MIT OpenCourseWare <u>http://ocw.mit.edu</u>

8.21 The Physics of Energy Fall 2009

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

8.21 Lecture 11

Internal Combustion Engines

October 2, 2009

Internal Combustion Engines

Much energy used for transport-cars, trucks, planes, boats, ...

- U.S.: 25% Energy use, 33% CO₂
- Globally 15%/20%, growing

Presents unique challenge: need portable fuel, light engine

Engine type	Use	Cycle
Spark ignition	cars, light trucks	Otto (Const. V)
Compression ignition	trucks, heavy vehicles	Diesel (Const. P)
Gas turbines	airplanes	Brayton

Most cars $\sim 20\%\text{-}25\%$ efficient.

Increase 5%: save 15 EJ/year globally! (200M people's total E use)

4-stroke Spark Ignition (SI) engine: stages of operation

4-stroke SI engine image removed due to copyright restrictions.

[Milton]

- (a) Air/fuel intake: piston goes down
- (b) Compression: piston goes up
- (c + d) Power: ignition, combustion, piston goes down
- (e) Exhaust: piston goes up

Reciprocating SI engine Reciprocating SI engine image removed due to copyright restrictions.

- First IC engines modeled on cannon!
- Reciprocating engine: linear piston motion
- \bullet Connecting rod \rightarrow rotates crankshaft
- $\bullet \ Crankshaft \rightarrow camshaft \rightarrow valve \ control$
- Piston up: top dead center (TDC/TC)
- Single cycle: crankshaft rotates twice
- Max/min volume: V_1/V_2 (V_t/V_c) Displaced volume $V_1 - V_2$ ($V_t - V_c = V_d$)
- Compression Ratio $r = V_1 : V_2$ (typical 9.5:1)

Idealize as thermodynamic Otto cycle (constant volume combustion)

Otto cycle images removed due to copyright restrictions.

[Milton]

Otto + intake/exhaust [Milton]

- $1 \rightarrow 2$. Adiabatic compression: good approx. for compression (b)
- $2 \rightarrow 3$. Isometric heating: OK approximation for combustion (c)
- $3 \rightarrow 4$. Adiabatic expansion: OK approximation for power stroke (d)
- $4 \rightarrow 1$. Isometric cooling: OK approx. for exhaust + intake (e + a)

Isometric cooling really just "blowdown";

Better: intake + exhaust as separate constant p (*isobaric*) processes

"Ideal gas" Otto cycle analysis

• $Q_{\rm in}$ from combustion of fuel р₃ - $\eta = \frac{Q_{\rm in} - Q_{\rm out}}{Q_{\rm in}} = 1 - \frac{T_4 - T_1}{T_2 - T_2}$ $p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \Rightarrow T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$ $Q_{\rm in} = C_V (T_3$ Q $\Rightarrow T_2 = T_1 r^{\gamma - 1} \quad (r = V_1 / V_2)$ and similarly $T_3 = T_4 r^{\gamma - 1}$ p₂ 2 $Q_{\text{out}} = C_V(T_4 - T_1)$ So $\eta = 1 - \frac{1}{r^{\gamma-1}} = \frac{T_2 - T_1}{T}$ p₄ p₁ $V_{2} = V_{3}$ $V_1 = V_4$ Critical feature: Compression ratio r V

volume

Approximate combustion at constant

Hydrocarbons: molecules composed of hydrogen + carbon atoms

- Crude oil: mix of many hydrocarbons
- Refineries: separate by properties
- Gasoline: \sim 500 molecules, 5-12 C's

Mixed for: High compression/efficiency, Minimize pollution

Image removed due to copyright restrictions.

[Heywood]

Combustion

SI: Spark Ignites fuel-air mixture, HC's + $O_2 \rightarrow H_2O + CO_2$

e.g. iso-octane: $2 C_8 H_{18} + 25 O_2 \rightarrow 18 H_2 O + 16 CO_2 + 10.94 MJ$ where $\Delta H_{iso-octane}^{combustion} \cong 5.47 \text{ MJ/mol} \cong 47.9 \text{ MJ/kg}$ (hhc)

Air/fuel ratio nomenclature:

Stoichiometric: just enough O_2 to burn all fuel (gasoline: $\cong 14.7:1$)

Lean: excess oxygen (higher efficiency)

Rich: excess fuel (lower efficiency, slightly rich \rightarrow slight power increase)

Exhaust: CO_2 , H_2O + unburned HC's, CO, NO_x , ...

Combustion process + "knock"

Image removed removed due to copyright restrictions.

[Milton]

Image removed removed due to copyright restrictions.

[Heywood]

- Combustion process: ~ 1/6 rotation centered into expansion phase
- Heat + pressure ⇒ premature combustion: Knock
- Straight paraffins knock most easily Measured by "critical compression ratio", CCR_{iso-octane} ~ 2 - 3× CCR_{n-heptane}
- "Octane rating" N: Knocks as N% iso-octane, 100 – N% *n*-heptane
- 93 octane gasoline: knocks $r \sim 10.5$
- Additives: aromatics, lead,... improve
- Bottom line: $r_{\text{max}} \approx 10$ with current gasoline mixtures

Real SI engines

Maximum compression ratio: 10:1

At 1500-2500 K, $\gamma_{\text{hot air}} \approx \gamma_{\text{air+spent fuel}} \approx 1.3$

Theoretical "Ideal gas" thermo analysis: 50% efficiency Real SI engines: max 35-40%. *e.g.* 4-cylinder Camry: $\eta_{\text{max}} \approx 35\%$

Image removed removed due to copyright restrictions.

SI engine losses

- Combustion not instantaneous
- Heat loss during expansion
- Blowdown: not constant volume
- Exhaust/intake: "pumping losses"

Throttle: reduces efficiency

Image removed removed due to copyright restrictions.

- Let up on gas: throttle reduces air/fuel flow (typical driving: intake 0.5 Atm)
- \Rightarrow reduced pressure on intake (increased pumping loss)

Combining all these inefficiencies, power to systems:

 $\sim 25\%$ delivered mechanical energy, as in transport example

Atkinson cycle

• Reduces pumping losses

Atkinson cycle in real engines

Used in 2007 Toyota Camry hybrid

- Expansion ratio 12.5:1 (compression ratio 9.5:1)
- Maximum efficiency $35\% \rightarrow 38\%$ [DOE report]
- Reduces pumping losses
- Maximum power 160hp \rightarrow 147hp, made up by battery assist
- Superior acceleration

Diesel (constant pressure combustion) cycle — Compression Ignition (CI)

Image removed removed due to copyright restrictions.

- Inject fuel after compression
- \Rightarrow can have $r = V_1/V_2 \sim 15 20:1$
- Efficiency \rightarrow 70% theoretical, \sim 45% realized (ideal cycle inaccurate)
- Need heavy piston/cylinder head \Rightarrow trucks, buses, boats, ...
- More flexible fuel options (~ *biodiesel*)

SUMMARY

- SI engines modeled by "ideal gas" Otto (constant V combustion) cycle
- $\eta_{\text{Otto}} = \frac{1}{1 r^{\gamma 1}}$
- $r = V_1/V_2$ limited to ~ 10 by "knock"
- Real engines: combustion process, heat loss, pumping reduce $\eta \rightarrow \sim 35\%$ max, 25% average delivered.
- Atkinson cycle: valve timing \rightarrow more expansion, efficiency
- \bullet Diesel (constant P combustion): CI \rightarrow increased compression, efficiency