MIT OpenCourseWare <u>http://ocw.mit.edu</u>

8.21 The Physics of Energy Fall 2009

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

8.21 Lecture 9

Heat Engines

September 28, 2009

Today: heat engines

Today: closed-cycle heat engines

- working fluid in container
- no fluid leaves or enters

Friday: internal combustion engines

Components of a closed-cycle heat engine

Processes need not be distinct

(*e.g.* isothermal expansion combines 1 + 2)

What we need from thermodynamics for heat engine analysis:

We will analyze thermodynamic processes on working fluid

- —Follow processes in terms of state variables p, V, S, T
- -Assume near equilibrium at all times (quasiequilibrium)
- —Combine thermodynamic processes \Rightarrow heat engine cycles
 - First law $\Rightarrow dQ = dU + p dV$ (quasieq. \rightarrow no free expansion)
 - Definition of temperature $\Rightarrow dQ = TdS$ (quasieq.)
 - Heat capacity: $dU = C_v dT$ (assume C_V independent of T)
 - Ideal gas law: $pV = Nk_{\rm B}T$

Isothermal expansion

Constant temperature $\Rightarrow dU = 0 \Rightarrow dQ = p dV$

Quasiequilibrium processes

In real process, gradient \Rightarrow heat flow ($\mathbf{q} = -k \nabla T$)

But for slow expansion, temperature approximately constant at each time.

Quasiequilibrium assumption:

No gradients, system in equilibrium at each time *t*.

With quasiequilibrium assumption: isothermal expansion reversible

Process reversible $\Leftrightarrow dS_{\text{total}} = 0!$

So desire reversible processes for efficient engines.

$$dU = \hat{c}_{\nu}Nk_{\rm B}dT$$

= $\hat{c}_{\nu}(pdV + Vdp) = -pdV$
 $\Rightarrow (\hat{c}_{\nu} + 1)pdV + \hat{c}_{\nu}Vdp = 0$
 $\Rightarrow pV^{\gamma} = \text{constant}, \gamma = \hat{c}_p/\hat{c}_{\nu}$

No heat added $\Rightarrow dQ = 0 \Rightarrow dU = -p \, dV, \, dS = 0$

Carnot Heat Engine

- 1 \rightarrow 2: Isothermal expansion at T_H Heat in, work out $\Delta Q_{in} = W_{1\rightarrow 2}$
- 2→3: Adiabatic expansion, $\Delta Q = \Delta S = 0$, work $W_{2\rightarrow3}$
- 3 \rightarrow 4: Isothermal compression (T_C) Heat out, work in $\Delta Q_{out} = W_{3\rightarrow 4}$
- 4→1: Adiabatic compression, $\Delta Q = \Delta S = 0$, work in $W_{4\rightarrow 1}$

Total work: area

$$W = W_{12} + W_{23} - W_{34} - W_{41}$$

 $= Q_{in} - Q_{out} = (T_H - T_C)\Delta S$
 $\eta = W/Q_{in} = (T_H - T_C)/T_H = \eta_C$

Compare: pV and TS plots

 $W = \int p \, dV = \Delta Q = \int T \, dS$

Net work out = net heat in = area on both graphs

Cycle analysis: ~ Sudoku–4 relations $p_1V_1 = p_2V_2, p_2V_2^{\gamma} = p_3V_3^{\gamma}, \dots$

 \Rightarrow solve given 4 independent variables (5 including *T*'s or *N*)

Carnot engines achieve optimal efficiency

But generally very little work/cycle

Previous example had unrealistic $\gamma = 2.5$. With $\gamma = 1.4$

Better: Stirling engine

Need new process — Isometric heating Easy to do irreversibly, more tricky reversibly

No change in volume $\Rightarrow dQ = dU = C_V dT \Rightarrow dS = C_V dT/T$

Stirling cycle (note different [engineering] labeling 1-4!)

- $1 \rightarrow 2$: Isothermal (T_C) compression, heat out Q_{out} , work in W_{in} .
- $2 \rightarrow 3$: Isometric heating $T_C \rightarrow T_H$, heat in Q_h , no work.
- $3 \rightarrow 4$: Isothermal (T_H) expansion, heat in Q_{in} , work W_{out} .
- $4 \rightarrow 1$: Isometric cooling $T_H \rightarrow T_C$, heat out Q_c , no work.

Key: heat output Q_c stored in *regenerator*, returned as Q_h

Achieves Carnot efficiency- but greater work output than Carnot!

Stirling engine implementation (example)

(b) displacement

time

(c)

-(1)

-(3)

-(4)

-(1)

Stirling cycle: example

Δ

Use
$$T_H = 100^{\circ}$$
C, $T_C = 20^{\circ}$ C, $V_1 = 1$ L, $V_2 = 0.4$ L, $p_1 = 1$ Atm
1. Use $pV = Nk_{\rm B}T \Rightarrow p$'s

2. Work = $\Delta Q = \int p \, dV$ $\int_3^4 p \, dV = p_3 V_3 \ln \frac{V_4}{V_3}$ $Q_{\text{in}} \approx 129 \text{ J} (\ln 2.5) \approx 118 \text{ J}$ $Q_{\text{out}} \approx 101 \text{ J} (\ln 2.5) \approx 92.5 \text{ J}$ $W = Q_{\text{out}} - Q_{\text{in}} \approx 25.5 \text{ J}$ Compare Carnot: $W \approx 8.6 \text{ J}$

Stirling engines

- Maximum (Carnot) efficiency
- Higher work/cycle than Carnot for given p, V extremes
- Theoretically very promising
- Variant: Ericsson cycle-constant pressure regenerative process
- External combustion, arbitrary fuel source (solar, nuclear, rice...)
- Currently used in niche apps (space, mini cryocoolers...)
- Technically challenging!
 - -Hard to get true isothermal expansion
 - -Seal problems at high pressure (Beale: free piston SE)
 - -Materials exposed to high T for long time
- Maybe widely used in future? (vehicles, solar thermal?)

SUMMARY

- Thermodynamic processes/cycles: use state variables *p*, *V*, *T*, *S*, *U* quasiequilibrium assumption, reversible processes.
- Isothermal expansion/compression: add heat, do work dQ = dW, dU = 0. pV = constant, T = constant.
- Adiabatic expansion/compression: no heat added $dU = -pdV, dQ = 0. pV^{\gamma} = \text{constant}, S = \text{constant}.$
- Isometric heating/cooling: reversible with *regenerator*, no work dQ = dU. V = constant, $S = C_V \ln T + \text{constant}$.
- Carnot cycle: IT exp., Ad exp., IT compr., Ad compr. Maximum (Carnot) efficiency, but small work done per cycle.
- Stirling cycle: IT compr., IM heat, IT exp., IM cool. Maximum efficiency, more work/cycle than Carnot