution is linear in $|s\rangle$, so if

$$
\begin{gathered}
\left|s\left(t_{0}\right)\right\rangle=z_{1}\left|s_{1}\right\rangle+\cdots+z_{n}\left|s_{n}\right\rangle \\
\text { then }|s(t)\rangle=z_{1} e^{-i E_{1}\left(t-t_{0}\right) / \hbar}\left|s_{1}\right\rangle+\cdots+z_{n} e^{-i E_{n}\left(t-t_{0}\right) / \hbar}\left|s_{n}\right\rangle
\end{gathered}
$$

Note: only phase changes for definite E state! $\quad \frac{\mathrm{d}}{\mathrm{d} t}|s(t)\rangle=-\frac{i}{\hbar} E|s(t)\rangle$
仓. Matrix notation $\left|s\left(t_{0}\right)\right\rangle=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right) \quad H=\left(\begin{array}{cccc}E_{1} & 0 & \cdots & 0 \\ 0 & E_{2} & & 0 \\ & & \ddots & \\ 0 & 0 & & E_{n}\end{array}\right)$
\Rightarrow Schrödinger equation $\frac{\mathrm{d}}{\mathrm{d} t}|s(t)\rangle=-\frac{i}{\hbar} H|s(t)\rangle$

SUMMARY: axioms of quantum mechanics

1. Any physical system has a discrete set of E basis states $\left|s_{i}\right\rangle$
2. General state is linear combination $z_{1}\left|s_{1}\right\rangle+\cdots+z_{n}\left|s_{n}\right\rangle$
3. Measurement: probability $=\left|z_{i}\right|^{2}$ that state $\rightarrow\left|s_{i}\right\rangle$
4. Time development linear, $\left|s_{i}\right\rangle \rightarrow e^{-i E_{i}\left(t-t_{0}\right) / \hbar}\left|s_{i}\right\rangle$

- All of QM, QFT essentially elaboration on principles 1-4 + symmetry, developing tools for calculations in particular cases
- Often work in another basis (not E basis)

- A primary problem: given system, determine spectrum

Particle states described by wavefunctions

Like superposition of states in fixed positions, $|\psi(x)|^{2}=$ prob. @ x

Think of as limit of discrete "position basis"

What are energy basis states $(|s\rangle$'s) for free particle?
Translate \Rightarrow same Energy: $\psi(x+\delta)=e^{i \theta \delta} \psi(x)$

- Plane wave states $\psi_{p}(x)=e^{i p x / \hbar} \quad p=$ momentum!
- Matches experimental observation (Davisson-Germer, 1927): de Broglie wavelength of matter $\lambda=h / p\left(e^{i p x / \hbar}=e^{2 \pi i x / \lambda}\right)$
- Energy: $E=\frac{p^{2}}{2 m} \quad$ Schrödinger equation:

$$
E_{p} \psi_{p}(x)=\frac{p^{2}}{2 m} \psi_{p}(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi_{p}(x)=H \psi_{p}(x)
$$

Time-dependent Schrödinger eq.: $i \hbar \frac{\partial}{\partial t} \psi(x, t)=H \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)$

Back to particle in a (1D) box

$$
-E_{6}=36 \epsilon
$$

Time-independent Schrödinger equation:

$$
E_{5}=25 \epsilon
$$

$$
H \psi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=E \psi(x)
$$

Boundary Conditions: $\psi(0)=\psi(L)=0$
Solution: Combination of $e^{i p x / \hbar}, e^{-i p x / \hbar}$
Energy basis states $|n\rangle: \psi_{n}=\sin \pi n x / L$

$$
-E_{4}=16 \epsilon
$$

$-E_{3}=9 \epsilon$

- $E_{2}=4 \epsilon$
$-E_{1}=\epsilon$
$\operatorname{Spectrum}\left(\epsilon=\hbar^{2} \pi^{2} n^{2} / 2 m L^{2}\right)$

$$
E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}
$$

Even more useful model: 1D Simple Harmonic Oscillator (SHO)

$-E_{5}=5 \frac{1}{2} \hbar \omega$
$-E_{4}=4 \frac{1}{2} \hbar \omega$

$$
H \psi(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} k x^{2}\right] \psi(x)=E \psi(x)
$$

$$
-E_{3}=3 \frac{1}{2} \hbar \omega
$$

Boundary Conditions: $\psi(|x| \rightarrow \infty)=0$

$$
\square E_{2}=2 \frac{1}{2} \hbar \omega
$$

$$
\begin{aligned}
-E_{1} & =1 \frac{1}{2} \hbar \omega \\
E_{0} & =\frac{1}{2} \hbar \omega
\end{aligned}
$$

Solution: $[\omega=\sqrt{k / m}]$

$$
\begin{array}{ll}
|0\rangle: & \psi_{0}=C_{0} e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
|1\rangle: & \psi_{1}=C_{1} x e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
|2\rangle: & \psi_{2}=C_{2}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{2 \hbar} x^{2}}
\end{array}
$$

$$
\operatorname{Spectrum}\left(E_{n}=(n+1 / 2) \hbar \omega\right)
$$

[Analytic solution; many approaches, one in notes]

Hydrogen-like atom (now in 3D, assume $m_{p} \gg m_{e}$)

$$
-E_{2} \cong-13.6 \mathrm{eV} / 4
$$

[wikimedia]

$$
H \psi(x)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}\right] \psi(x)=E \psi(x)
$$

Solutions:

$$
\begin{aligned}
& \psi_{1 \mathrm{~s}}=C_{1 \mathrm{~s}} \times\left(a_{0}\right)^{-3 / 2} e^{-r / a_{0}} \\
& \psi_{2 \mathrm{~s}}=C_{2 \mathrm{~s}} \times\left(a_{0}\right)^{-3 / 2} e^{-r / a_{0}}\left(1-r / 2 a_{0}\right) \\
& \psi_{2 \mathrm{p}}=C_{2 \mathrm{p}} \times\left(a_{0}\right)^{-3 / 2} e^{-r / a_{0}}\left(\frac{x, y, z}{r}\right)
\end{aligned}
$$

Spectrum

$$
\left(E_{n}=\frac{-e^{2}}{4 \pi \epsilon_{0} a_{0} n^{2}} \cong \frac{-13.6 \mathrm{eV}}{n^{2}}\right)
$$

where Bohr radius is $a_{0}=\frac{\hbar^{2}}{m e^{2}} 4 \pi \epsilon_{0} \approx 0.52 \AA$

How does quantum state \Rightarrow classical physics?

Consider particle in potential

Sum of energy basis states \Rightarrow "localized wave packet"
Time evolution under Schrödinger equation $\dot{\psi}(t)=\frac{-i}{\hbar} H \psi(t)$
\Rightarrow Packet follows classical laws

$$
\langle x\rangle_{\psi(t)}=\int \mathrm{d} x x|\psi(x, t)|^{2}
$$

Define

Can show

$$
\begin{gathered}
\langle p\rangle_{\psi(t)}=\sum_{p} \bar{\psi}_{p} \psi_{p} p=-i \hbar \int \mathrm{~d} x \bar{\psi}(x, t) \frac{\partial}{\partial x} \psi(x, t) . \\
\frac{d}{d t}\langle x\rangle_{\psi(t)}=\frac{1}{m}\langle p\rangle_{\psi(t)}
\end{gathered}
$$

$$
m \frac{d^{2}}{d t^{2}}\langle x\rangle_{\psi(t)}=\frac{d}{d t}\langle p\rangle_{\psi(t)}=-\left\langle\frac{\partial}{\partial x} V(x)\right\rangle_{\psi(t)}
$$

SUMMARY of QM

- Quantum particles described by wavefunction
- Any quantum system: basis of states w/ fixed energy (A1) General state linear combination (superposition) of energy basis (A2)
- Quantum particles: for $V=0, e^{i p x / \hbar}$ has momentum $p, E=p^{2} / 2 m$
- Energy basis states with potential $V: H \psi=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right] \psi=E \psi$
- Box spectrum: $E_{n}=\hbar^{2} \pi^{2} n^{2} / 2 m L^{2}, n=1,2, \ldots$
- SHO spectrum: $E_{n}=(n+1 / 2) \hbar \omega, n=0,1, \ldots$
- Time-dependent Schrödinger eq. $\dot{\psi}(t)=\frac{-i}{\hbar} H \psi(t) \quad[\mathrm{E} \propto$ frequency] (A4)

