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PROFESSOR: A quick review of what we talked about last time. So the first thing we did last time

was to discuss the age of universe, considering so far only at this point, flat matter-

dominated universes where the scale factor goes like t to the 2/3. And we were

easily able to see that the age of such a universe was 2/3 times h inverse. And we

did discuss what happens if you plug-in numbers into that formula using the best

current value of h, the value obtained by the Planck team last March. The age turns

out to be about 9.5 to 9.9 billion years. And that can't be the real age of the

universe, we think, because there are stars that are older than that. The age of the

stars seems to indicate that the university should be at least, according to one

paper I cited last time, 11.2 billion years old, and this is younger.

So the conclusion is that our universe is not a flat, moderate, matter-dominated

universe. We do in fact have good evidence that the universe is very nearly flat, so

it's the matter-dominated part that has to fail, and it does fail. We also have good

evidence that the universe is dominated today by dark energy, which we'll be talking

about later. But one of the pieces of evidence for this dark energy is this age

calculation. The age calculation just does not work unless you assume that the

universe has a significant component of this dark energy, which we'll be discussing

later.

We then talked about the big bang singularity, which is an important part of

understanding, when you talk about the age, what exactly you mean by the age,

age since when. And the point that I tried to make there is that the big bang

singularity, which gives us mathematically the statement that the scale factor at

some time which we call zero was equal to zero, and if you put back that formula

into other formulas, you discover that the mass density, for example, was infinite at

this magical time that we call zero. That singularity is certainly part of our
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mathematical model and doesn't go away even when we make changes in the

mathematical model.

But we don't really know if it's an actual feature of our universe, because there's

certainly no reason to trust this mathematical model all the way back to t equals

zero, where the densities become infinite. We know a lot about matter and we think

we can predict how matter will behave, even the temperatures and energy densities

somewhat beyond what we measure in laboratory. But we don't think we can't

necessarily extrapolate all the way to infinite matter density. So these equations do

break down when you get very close to t equals zero and nobody really knows

exactly what should be said about t equals zero. When we talk about the age, we're

really talking about the age since the extrapolated time at which a would have been

zero in this model, but we don't really know that it ever actually was zero.

We next discussed the concept of the horizon distance. If the universe, at least the

universe as we know it, we want to be agnostic about what happened before t

equals zero, but certainly the universe as we know it, really began at t equals zero

in the sense that that's when structure and complicated things started to develop.

So since t equals zero there's been only a finite amount of time elapsed. And since

light travels at a finite speed, that means that light could only have traveled some

finite distance since the big bang, since t equals zero. And that means that there's

some object which is the furthest possible object that we could see, and any object

further than that would be in a situation where light from that object would not yet

have had time to reach us. And that leads to this notion of our horizon distance,

where the definition of the horizon distance is that it is defined to be the present

distance of the most distant objects which we are capable of seeing, limited only by

the speed of light. And once able to calculate that, and in particular for the model

that we so far understood at this point, the matter-dominated flat universe, the

horizon distance turned out to be three times c t. Tt

Now remember, if the universe were just static and appeared at time t ago, then the

horizon distance would just be c t, the distance that light could travel in time t. What

makes it larger is the fact that the universe is expanding, and that means that
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everything was closer together in the early time and light could make more progress

at the early time, and then these objects have since moved out to much larger

distances. So that allows the horizon distance to be larger than c t, and in this

particular model, it's three times c t.

Next we began a calculation, which is what we're going to pick up to continue on

now. We were calculating how to extend our understanding of a of t, the behavior of

the scale factor, away from the flat case, to ultimately discuss the two other cases,

the open and closed universe. And we decided on a flip of a coin-- I promise you I

flipped a coin at some point-- to start with the closed universe. We could have done

either one first. The equation that we start with is basically the same, it's the sine of

k that makes the difference. This is the so-called Friedmann equation, and for a

closed universe k is positive. This is the evolution equation, but it has to be coupled

with an equation that describes how rho behaves with time. And for a matter-

dominated universe, rho is just representing non-relativistic matter, which is nothing

but spread as the universe expands. And the spreading gives a factor of one over a

cubed as the volume grows as a cubed. And that means that rho times a cubed is a

constant, and that expresses everything that there is to know about how rho

behaves with time.

OK, then after writing these equations, we said that things will simplify a little bit, not

a lot, but a little bit if we redefine variables basically to incorporate all the constants

that appear in these equations into one overall constant. And we decided, or I

claimed, that a good way to do that, an economical way to do that, is to define

things so that the variables all have units which are easily understood. And in this

case the units of length can describe everything that we need, so we chose to

express everything in terms of variables that have units of length.

So the scale factor itself is units of meters per notch, and that's not a length. And

notches we'd like to get rid of because we know they're un-physical. That is, there's

no standard for what the notch should be. So if we divide a of t by the square root of

k, the notches disappear, and we get something which just has the units of meters,

or units of length, and I call that a twiddle of t. Similarly, but more obviously, t can be
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turned into a length by just multiplying by c, the speed of light. So I defined a

variable t tilde which is just c times t. So both of these new variables, with the tildes,

have units of length.

And then the Friedmann equation can be rewritten, just reshuffling things according

to these new definitions, in this way where all the constants are lumped into this

variable alpha, where alpha is this complicated expression, which absorbs all the

constants from the earlier equation. Alpha also has units of length, and even though

it has a rho times a tilde cubed in it, and both rho and a tilde each depend on time,

the product of rho times a tilde cubed is a constant because rho times a cubed is a

constant and a tilde differs only by the square root of k, which is also a constant. So

alpha is a constant even though it has time dependent factors. The time

dependence of those two factors cancel each other out to give something which is

time independent and can be evaluated any old time.

So this now is our equation, and we proceeded to manipulate it. So the first thing we

did was to take it's square root, and to rearrange it so that d t tilde appeared on one

side, and everything else was on the other side. And everything else depends on a

tilde but not explicitly on time. So this completely separates everything that depends

on t tilde on the left, and everything that depends on a tilde on the right. And now

we can just integrate both sides of that equation, and and they point to that, that

there are basically two ways of proceeding here, one of which we already did when

we did the flat case. When we did the flat case, we integrated both sides as

indefinite integrals. And when you carry out an indefinite integration, you get a

constant of integration, which then becomes a constant in your solution. And in that

case we discovered that the constant really just shifted the origin of time. And since

we had not said anything previously that in any way determined the origin of time,

we used that constant to arrange the origin of time so that a of zero would equal

zero, and that eliminated the constant.

Just for variety, I am going to do it another way this time. Instead of doing an

indefinite integral, I will do a definite integral. And if you do a definite integral, you

have to make sure you're integrating both sides over the same range, or at least
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corresponding ranges. We have different names for the variables, but the range of

integration of the two sides has to match in order to maintain the equality between

the two sides.

So we're going to integrate the left side from zero to some final time. And I'm going

to call the final time t tilde variable sub f, for f to stand for final. And there's no real

final time here. It could be any time, it's just the final time for the integration, and in

the end discover then how things behave at time t tilde sub f. And then once we've

figured that out we can drop the effort. It will be a formula that will be valid for any

time.

So the left hand side is integrated from zero to time t tilde f, the right hand side has

to be integrated over the corresponding time interval. And we would like to define a

tilde and the origin of time so that a tilde equals zero at time zero, the same

convention we used for the other case. The standard convention in cosmology, t

equals zero, is the instance of the Big Bang. And the instance of the Big Bang is the

time at which the scale factor vanished. So that means when we have a lower limit

of integration of t tilde equals zero on the left hand side, we should have a lower

limit of integration of a tilde equals zero on the right hand side.

And similarly the upper limits of integration should correspond to each other. So the

upper limit of integration on the left hand side was t tilde sub f, really just an

arbitrary time that we designated by the subscript f. So the right hand side the limit

should be the value of a tilde at that time. And I'll call that a tilde sub f. So a tilde sub

f is just defined to be the value of a tilde at the time t tilde sub f. And in this way the

limits of integration on the two sides correspond and now we can integrate them

and we don't need any new integration constants. These definite integrals have

definite values, which is why they're called definite integrals, I suppose.

OK any questions about that, because that's where we're ready to take off and start

doing new material. Yes.

AUDIENCE: I have a general question. So regarding the issue of how we're not really sure how

to extrapolate up to t equals zero, this is just kind of a general question. I was
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wondering how we're kind of assuming throughout that time kind of flows uniformly,

and so I've heard about something like gravitational time dilation. So at the

beginning especially when there's such a high density of matter or radiation, then

wouldn't that affect how, I guess, time flows?

PROFESSOR: OK good question, good question. The question was, does things like general

realistic time dilation affect how time flows, and are we perhaps being overly

simplistic and assuming that time just flows smoothly from time zero onward. The

answer to that is that general relativity does predict an extra time dilation, which in

fact is built into the Doppler shift calculation that we already did. And there are other

instances where similar things happen. If a photon travels from the floor of this room

to the ceiling of this room, there's a small Doppler shift, a small shift in the timing.

And you could see it in principle with clocks as well. If you had a clock on the floor,

and a clock on the ceiling, they would not run at quite the same rate. But to talk

about time dilation, you always have to have two clocks to compare. In the case of

the universe, we have this thing that we call cosmic time, which can be measured

on any clock. The homogeneity assumption implies that all clocks will do the same

thing, so so the issue of time dilation really does not arise. Our definition of cosmic

time defines time that is the time variable that we will use. And when we say it flows

uniformly from zero up to the present time, that word uniformly sounds sensible. But

if you think about it, I don't know what it means. So I don't even know how to ask if

it's really uniform or not. It's certainly true that our time variable evolves from zero

up to some final time, but smoothly or uniformly is not really a question we can ask

until one has some other clock that one can compare it to.

PROFESSOR: Yes.

AUDIENCE: So you said at the beginning that something like an infinite density is just an effect of

our equation. Aren't a lot of theories like inflation come out of assuming that the

universe had gotten some infinite, dense, small area? So what effect does this

assumption that may or may not be correct have on theories?

PROFESSOR: OK, the question is, if we are not sure we should believe the t equals zero
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singularity, how does that affect other theories like inflation, which are based on

extrapolating backwards to very early times. And there is an answer to that. The

answer may or may not sound sensible, and it may or may not be sensible. It's hard

to know for sure. But one can be more detailed and ask how far back do we think

we can trust our equations? And nobody really knows the answer to that of course,

that's part of the uncertainty here. But a plausible answer which is kind of the

working hypothesis for many of us, is that the only obstacle to extrapolating

backwards is our lack of knowledge of the quantum effects of gravity, and therefore

the quantum effects of what space time looks like. And we can estimate where that

sets in. And it's at a time called the Planck time, which is about 10 to the minus 43

seconds, and inflation, which we'll see later as sort of a natural timescale of about

probably 10 to the minus 37 seconds. So although that's incredibly small, it's

actually incredibly large compared to 10 to the minus 43 seconds. So we think there

is at least a basis for believing that things like our discussions of inflation which we'll

be talking about later, are valid even though we don't think we can extrapolate back

to t equals zero. Yes.

AUDIENCE: I have a question about use of the definite integrals.

PROFESSOR: Yes.

AUDIENCE: So we have a twiddle defined as a over square root of k. And we noticed in our

equation that a goes to zero as t goes to zero, so a twiddle also goes to zero. How

do we know then that that definite integral is convergent, because then we have

zero over zero competing case. [INAUDIBLE]

PROFESSOR: Let me think. Yeah, we'll see, I think is the answer. How do we know it's

convergent? Well, we're going to actually do the integral, and then the integral does

converge. You are right. The integrand does become zero over zero, but that in fact

means the integrand is some finite number actually. Both numerator and

denominator go to zero, I mean let me think about this. I guess a tilde squared

becomes negligible, so the denominator goes like one over the square root of a

tilde. So in fact the numerator divided by the denominator goes like the square root
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of a tilde as time goes to zero. Because you have a square root in the denominator,

the a tilde squared becomes negligible, so it's manifestly convergent. The integrand

does not even blow up, even though a tilde does go to zero. It's certainly worth

looking at, you're right. One should always check to make sure integrals are

convergent. But since we will actually be explicitly doing the interval, if it was

divergent we would get a divergent answer, and we will not as you'll see in a couple

minutes.

Any other questions? OK, so in that case, to the blackboard.

OK, so I will write on the blackboard the same equation we have up there, so we

can continue. t twiddle f is equal to the integral from zero to a twiddle sub f, a

twiddle d a twiddle over the square root of two alpha a twiddle minus a twiddle

squared.

OK, so what we'd like to do now is to carry out the integral on the right hand side.

Ideally what we'd like to do is to carry out the integral on the right hand side and get

some function of a tilde f and then we'd like to convert that function to be able to

write a tilde f as a function of time. We actually won't quite be able to do that. We'll

end up with what's called the parametric solution, and you'll see how that arises and

what that means. I don't need to try to describe exactly in advance what that means.

Doing the integral can be done by some tricks, some substitutions. And the first

substitution is based on completing the square in the denominator, and that

motivates the substitution that we will make. So we can rewrite this just by doing

some algebra on the denominator, which is called completing the square for

reasons that you'll see when I write down what it is. The numerator will stay a tilde d

a tilde. And the denominator can be written as alpha squared minus a tilde minus

alpha quantity squared. So completing the square just means to put the a tilde

inside a perfect square. And the nice thing about this is that now we can shift our

variable of integration, and turn this into just a single variable instead of the sum of

the two. And then you have an expression, which is clearly simpler looking than this

one, which had a tildes in both places. Now the variable integration will appear only
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there. And substitution which does that obviously enough, is we're going to let

something, we can choose whatever we want, and then once I call it x, we're going

to let x equal a tilde minus alpha. And we're just going to rewrite that integral in

terms of x.

So what we get when we do that is t sub f tilde is equal to the rewriting of that

integral, and just substituting the a tilde becomes x plus alpha. So we get x plus

alpha where a tilde was, and d a tilde becomes just d x. And the denominator, which

was our motivation for making the substitution in the first place, becomes just alpha

squared minus x squared. So this is perfectly straight forward.

The next step which is important, is to get the limits of integration right, because

with this definite integral method we really have to make sure that our limits of

integration are correct. So straightforward to do that, the lower limit of integration

was a tilde equals zero, and if a tilde equals zero, x is equal to minus alpha. So the

lower limit of integration expressed as a value of x is minus alpha. And the upper

limit expressed as x was a tilde f, and that means x is equal to a tilde f minus alpha.

So the limit here is a tilde sub f minus alpha for the upper limit of integration.

OK, now this integral is still not easy, but it can be made easy by one more

substitution. And the one more substitution is a trigonometric substitution to simplify

the denominator. We can let x equal minus alpha cosine of theta, where theta is our

new variable of integration. And then alpha squared minus x squared becomes

alpha squared minus alpha squared cosine squared theta.

And the alphas factor out and you have the square root of 1 minus cosine squared

theta. 1 minus cosine squared theta is sine squared theta, which is a convenient

thing to take the square root of, you just get sine theta. And everything else also

simplifies. And the bottom line, which I will just give you, is that now we find that t

sub s tilde is just the integral of 1 minus cosine theta d theta. That's it. Everything

simplifies to that which is easy to integrate.

We also have to keep track of our limits of integration. The limit of integration, the

lower limit of integration, is where x equals minus alpha. And if x equals minus
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alpha, that means cosine theta equals 1. And cosine theta equals 1 means theta

equals 0. So the limit of integration on theta is easy, it starts at 0. And the final value

is really just a value that corresponds to the final value of x which is a twiddle f

minus alpha. For now I'm just going to call it theta sub f.   Things that we have just

determined is the value of theta that goes with the upper limit there. We'll figure out

in a second how to write it more explicitly.

Let me first do the integral to just get that out of the way. Doing the integral, you get

alpha times 1 minus cosine theta sub f. So this in fact becomes half of our solution.

It expresses t sub f in terms of theta sub f. And now that we're done with the whole

problem, I'm going to drop the subscript f. There's just some time that we're

interested in which is called t and the value of a at that time will be called a, and the

value of theta at that time will be called theta. So I'm just going to drop the subscript

everywhere because we are now in a situation were the subscript is everywhere, so

dropping everywhere does not lose any information.

So one of our equations is going to be simply t is equal to alpha times 1 minus

cosine theta. And another equation will come from figuring out what theta sub f

really is, which I said comes from making sure that the upper limit of integration

here corresponds to the upper limit of integration in the previous integral. So theta

sub f, I had to determine this on another blackboard and then put the final equations

together.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes, that's right I don't want to drop twiddles. T twiddle, thank you, is equal to alpha

times 1 minus cosine theta, and and then we have the final value of x. Xx x is equal

to a tilde minus alpha. So the final value of x is equal to the final value of a tilde

minus alpha. And the final value of x is also related to theta by this equation, which

is what we're trying to get, how theta is related to the other variables. So this is

equal to minus alpha cosine of theta sub f. And now we might want to, for example,

solve this for a tilde sub f, which just involves looking at the right hand half of the

equation, bringing this alpha to the other side making a plus alpha. So this implies
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that a tilde sub f is equal to alpha times 1 minus cosine theta sub f. So this equation

now just says that theta sub f means what it should mean to give us a final limit of

integration that corresponds to the final limit of integration on our original integral,

which we called a tilde sub f. Yes.

AUDIENCE: Sorry, perhaps I missed it. But when you are doing the integral of 1 minus cosine

theta, how come--

PROFESSOR: Oh, I got it wrong. Good point. The integral of cosine theta d theta is sine theta, not

cosine theta.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Wait a minute. Hold on. Do I still have it wrong?

AUDIENCE: [INAUDIBLE]

PROFESSOR: OK hold on. There was an alpha missing here. That's part of the problem, coming

from the original equation here. Let's see if I have this right now. This is copying

from a long line altogether. So I got both factors wrong. And then wait a minute. I

think this is right now. There's still a wrong [INAUDIBLE]?

AUDIENCE: [INAUDIBLE]

PROFESSOR: If I differentiate sine, I get cosine. So if I differentiate minus sine, I get minus cosine.

So differentiating this, I get this. That should mean that integrating this I get that. I

think I have it right. Sometimes I get things right. It's a surprise, but--

AUDIENCE: [INAUDIBLE]

PROFESSOR: What?

AUDIENCE: The last equation you wrote.

PROFESSOR: The last equation needs to be changed, right. This was copied from that, right.

Thanks for reminding me. So t tilde is equal to alpha times theta minus sine theta.
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OK, and now I was working out the relationship between theta and a tilde. And let

me just remind you that all I did was make sure that the upper limits of integration

correspond to each other. So I'm just basically rewriting the upper limit of integration

in terms of the new variable each time when we change variables starting from a

tilde going to a tilde to x, and from x to theta. And then I use the equality of these

two to write a tilde in terms of theta. And these equations now hold with the

subscript f present. When subscript f's appear everywhere we can just drop them

and say that the time that we called t sub f now we're just going to call t. And now

we could put together our two final results which are maybe right over here. We

have ct. I'll eliminate my tildes altogether now. ct, which is t tilde, is equal to alpha

times theta minus sine theta. And a divided by the square root of k, which is a tilde

and its sub f, but we're dropping the sub f, is equal to alpha times 1 minus cosine

theta. And this is as good as it gets.

Ideally, it would be nice if we could solve the top equation for theta as a function of t,

and plug that into the bottom equation, and then we would get a as a function of t.

That's what ideally we would love to have. But there's no way to do that analytically.

In principle of course, this equation can be inverted. You could do it numerically. For

any particular value of t you could figure out what value of theta makes this work,

and then plug that value of theta into here. But there's no analytic way that you can

write theta as a function of t. It's not a soluble equation.

So this is called a parametric solution in the sense that theta is a parameter. And as

theta varies, both t and a vary in just the right way so that a is always related to t in

the correct way to solve our original differential equation. That's what's meant by a

parametric solution.

We can also see from this equation, or maybe from thinking back about how things

are defined in the first place, how theta varies over the lifetime of our model

universe. Theta we discovered starts at 0. We discovered that when we wrote our

integral over there. And we could also probably see it from here. We start our

universe at a equals 0. And at a equals 0, we want 1 minus cosine theta to be 0 and

theta equals 0 does that. So theta starts at 0, which corresponds to a equals 0, and
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it also corresponds putting theta equals 0 here to t equals 0. So we have arranged

things the way we intended so that a equals 0 happens the same time t equals 0

happens.

And then theta starts to grow. As theta grows, a increases, the universe gets bigger

until theta reaches pi. And when theta reaches pi, cosine of pi is minus 1, you get a

factor of 2 here, 2 alpha. That's as big as our universe gets. And then as theta

continues beyond that, 1 minus cosine theta starts getting smaller again. So our

universe reaches a maximum size when theta equals pi, and then starts to contract.

And then by the time theta equals 2 pi, you are back to where you started from, a is

again equal to 0. We have universe which starts at 0 size, goes to a maximum size,

goes back to 0 size, giving a Big Crunch at the end. And that's the way this closed

universe behaves.

It turns out that these equations actually correspond to some simple geometry. It

corresponds to a cycloid. And you may or may not remember what a cycloid is.

There are the equations written on the screen, which are hopefully the same

equations that I have on the blackboard. Can't always count on these things it turns

out. But yeah, they are the same equations, that's healthy. And I have a diagram

here which explains this cycloid correspondence. A cycloid is defined as what

happens in this picture. Let me explain the picture. We have a disk shown in the

upper left in its original position with a dot on the disk, which is initially at the bottom.

And initially we're going to put this disk at the origin of our coordinate system to

make things as simple as possible. And then we're going to imagine that this disk

rolls without slipping to the right. And the path that this dot traces out, which is

shown along that line, is a cycloid by definition. That's what defines a cycloid. It's the

path that a point on a rolling disk evolved through.

So what I would like to do is convince you that this geometric picture corresponds to

those equations. Let me put the equations higher to make sure everybody can see

them. And it's actually not so complicated once you figure out how to parse the

pictures. So what I've drawn in the upper right is a blow up of this disk after it's

rolled through some angle theta. And I even made it the same angle theta in the two
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cases. But this is just a bigger version of what's in the corner there showing the disk

after it rolled a little bit. So after it's rolled through an angle theta, what we want to

verify is that the horizontal and vertical coordinates here correspond to these two

equations. And if they do, it means that we're tracing out the behavior of those two

equations.

So look first at the horizontal component. The horizontal component is the ct axis.

So that should correspond to alpha times theta minus alpha times sine theta. And

you can see that in the picture. We're talking about the horizontal component of the

coordinates of this point P. And the point is that you can get to P starting at the

origin. Now remember we're only looking at horizontal motion so we could start

anywhere on that line. We could start at the origin, go to the right by alpha theta,

and to the left by alpha times sine theta, and we get there. And that's exactly what

this formula says. So if we just understand the alpha theta and the alpha sine theta

of those two lines we have it made.

So let's look first at what happens where this first arrow comes from, the alpha theta

line. That's just the total distance that the point of contact has moved during the

rolling process. And the claim is that as something rolls, really the definition of rolling

without slipping, is that the arc length that is swept out by the rolling is the same as

the length along the surface on which it's rolling. You could imagine, if you like, that

as it rolls there's a tape measure that's wrapped around it that gets left on the

ground as it rolls. And if you could picture that happening, the existence of that

movie really guarantees that the length on the ground is the same as what the

length was when the tape measure was wrapped around the cylinder. So the length

that the point of contact has moved is just alpha times the angle through which the

disk is rolled. So that explains the alpha theta label on that line.

To get the alpha sine theta on the line above, that's the distance between the point

P and a vertical line that goes through the center of the disk. And that's just simple

trigonometry on this triangle. The radius of our circle is alpha. And then by simple

trigonometry, this length is alpha times sine theta, which is what the label says.
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So to summarize what we've got here we can find the x-coordinate of the horizontal

according to the point P by going to the right a distance alpha theta, and then back

to the left the distance of minus alpha theta. And that gives us an x-coordinate,

which is exactly the formula that appears in the ct formula. So ct works. The

horizontal component of that dot is just where it should be to trace out the equations

that describe the evolution of a closed universe.

Similarly we can now look at the vertical components of that dot. Again it's most

easily seen as the difference of two contributions. We're trying to reproduce this

formula that says that's alpha minus alpha cosine theta. So if we start at vertical

coordinate 0, which means on the x-axis, we can begin by going up to the center of

the disk. And the disk has radius alpha, so that's going up the distance alpha. And

then we go down the distance of this piece of the triangle, going from the center of

the disk to the point which is parallel to the point P. And that again is just

trigonometry on that triangle, and it's alpha cosine theta by simple trigonometry. So

we can get to the elevation of point P by going up by alpha and down by alpha times

cosine theta. And that's exactly that formula. So it works. The x and y components,

the horizontal and vertical components of that dot, are exactly the two formulas

here. So one of them can be thought of as the x-axis, and one of them can be

thought of as the y-axis. And the rolling of the disk just traces out the evolution of

our closed universe. So closed universes evolve like a cycloid. Any questions about

that?

OK, great. OK, Let me just mention that this angle theta is sometimes given a name.

It's called the development angle of the universe or of the solution. And that is just

intended to have the connotation that theta describes how developed the universe

is and theta has a fixed scale. It always goes from 0 to 2 pi over the lifetime of this

closed universe, no matter how big the closed universe might be.

That brings me to my next question I want to mention. How many parameters do we

have in this solution? The way we've written it, it looks like it can depend on both

alpha and k because both of them appear in the answer. And k is positive for our

closed universes. These formulas will not make sense if k were negative, square
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root of k appears there. We don't want anything to be imaginary. But k can have any

value in principle and these equations would still be valid. So on the surface it

appears like there's a two parameter class of closed universe solutions. But that's

actually not true. Can somebody tell me why it's not true? Yes.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Exactly. Yes, since k has units of 1 over notch squared, you can change k to

anything you want by changing your definition of a notch. And there's nothing fixed

about the definition of a notch. So k is an irrelevant parameter. If we change k we're

just rescaling the same solution, and not actually creating a new solution. So there's

really only one parameter class of solutions. One could, for example, fix k to always

be 1, and then we'd have a one parameter class of solutions indicated by alpha.

Alpha, unlike k, really does have a clear, physical meaning related to the behavior of

the universe. And we could see what that is if we ask, what is the total lifetime of this

universe from beginning to end, from Big Bang to Big Crunch. We can answer that

by just looking at the ct equation. From Big Bang to Big Crunch, we know that theta

evolves from 0 to pi back to 2 pi, which is the same as 0. So theta goes through one

cycle of 2 pi during a lifetime of our model universe. As theta goes from 0 to 2 pi,

sine theta starts at 0 and eventually comes back to 0 when theta equals 2 pi. But

theta increases from 0 to 2 pi over one cycle. So over one cycle of our universe, ct

increases by alpha times 2 pi. So that tells us what the total lifetime of the universe

is, I'll call it t total. And we get it by just writing c times t total equals 2 pi times alpha.

And I think I can do this one without making a mistake. t total is then 2 pi alpha

divided by c. And we can even check our units there. Alpha has units of length, so

length divided by c becomes a time, c being a velocity. So it has the right units. And

that's the total lifetime of the universe. It's just determined by alpha. So alpha can

be viewed as just the measure of the total lifetime of the universe, which can be

anything for different sized closed universes.

Alpha is also related to the maximum value of a over root k. And a has no fixed

meaning, this is meters per notch. But a over root k does have units of meters. We
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haven't yet really seen what it means physically, because that's related to the

geometry of the closed universe which we'll be discussing later. But in any case as a

mathematical fact, we could always say that the maximum value of a over root k is

determined by alpha.

So a max over root k is equal to the maximum value of this expression. And this

expression has a maximum value when theta equals pi, which gives cosine theta

equals minus 1, which gives a 2 here. And that's as big as it ever gets, so that's just

equal to 2 alpha. So alpha is related in a very clear way to the total lifetime of our

universe, and is also related to a over root k, although we haven't really given a

physical meaning to a over root k yet. But we know it has dimensions of meters.

OK, the next calculation I want to do is to calculate the age of the universe as a

function of measurable things. We learned for the flat matter dominated case that

there was a simple answer to that. The age was just 2/3 times the inverse Hubble

parameter. So what you do now is get the analogous formula here, it follows in

principle immediately from our description of the evolution. But we have to do a fair

number of substitutions before we can really see how to express the age in terms of

things that we're interested in.

The formula here tells us directly how to express the age of the universe. t is the

age of the universe as a function of alpha and theta. But if you tell an astronomer to

go out and measure alpha and theta so I could calculate the age, he says what in

the world are alpha and theta. So what we'd like to do is to express the age in terms

of things that astronomers know about. And the characterizations of the universe

like this that an astronomer would know about would be the Hubble expansion rate,

and some notion of the mass density. And the easiest way to talk about the mass

density is in terms of omega, the fraction of the critical density that the actual mass

density has.

So our goal is going to be to manipulate these equations. All the information is

already there. But our goal will be to manipulate these equations to be able to

express the age t in terms of h and omega.
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OK, so first we need to remind ourselves what omega is. The critical density is

defined as that density which makes the universe flat. And we've calculated that the

critical density is equal to 3 h squared over 8 pi times newtons constant, capital G.

We can then write the mass density rho as omega times the critical density, which is

just the definition of omega. Omega is rho divided by rho c, the actual mass density

divided by the critical density. And putting what rho c is, we can express rho as 3h

squared omega divided by 8 pi G. And being very pedantic, I'm just going to rewrite

that in the form that we're actually going to use it by multiplying through. 8 pi over 3

G rho, taking these factors and bringing them to the other side, becomes just equal

to h squared times omega.

And you might recognize this particular combination as what appears in the

Friedmann equation. The Friedmann equation told us that a dot over a squared is

equal to 8 pi over 3 G rho, minus kc squared over a squared. And in order to get the

substitutions that I want, I'm going to just rewrite this putting h squared for a dot

over a squared. 8 pi over 3 G rho we said we could write as 8 squared times

omega. And then we have minus kc squared over a squared. Note that we really

have here a tilde squared. This is a squared divided by k if I put them together. So

this term can be written as minus c squared over a tilde squared.

And this accomplishes one of our goals. It allows us to express a tilde in terms of

the quantities that we want in our answers, h and omega. And if we can do the

same for theta, we have everything we need to express the age. So the implication

here is that a tilde squared is equal to c squared divided by h squared times omega

minus 1.

To take the square root of that equation, to find out what a tilde is, we need to think

a little bit about signs and things like that. A tilde is always positive. This is the scale

factor divided by the square root of k, square root of k is positive, scale factors are

always positive the way we defined it. So we can take the square root of that taking

the positive square root of the right hand side. Omega is bigger than 1 for our case,

so omega minus 1 is a positive number, 8 squared is a positive number. So taking

the square root there offers no real problem. We can write a tilde is equal to c over,
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I guess this point I might not notice until later. h h can be positive or negative over

the course of our calculation. We're going to talk about an expanding phase and a

contracting phase. So when we take the square root of h squared, we want the

positive number to give us a positive a tilde. So it's the positive square root that we

want, which is the magnitude of h, not necessarily h. When h is positive, the

magnitude of h is h. h could be negative though, and the magnitude of h is still

positive, and then the square root of omega minus 1, which is always positive. So

that's our formula for a tilde in terms of h and omega.

OK, now we want to evaluate alpha, and I guess I did not keep the formula for alpha

quite as long as we needed it. When we defined alpha in the first place, let me

remind you how it was defined, 4 pi over 3 G rho a tilde cubed over c squared. And

that can be evaluated using our formula for rho and we'll put that in for rho, and

what we get is c over 2 times the magnitude of h using this formula for a tilde as

well. And then omega over omega minus 1 to the 3/2 power. Just using this formula,

and we know how to express rho from the right hand side, and we know how to

express a tilde from this formula here. So everything's straightforward, and this is

what we get.

And now I want to use these to rewrite this equation, a over the square root of k is

equal to alpha times 1 minus cosine theta. I'm going to replace a over root k by this

formula. I'm going to replace alpha by that formula. So this implies, rewriting it, that

c over the magnitude of h times the square root of omega minus 1 is equal to c over

twice the magnitude of h times omega minus 1 to the 3/2 power times 1 minus

cosine theta.

And now we've had to survive some boring algebra. But notice that now most things

cancel away here. We get a very simple relationship between theta and h and

omega, actually just omega . In particular, when we solve that, we get simply that

cosine theta is equal to two minus omega over omega. So theta is directly linked to

omega. If you know omega, you know theta, If you know theta, you know omega, by

that formula. And we can rewrite this the other way around by solving for omega if

we want. Omega is equal to 2 over 1 plus cosine theta.
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Now we can look at this qualitatively to understand how omega is going to behave.

At the very beginning cosine theta is equal to 1, theta is equal to 0, so omega is 2

over 1 plus 1, which is 1. So at very early times omega is driven to 1 even in a

closed universe. As theta gets larger, cosine theta gets less than 1. This then

becomes more than 1. So omega starts to grow as the universe starts to evolve. At

the turning point, when the universe has reached its maximum size, theta is pi,

cosine theta is minus 1, omega is infinite at the turning point. That may or may not

be a surprise. But it you think about it, it's obvious. At the turning point h is 0,

therefore the critical density is 0, but the actual density is not 0. And the only way

the actual density can be 0 while the critical density is 0 is for omega to be infinite,

so we should have expected that. And then the return trip, the collapsing phases, a

mirror image of the expanding phase, omega goes from infinity at the turning point

back to 1 at the moment of the Big Crunch. Yes.

AUDIENCE: I'm confused with what the universe would look like when it gets to infinity.

PROFESSOR: It would look static. It's temporarily static. It's reached a maximum size and is about

to turn around and collapse, so h is 0.

AUDIENCE: OK, but like with the density.

PROFESSOR: Well we could calculate the density. It's some number which depends on alpha.

AUDIENCE: OK, but that doesn't diverge or anything.

PROFESSOR: It doesn't diverge or anything, no. It's just some finite density. At the turning point,

it's just a finite density that can be expressed in terms of alpha. Sounds like a good

homework problem. I think maybe I'll do that.

OK, so this now allows us to express theta as a function of omega, which is what we

wanted. If we express theta as a function of omega, and alpha as a function of

omega and h, we have our answer. We have t expressed as a function of h and

theta.

So there are choices about how exactly to express omega in terms of theta that will
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involve inverse trigonometric functions. And anything that can be expressed in

terms of an inverse cosine, can also be expressed as an inverse sine by doing a

little bit of manipulations. We have our choice here about what we want to do. But in

any case, the answer already has a factor of sine theta in it. So it's most useful to

express theta as the inverse sine of what we get from that formula, to express the

answer in what at least to me is the simplest form. So I'm going to manipulate this a

little bit to find out what sine theta is in terms of omega, and then invert that to

express theta in terms of omega.

So sine theta is of course plus or minus the square root of 1 minus cosine squared

theta. And cosine theta we know in terms of omega, so we can express this in terms

of omega. And if you do that it's straightforward enough algebra. It's plus or minus,

depending on which sign of the square root is relevant, and we'll talk about that in a

minute. It's plus or minus the square root of 2 times omega minus 1 over omega. So

we can express theta as the inverse sine of this expression.

And now what I want to do is to make use of this to put into this expression using

the value for alpha that we've already calculated and wrote over there. So we get

our final answer, which is that t is equal to omega over twice the magnitude of the

Hubble expansion rate times omega minus 1 to the 3/2 power times the arc sine or

inverse sine of twice the square root of omega minus 1 over omega. That's just the

theta that appears in this formula written in terms of sine theta or the inverse sine of

the quantity that we determined was the sine of theta. And then I see here I should

have a plus or minus because we haven't figured out our signs yet. Either is actually

possible, depending on where we are in the evolution. And then minus or plus twice

the square root of omega minus 1 over omega. That's a plus or minus, this is a

minus or plus. And the reason I wrote one upstairs and one downstairs is that we

don't yet really know how to evaluate theta, but the sign of this term is always going

to be the negative of the sign of that term, this or that minus sign. So theta can be

the inverse sine of this expression with either sign of the sine. Sorry for the puns.

But whichever it is, it's the same on there as it is here but with a minus sign in front,

that minus sign.
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OK, so this is our final formula for the age. But we still need to think a little bit about

the s-i-g-n signs of these inverse functions that appear here, that and that, and

straightforward if you just take it case by case. And in the notes we have a table

which I'll put shortly on the screen. But let's start by just talking about the earliest

phase where the universe is shortly after the Big Bang, so that the development

angle is a small angle.

We know that theta is going to go from 0 to 2 pi over the lifetime of our universe. So

I now want to think of theta being small. And small means small compared to any

number you think about. So when theta is small the sine theta is nearly theta. Both

are positive. And in that case the sine theta being positive means this is the positive

root in this equation, and therefore the positive root in that equation. So for early

times this would be the plus sign, and that would mean that this would be the minus

sign. Again the minus sign just coming from there and theta being positive. So for

early times it's a plus and minus. And the arc sine is itself ambiguous. For early

times the angle we know is going to be just a little bit bigger than 0. So that's the

evaluation that we make of the arc sine function. Pi plus that would also give us the

same sine. It would be another possible value for the arc sine. And of course 2 pi

plus that would also be another possible root. So you have to know which root to

take to know the right answer here because as an angle, 0 is equivalent to 2 pi, but

as a time, 0 is not at all equivalent to 2 pi. So you do have to know the right one to

take. We'll continue doing that on a case by case basis.

Those are the equations, that's the formula for the age, and that's the formula for

the age with a description of which roots to take for each case, which just comes out

by following the evolution, we know that theta is going from 0 to 2 pi, and this last

column, the inverse sine of the expression which means the expression that

appears here. For the smallest angle is 0 to pi over 2. We can think of this actually

as defining our columns. Theta starts at 0 so the time lengths between 0 and pi over

2, a time length between pi over 2, a time length between pi and 3 pi over 2, and a

final time length between 3 pi over 2 and 2 pi. And the first two correspond to the

expanding phase, second two correspond to the contracting phase. We can easily

see what values of omega are relevant in those cases.
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see what values of omega are relevant in those cases.

Omega we said starts at 1 and gets larger, the borderline where the angle is pi over

2 one could just plug into these formulas and see amounts to omega equals 2. So

that is a division line between these first two quadrants just calculated from the

value of theta. Omega then goes to infinity as we said, comes backwards and back

to 1 in the end. And in this column we just figure out which sign choice corresponds

to getting the right value for omega and the angle that appears in the arc sine of our

formula for the age, the formula there.

So any one of these I claim is very obvious. Seeing the whole picture takes time

because I think you really have to look at each case one at a time to make sure you

understand it in detail. But if you understand the initial expanding phase that's what

corresponds to our universe if our universe were closed. And the others are just as

easy. You just have to take them one at a time I think.

OK, we're going to end there. We will continue on Thursday.
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