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PROFESSOR: OK, in that case, let's go on. At the end of last class, we were beginning to talk

about the Doppler shift. And we defined our terms. And I guess I'll repeat the

definitions on the blackboard here. We are talking initially about the case where the

observer is stationary and the source is moving with velocity v. We are talking

initially about sound waves, waves which have a fixed speed relative to some

medium.

And the speed relative to the medium will be called u. v will be the velocity of

recession, as shown on the diagram. Delta t sub s, s for source, will be the time

interval between wave crests as measured at the source-- so period of wave at

source. And delta t sub o will be the period of the wave at the observer. And what

we're trying to calculate is the relationship between delta t sub o and delta t sub s.

OK, at this point, I'd like to go to the screen and go through the different stages of

what happens as this process takes place. We start in frame one with an observer

in some location, a source at some different location. Source is moving to the right.

Source is emitting the first wave crest in this slide number one. Nothing too

interesting so far.

Next picture, the source emits the second wave crest. But meanwhile, the source

has moved. The time between wave crests as seen by the source is delta t sub s.

So the distance that the source will move during that time integral is v times delta t

sub s. And we'll call that delta l. And this really is the important slide. I think I have it

highlighted here. That picture is what really counts for the whole Doppler shift. It

says that the second wave crest has to travel a little further than the first wave crest

by this amount delta l. So delta l will be the crucial quantity that will control the

answer. Third slide, the waves have traveled. Now the first crest in this third frame
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has just hit the observer. Next frame, the last crest, the second crest, has hit the

observer.

And to figure out the Doppler shift from those images, all we have to do is realize

that if both objects were stationary, there'd be no time difference between

observation and source. Each could occur later by some fixed amount, the amount

of time it would take the sound wave to travel. But they will occur later by the same

amount if there was no motion. So if there's no motion, delta t sub o would be equal

to delta t sub s, if there was no motion.

But because there is motion, we said that the wave, the second crest, is going to

have to travel further by the amount delta l. So it'll be delayed by the amount of time

it takes for the wave to travel delta l. And that's just delta l divided by v-- so plus

delta l divided by v. And we know what delta l is. Delta l is just v times delta t sub s.

I'm sorry, this is divided by u. u is the speed of the wave. v is the speed of the

source.

So here we have in the numerator v times delta t sub s, and the denominator is u.

This is just what we said delta l is. So this really is our result. It tells us what delta o

is in terms of delta t sub s. And we can solve for the ratio. It tells us that delta t sub o

over delta t sub s is equal to 1 plus v over u. Solve that equation.

Now there's a standard definition that's used to describe redshifts, which is that this

ratio, which is also the ratio of wavelengths, which is how I usually think of it, the

wavelength at the observer divided by the wave length at the source-- the wave

length being disproportional to the delta t. The wave ones are just the wave speed

times delta t.

This is defined to be 1 plus z where z is what's called the redshift. And the

astronomers take out the one so that if both objects are stationary, z is equal to 0.

That corresponds to know redshift. That means the wave length is the same at the

source and at the observer. So the ratio of the wavelength as its observed to the

wavelength of the source is what's called 1 plus z.

2



So in this case, it follows immediately that the redshift for this case is just v over u.

So maybe I'll just write that again in a box and label it. z is equal to v over u

corresponds to the nonrelativistic case, or the sound wave case, with the source

moving. OK? Everybody on board? Any questions? OK, straightforward enough, I

think.

OK, now we will go on to do the alternative simple case, where the observer is

moving and the source is stationary. So keep the source on the right and the

observer on the left. But this time it's the observer that's moving again with speed v.

So v is always for these two cases in my notation the relative velocity between the

source and the observer.

So now we have a new sequence of pictures. So first picture again is fairly trivial.

The first wave crest is being emitted by the source. Picture number two, the second

wave crest is emitted by the source. Picture number three, the first wave crest

arrives at the source. And picture number four now, the second wave crest arrives

at the source. And for this case, it is this last frame where all the action is.

The point is that between the time when the first crest hits the source and the time

when the second crest hits the source, that is the time between the third and fourth

frame, the source has moved. And it's moved by distance which is v times the time

between those images. And the time between these images is just the time that the

source experiences between the receipt of the two waves. And it's therefore what

we've been calling delta t sub o, the time interval as measured by the observer. So

the distance traveled is just v times t sub o. And it's that last frame inside that box

where all the action happens for determining the answer for this problem.

So we can put that into equations also. This time it's slightly more complicated. It

starts basically with the same idea. Delta t sub o is equal to delta t sub s, which is

what it would be if there was no motion. But it's a little bit longer because of the

extra distance the second pulse travels. And that extra distance is again called delta

l. So the time delay is again delta l divided by u, the wave speed. But this time we

have a different formula for delta l. This time delta l is v times delta t sub 0, instead
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of last time it was v times delta t sub s.

So this time the equation is ever so slightly more complicated, because delta t sub 0

appears on both sides of the equation. Last time we immediately wrote down an

equation for delta t sub o. But nonetheless, this is one equation with one unknown,

so of course it's trivial to solve it for delta t sub o. And when we do that, we get delta

t sub o. I'll maybe divide by delta t sub s. By just doing a little bit of algebra on that,

you discover it's 1 minus u over v inverse.

And then z, the redshift, is delta t sub 0 over delta t sub s minus 1 by definition.

AUDIENCE: Is that 1 minus v over u?

PROFESSOR: Oh, do I have it wrong here? Yes, it's 1 minus v over u. Thank you very much.

Right, coming from the v over u here, obviously, as you noticed. OK, so to write

down a final equation for z, it's delta t0 over delta t sub s minus 1. So it's 1 minus v

over u inverse minus 1. And then just putting things over our common denominator,

it ends up being v over u divided by 1 minus v over u. And that then is our final

answer. So this now is the answer for the nonrelativistic case-- again, we haven't

done relativity yet-- and the observer moving.

OK, now it's worth pointing out that when velocity is small compared to the wave

speed, as is often the case if we're going to be talking about light which we'll be

talking about in a minute, but could be the case with respect to sound as well. Then

these two formulas are almost the same. They're both proportional to v over u,

when I'm talking about the case where v over u is a small quantity, where the

motion is slow compared to the sound speed or wave speed. And the only

difference is that denominator.

Here we have a denominator of 1 minus v over u. And here the v over u is the

whole show. There's no denominator. And if v over u is small, the denominator is

close to 1. So the two answers are going to be almost the same. And one can

describe that a little bit more succinctly perhaps, by saying that z with the observer

moving minus z with the source moving is equal to v over u quantity squared times
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1 minus v over u in the denominator. Just a little bit of algebra to get that result.

And what that shows explicitly is that second order in v over u. It's proportional to v

over u squared, not to v over u. So if v over u were a part in 1,000, the difference

would be a part in a million. So for slow velocities, it doesn't matter whether it's the

source that's moving or the observer that's moving. But these answers can, of

course, be very different if the velocity v is comparable to u. OK, any questions

about that? Yes?

AUDIENCE: Does this violate Galilean relativity?

PROFESSOR: Does it violate Galilean relativity? Not really. Although, one has to maybe be careful

about how one defines Galilean relativity. What makes it legitimate as a classical

mechanical calculation is that unshown, but crucially important on the blackboard, is

the air that the sound wave is moving through. So in one of these pictures, the air

was at rest. The other picture, the air was moving. Or rather, well, I said that wrong.

The air was at rest in both pictures. But if you want to make a Galilean

transformation to relate one picture to the other, then after you've made the

Galilean transformation, the air would be moving and it would not really be the same

picture.

So it is all consistent with Galilean relativity. And one has to remember that the air is

playing a crucial role here. When we say that the observer or the source is at rest,

the full sentence really is that it's at rest relative to the medium that's transporting

the wave. Any other questions? Yes?

AUDIENCE: This is not really a question, just kind of an observation. I just find it interesting that

in the case if v is greater than u that this one is always positive, no problem. But if v

is greater than u in the other case, then you have a negative number, which, I don't

know if that-- I just find that weird.

PROFESSOR: Right, let me think. If v is greater than u, then the observer moving case becomes

negative. And it presumably means the wave never reaches it. If the observer is

moving faster than the wave speed, the wave never reaches them. And that's why
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the answer is peculiar. If the source is moving faster than the wave speed, the wave

still reaches the observer. So there is a nontrivial and believable answer in that

case.

OK. What we're going to move on to now is the relativistic case. And as I think I

described in the course handouts, relativity is has sort of an odd role in this class.

We need a little bit of relativity. But at the same time, there are the courses in

relativity. So I don't want this to be a course in relativity. In the old days, when there

weren't so many other courses in relativity, we did in fact spend two weeks of this

course doing special relativity. But I don't think that's worthwhile anymore.

Well, I'll maybe ask for a show of hands. How many of you have had relativity in

some other course? That's what I thought, most of you, perhaps not all. Well,

maybe I should ask the other question. How many of you have not had relativity?

OK, a number.

So I do want to make the course completely intelligible to the people in that second

group. Special relativity is not a prerequisite for this class. So what my goal will be to

tell you enough special relativity so that you'll be able to follow what comes next. But

I will not be driving those results. I'll just leave for other courses for people who want

to take them. And if you don't want to take them, that's fine too. But I want to make

this course coherent.

So what we're going to do is discuss the consequences of special relativity without

trying to relate those consequences directly to the underlying ideas of special

relativity. I will, however, mention where special relativity comes from. It arose in the

mind of Albert Einstein, because he realized that the physics that we knew well,

basically Newtonian physics at that time, possess this property, Galilean relativity,

which came up in a question just a minute ago. Galilean relativity says that if you

look at any given physical process in a frame that's moving at a uniform velocity

relative to the first frame that you use to describe it, it should also be consistent with

the laws of physics in the second frame.

Incidentally, I-- maybe I'm more ignorant about history than most-- only learned a
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few years ago what Galileo had to do with this. It did actually play a very important

role in the history of Galileo in the physics that he was debating about. A key issue

in the time of Galileo was whether the earth moved around the sun or the sun

moved around the earth. And that was something Galileo was intensely involved in.

And one of the arguments that said that it must be the sun that moves-- it can't be

the earth that moves-- was that if it's the earth that moves, it means we move at

very high velocity. The velocity of the earth around the sun is high by ordinary

standards. And obviously, we'd feel that motion, people thought. So it was a proof

that it must be that the earth is stationary and the sun moves. Because otherwise,

we'd feel the effect of this high velocity motion.

So it was crucial to Galileo's point of view that it was really the earth that was

moving that you don't detect motion. If you're in uniform motion, the laws of physics

are exactly the same as they would be if you were at rest. And that's basically what

Galilean relativity is all about. And it was in fact very clearly enunciated by Galileo in

his writings.

So that was the case for mechanics. But at the same time, in the 1860s, Maxwell

invented Maxwell's equations, or completed them is maybe a more accurate

description for what Maxwell really did. Most of those equations already existed.

And a prediction of Maxwell's equations is that light travels at some fixed speed,

which could be calculated in terms of epsilon naught and mu naught that appeared

in those equations, a speed that we call c. Now if light travels at speed c, it would

mean that if you got into a spaceship and chased a light beam, it'd say half the

speed of light. The implication of the physics that was known at the time would have

been that, from the point of view of that spaceship traveling at half the speed of

light, the light pulse would only be receding at half the speed of light. You would

have half caught up with it. But that would mean that from the frame of this rapidly

moving spaceship, the laws of physics must somehow be different. Maxwell's

equations must not hold in their standard form.

So there was this tension between Maxwell and Newton, if you like. The tension was

not a contradiction. It would be perfectly possible for there to be a fixed frame in
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which Maxwell's equations had their simple form. But Newton's equations could

perhaps have the same form in all frames. And that in fact was what people thought

at the time. To account for this situation, physicists invented the idea of an ether

which was a medium through which light waves travelled, similar to the air in which

sound waves traveled. And the frame in which Maxwell's equations had their simple

form was the rest frame of the ether. And if you moved relative ether, the equations

would be different. And that's what people thought in 1904. And it was a consistent

point of view, but it meant that there was this dichotomy between electromagnetism

and mechanics.

So Einstein thought maybe physics is not so sloppy. Maybe there's a more elegant

way which all this plays out. And he realized that if you modified the equations that

are used to transform between one frame and another, you could make Maxwell's

equations frame invariant. You could make it so that Maxwell's equations are valid

in all frames. And if we go back to our example of the spaceship chasing the light

beam, with these new transformation equations that Einstein suggested, it would

turn out, even though it's very contrary to intuition, that when the spaceship

measures the speed of the light pulse, it would still measure that the light pulse was

moving away at speed c, even though it had moved at half c trying to catch up with

the light pulse.

So it's not obvious how that can happen. But it turns out it can happen. We'll be

talking a little bit more about how it happens. And that was basically Einstein's

proposal. It was a proposal that there is no ether, that the laws of physics both

electromagnetism and mechanics are the same in all frames. And in order to do

that, he had to say that the equations of transformation between one frame and

another are different from what Galileo believed.

So these are what we call the Lorentz transformations. We might write them down

later in the course, but we're not going to write them down today. But what goes into

them are three physical effects, which we will talk about. If we're talking about the

time dilation, we only need one of those three effects. So I'm going to start by just

discussing that for a minute, and then we'll come back at the end of the class, or
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perhaps next class, depending on how timing works out, to discuss the other two

primary effects that are needed to make up the theory of special relativity and

explain how it could be that the speed of light could look the same to all observers,

even if we're talking about observers that might be moving.

OK, so time dilation is the simple statement that if I were to watch a moving clock,

the moving clock would appear to me to be running slower. I'll just mention for a

moment now that I put the word appear in quotation marks. That means we're going

to come back and discuss in detail what is meant by the word appear. But to finish

the sentence first, the moving clock would appear to me in my reference frame to

always be running slower. And so by a very predictable amount, a famous

expression in special relativity, gamma, where gamma is 1 over the square root of 1

minus beta squared, where beta is just an abbreviation for v over c, the velocity of

the clock divided by the speed of light.

So as long as v over c is small, this is a small effect. Gamma is near 1. And running

slowly by a factor of 1 means not running slowly at all. So the fact it was near 1

means it's a very small effect. But moving clocks will always appear to be running

slower. That's one of these three effects of special relativity that we'll be discussing

in the course of lecture notes one.

Now let me come back now to talk about this word "appear," because that's a little

bit subtle. Might just add that there was a series-- this is just an aside-- but I guess

broadcast last year there was a four-part series of Brian Greene's Fabric of the

Cosmos that was broadcast on PBS. And the interesting thing about that, which is

relevant here, is that he tried to illustrate time dilation. And he did it by having sort of

a parable of a person sitting in a chair and somebody else carrying a clock over his

head, walking towards the person sitting in the chair. And the camera showed what

the person sitting in the chair would see and showed the clock running slowly.

That's wrong. It's not what he would actually see. And that's the crucial issue of the

word "appear" here.

When we say that the clock appears to run slowly, we're not talking about what an
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observer would actually see. The complication of literally seeing is that when you

see something, what you're doing is you're measuring the light pulses as they arrive

at your eyes at a given time. And since light has a finite travel time, it means that

you're seeing different things at different times. In particular, if there's a large object

coming towards you, say this laser pointer coming towards me, I would be seeing

the front of it at an earlier time than I would be seeing the back of it. The other way

around, actually. I'd be seeing the back at an earlier time, because the light that

leaves here at an earlier time would take longer to reach my eye, reach my eye the

same time as light which leaves the front of the object later.

So the point is that as this is coming toward me, I'm seeing different pieces of it at

different times in terms of the actual existence of this laser pointer. And that makes

things complicated. So what you actually see when you take into account special

relativity is fairly complicated. You can calculate it, but there's no simple expression

for it. You really just have to calculate point by point what you'll be seeing for every

part of the object at a given time, nothing very simple.

So the simple expression, which just says, clocks run slowly by a factor of gamma,

and we'll learn later e expressions about how things contract and how simultaneity

changes, those simple expressions are not based on what any observer would

actually see. But rather, they're based on what ends up giving a simpler picture, a

picture in which you imagine that what we're discussing is not what an individual

sees but rather what a frame of reference sees. So we're talking not about what the

observer sees but rather what is seen in the observer's frame of reference. And a

frame of reference, I think you could think of it pretty concretely, as kind of a

structure of rulers connected together to each other to form a grid of rulers and with

clocks located everywhere along this grid.

So all the observations are made locally. That is, if you want to measure a time in a

given reference frame, you don't use a central clock, waiting for the light pulse to

reach that central clock. Rather, you measure the reference frame is filled with

clocks, all of which have been synchronized to start with. And if you want to know

what time an event happens, you look at the clock that's next to it. And that clock
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tells you what time that event happened.

So that's typically what we draw when we draw a coordinate systems and so on. It's

really the way we normally think. The point is, though, if you really want to think

what one observer would see, it's more complicated. Then you have to take into

account the light travel time. So it's only after you take out the way travel time and

calculate how local clocks would compare that you see this time dilation in the

simple form, that the clock always runs slower.

So in particular, for this example of the person sitting in a chair and the clock

coming towards them, that's exactly what we're going to be talking about. That is

the Doppler shift. And what we'll find is when the clock comes towards them, he will

see the blueshift not a redshift. He'll see the clock running faster not slower, the

opposite of what was shown in the TV program. But the difference is that what

causes it to look like it's going faster is the fact that each pulse travels a shorter

distance if the clock is coming towards the observer. And that becomes a bigger

effect than the fact the clock itself, if it were measured relative to clocks that it

passes, would be running slowly. Yes?

AUDIENCE: So in that case, if the clock, let's say, was moving toward you really fast, could you

measure it when it was directly perpendicular to you? And then that would be the

special relativity time dilation?

PROFESSOR: Well, if it was moving alongside you. If it was coming right at you, it would just hit

you. And that was the case, Sonya, more or less. But yes, you're exactly right. If the

clock were moving at right angles to the observer so that the observer saw it, what

you really want for this to be the pure effect is you want to have the velocity of the

clock to be perpendicular to the velocity of the photon that the observer is seeing,

as measured in the observer's reference frame. Actually that matters. Then you see

would see pure time dilation effect. That's exactly right.

OK, so might just add that Brian Green and a bunch of people here at MIT, actually-

- I was involved and so were some others. There's a number of MIT people on this

program. So we ended up having a long conversation with Brian Green about it by
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email. And everybody at MIT thought it was just plain wrong. Brian Green actually

took the position that it was very intentional on his part, and he was just trying to

illustrate the time dilation effect, and he didn't want to talk about the Doppler shift.

And since he didn't want to talk about it, he could ignore the fact that it was there.

We all thought that was bad pedagogy. But we never convinced Brian, I should say.

OK, now what we want to do is go through these Doppler shift calculations again,

this time recognizing that moving clocks run slowly by a factor of gamma. So we're

now going to be doing the relativistic case where the wave is sound waves-- excuse

me, where the wave is light waves. I'll get this straight. And the velocities might be

comparable to the speed of light. So this time dilation effect is large enough so that

we want to take it into account.

Now in this case, what we are hoping, and everything would be wrong, inconsistent,

if we can find this, we're hoping that in this case, the two answers should be the

same. It shouldn't matter whether the source is moving or the observer is moving.

Earlier it did matter, and we said that was explicable, because we knew that air was

involved. And if we made a velocity transformation to go from one picture to the

other, from the picture where the source is moving to the picture where the

observer was moving, the air would have a different velocity in the two pictures. It

would be stationary in one and moving in the other. So we would not expect to get

the same answer as we would have gotten assuming the air was stationary.

But in this case, if anything has a different velocity when you go from the picture

where the source is moving to the picture where the observer is moving, it would

have to be the ether that has a different velocity. But the basic axiom of special

relativity is that there is no ether, at least there's no physical effects coming from the

ether. So you might as well pretend it does not exist. You can't really prove that it

does not exist if it has no properties. It still exists. But the basic axiom of special

relativity is that there are no physical effects coming from this either. So for special

relativity, we should get the same answer, whether it's the source that's moving or

the observer that's moving. It's really the same situation, just viewed in different

reference frames. And special relativity says it cannot matter what reference frame
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we're doing the calculations in. So it's the same pictures, but this time we want to

take into account the fact that moving clocks run slowly by a factor of gamma.

So looking at these pictures, we can first start just glancing at them and saying,

where's there a clock that's moving? That might be something we need to think

about. And maybe I'll ask you-- which of these four frames shows a moving clock?

AUDIENCE: All of them?

PROFESSOR: Sorry?

AUDIENCE: All of them?

PROFESSOR: All of them, I guess so. But the time interval measured on the clock is only actually

relevant to one of them.

AUDIENCE: Two.

PROFESSOR: Two, exactly, two. Here we said that the source is moving, and we said the time

measured on the source's clock between the emission of these two wave crests.

Incidentally, we're usually talking about continuous waves like light waves. And then

we're talking about the time between successive wave crests. Well, if we just as well

imagine that the source is emitting a series of pulses where each pulse represents a

wave crest, and somehow to me that sounds a little simpler to describe, because

you don't have to think about the sine wave associated with the signal that the

source is actually creating.

So in any case, the time between these pulses, I'll call them, as measured by the

source clock, is what we call delta t sub s, is the time that the source would actually

measure. And the source is moving in this picture. So relative to our frame, we want

to think of this entire series of pictures as all being consistent in our frame. It's very

important, since transformations between frames are a little complicated in special

relativity. It's very important when you're doing any problem to pick what frame

you're going to use for your description and be sure to stick to it. If anything is

initially described in another frame, you have to figure out what it looks like in your
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frame in order to fit it together with the other events that you're describing in your

own particular reference frame.

So for this problem, our frame will be the frame of the slide, the frame, which is at

rest relative to the observer. So we could also call it the observer's frame. And

relative to that frame, the source is moving. And therefore, the clock-- a source is

emitting a series of pulses. That's a clock. Anything that does anything at regular

intervals is a clock. So the source represents a moving clock. And we need to take

into account the fact that the source will be running slowly by a factor of gamma.

And otherwise, nothing changes. The observer has a clock also, which the observer

is going to use to measure the time between crests. But the observer's clock is at

rest in our frame. So there's no time dilation associated with the observer's clock,

only a time dilation associated with the clock on the source. So again, the important

issue is all inside that yellow box. And what do I do now is look at the equations and

see how the equations are modified.

I guess I should start back at the beginning of the blackboards. Maybe I should turn

the blackboard lights on when I work on the blackboard. So the time integral as

seen by the observer will be equal to-- last time we just had delta t sub s as our first

term, which would be what it would be if there was no velocity. And that's still true if

there was no velocity. But if the clock is going to be running slowly by a factor of

gamma, that would mean that the time interval that we would measure, even if there

was no change in path length, which will be the next term, if there was no change in

path length, the time that we would measure as the observer would be different

from the time interval as measured by the source by a factor of gamma. But one

has to figure out whether the gamma goes in the numerator or the denominator.

And sometimes it's a little tricky. It helps a lot, I think, to just sort of imagine an

example. Any example is clear, it turns out. But when you try to write down the

answer in general, you sometimes get it wrong. That's my experience with myself

and with other people.

So this clock is wanting slower. And say we're talking about a second time interval. If
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this clock is running slower, it means it takes longer for it to take off a second. We

would see it as maybe running slower by a factor of two. It would mean that it would

only take off a second every two seconds. So that means that the time interval that

we would see-- and that's what we're trying to calculate, the time interval as the

observer-- is going to be longer than delta t sub s by a factor of gamma. So the first

term changes from what it was before. And what we're doing is we're rewriting this

equation. So the first term changes from what it was before by putting in a factor of

gamma in front of it. Because the source clock is running slowly.

And then the second term is still delta l divided by u. But the equation for delta l

changes also, because delta l is the time interval that it takes for the light to travel

the extra distance, where the extra distance was because of the time between the

clicks. And that is now changed because of the time dilation of the source clock. So

the second term also changes by a factor of gamma. So it's gamma times delta t

sub s plus v times gamma times delta t sub s divided by u.

So the whole answer just changes by a factor of gamma. So it's gamma times 1

plus v over c times delta t sub s. And now if you do a little bit of arithmetic here--

gamma, remember, is 1 over the square root of 1 minus v squared over c squared.

And a squared minus b squared-- I'm now thinking of the denominator 1 minus v

squared over c squared. Maybe I'll write this on the side. 1 minus v squared over c

squared-- it's worth remembering here-- can be written as 1 plus v over c times 1

minus v over c.

And we have the square root of that appearing here in the denominator. Gamma is

1 over the square root of this. So this becomes the square root in the denominator,

resulting the square root of 1 plus v over c appearing in the answer. And this

remains in the denominator. And what we get simplifies to simply 1 plus beta over 1

minus beta inside the square root times delta t sub s.

So this is the special relativity answer, the relativistic answer, and this is for the

source moving. Now we expect that the answer won't depend on whether the

source is moving or not, but certainly the calculations do. So this is what we got

15



from the calculation, which we assumed that it was a source that was moving, and

the observer was stationary. It's just corrected from the previous answer by this

factor of gamma. Any questions about that?

OK, so to summarize on the slide what's changed is that this time interval, this extra

distance delta l for the relativistic problem, is not v times delta t sub s as it was. But

rather what we said is that it's gamma times v times delta s, because the clock on

the source is running slowly by a factor of gamma. And it was this difference that we

just used on the calculation on the blackboard to get the new answer.

OK now the next calculation, now we're going to do the same calculation again,

which we already did for the nonrelativistic case. But this time it will be the observer

moving. And we're going to try to do the relativistic case. So this time it's the clock

carried by the observer that's running slowly. And remember, this is running slowly

relative to us, relative to our frame of reference, where our frame of reference is by

definition the frame of reference of the slide that we're looking at.

Source is stationary, so delta t sub s is just an honest time as we would measure it.

But times as measured by the observer, delta t sub o, are going to be different. So

to correct the calculation for relativity, that's the crucial box as it was even in the

nonrelativistic case. And we're going to have to change that equation by replacing

delta l. Instead of v times delta t sub 0 is v times delta t prime.

Now delta t prime is not exactly delta t sub 0 or gamma times delta t sub 0. It's a

little trickier. Let's see. Hold on. The definition I want to use for delta t prime is that

it's the time as measured between the third frame and the fourth frame. But it's the

time as we measure it. I still want to describe everything in terms of the way we

would measure it. So delta t sub prime is not measured either by the source or the

observer. It's measured by us. And it's related to the time as the observer would

measure it by a factor of gamma, because relative to us, the observer's clock is

running slowly by a factor of gamma.

AUDIENCE: So we're the source?
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PROFESSOR: Well, we're stationary relative to the source, because the source is stationary. But

we're the frame of reference of the slide, is the way I like to think about it. But it is

the frame of reference, same as the frame of reference as the source. That's right.

So delta t sub 0 is related to delta t sub prime by a factor of gamma. And again, one

has to think a little bit to make sure one gets the gamma in the right place, the

numerator or the denominator. We're saying that the observer clock appears to be

running slowly relative to us. And that means that during the amount of time it would

take for it to say take off one second, since it's running slowly, should take more

than a second relative to us. And that's what this formula would give, if we multiply

by gamma. It would say that delta t prime is equal to gamma times delta t sub 0. So

we would say that the time that the observer clock ticks off one second we might

measure two seconds. That's the direction of the time shift, all given by that formula.

And those are all the pictures. Now we just have to write down the equations that go

with those pictures. And the hope is that we'll get the same answer as we got last

time. I think I'll leave that on the board. Let's see. What do I do? No, I won't leave it

on the board.

OK, this time the calculation we're mimicking is the calculation up here. This was the

calculation we had for the nonrelativistic case where the observer was moving. Now

we want to put in the time dilation that would correct that calculation. And the key

equation is that the time interval between the receipt of the two wave crests as we

would measure it, which is why I call it delta t sub prime, so prime is not the source

or the observer. It's us. It's the same frame of reference as the source, but the

source isn't located there. So we think of it as the time interval as measured in the

frame of reference. That's the frame of the slide, which is our frame. And it is equal

to gamma times delta t sub 0, where delta t sub 0 is the time as it would actually be

measured on the observer's clock. So, we're keeping their labels s and 0 to mean

what would actually be measured on the clocks at the source and at the observer.

That's what we're trying to establish a relationship between.

So the basic formula that we have up top there would first become delta t sub 0 is
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equal to-- hold on. Now actually, we would not start by writing down an equation for

delta t sub 0. Rather what we want to do is start by writing down the relationship as

we would see it in our frame, which is going involve delta t sub prime. We'll worry

about delta t sub 0 later. So our equation is going to become delta t prime is equal

to delta t sub s plus v times delta t sub prime divided by the wave speed, which now

we'll call c, since we're doing a relativistic problem.

So this is the basic equation for the time delay as we would see it in our frame,

where delta t sub prime is the time between the receipt of the first and second

crests, the time between frames three and four as we would measure it. And now

we can do the same thing that we did over there, first for delta t sub prime. And we

discover that delta t sub prime can be written as 1 minus v over c inverse, just doing

algebra on this equation, times delta t sub s. So that equation relates delta t prime

to delta t sub s.

And now we use the equation up top here to see what the observer himself would

actually measure. And that becomes just 1 over gamma times delta t sub prime. So

delta t sub observed is equal to 1 over gamma times 1 minus v over c inverse times

delta t sub source. And now since it's important we get the same answer, I'm going

to write in some intermediate algebra here just so we can all really see that it works

out.

The 1 over gamma, I am going to write as-- remember gamma is 1 over the square

root of 1 minus beta squared-- so 1 over gamma is the square root of 1 minus beta

squared. And I'm going to write that as the square root of 1 plus beta times 1 minus

beta. So this is the factor 1 over gamma. Now we have explicitly here a factor of 1

over 1 minus beta. The inverse makes it 1 over. Did I write something wrong?

AUDIENCE: From the second until the third time?

PROFESSOR: Second to third, you're there?

AUDIENCE: I thought it wasn't--

PROFESSOR: Yeah, this goes to the other side. It is minus. OK, finally, the 1 minus beta, you see
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occurs to the first power in the denominator. And the 1/2 power to the numerator.

So we do indeed get exactly what we wanted. Delta t sub 0 is equal to the square

root of 1 plus beta divided by 1 minus beta times delta t sub s. And now we know

that this is the relativistic answer for either source or observer moving.

And then if we want to write down what z is, this is delta t observer divided by delta t

source minus 1. So that becomes just the square root of 1 plus beta over 1 minus

beta minus 1.

So we found what we expected, what we wanted to find to be consistent with the

basic ideas of relativity. It's the same answer no matter which one is moving,

because it doesn't matter what frame of reference we do the calculation in. OK,

questions about either the calculations or the ideas behind them?

OK in that case, let's move on. I do want to come back and talk about the other two

kinematic effects of special relativity, which are Lorentz contraction and a change in

the notion of simultaneity. But before I get to that, there's one other issue I want to

discuss first, mainly because it's something you need to understand to do the

problem set that's due tomorrow. And that is the situation that's needed to describe

clocks which might be accelerating.

Special relativity really only describes inertial reference frames and how things

change from one inertial frame to another. So if you know how a clock behaves if it's

at rest in one reference frame, special relativity completely dictates without any

ambiguity what it would look like at a frame that was moving at a uniform velocity,

relative to the original frame, which means it completely dictates how that clock is

going to behave if it is moving at a constant uniform velocity.

But nonetheless, in the real world, we have very few clocks around that are

completely inertial. Every clock that we see around us from the clock on the wall,

which is moving with the earth or my wrist watch which moves more, is constantly

undergoing accelerations. So we want to be able to talk about clocks which are

accelerating. So we need to say a little bit about how we would do that and how we

do it if the clocks were moving at relativistic speeds , which also happens with
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satellites, for example. The GPS system as you've probably been told wouldn't

actually work unless the calculations were done in such a sophisticated way that

they even take into account the effects of general relativity as well special relativity.

So moving clocks and how they behave is a crucially important topic technologically.

So what do we say that a clock that's accelerating? There's I think a common myth

that to describe acceleration you need general relativity, and therefore we have to

put off talking about accelerating clocks until we take a course in general relativity.

That's actually totally false. What general relativity does is provide a theory of

gravity which basically says the gravity and acceleration are intimately linked. And

that's where acceleration gets pushed into general relativity.

But special relativity alone is enough for us to describe any system that could be

described by equations that are consistent with special relativity. Special relativity

does not describe gravity. So in any situation where gravity is important, special

relativity is at a loss to make real predictions about what should happen. But as long

as gravity is absent, as long as we're only dealing with electromagnetic forces that

we think we understand, there's nothing that prevents us from using the equations

of special relativity to describe what happens. We have to use the dynamical

equations of special relativity that talk about how things respond to forces.

And whenever there's a force, there's an acceleration. But there really are such

equations. We can combine, for example, electromagnetism with relativistic

mechanics to describe a system of particles that are interacting electromagnetically,

completely consistent with special relativity. And even those particles are

accelerating, we could say everything we want to say about them.

So in particular, if there's a physical clock, to the extent that we could describe that

clock as made out of particles whose physics we understand, special relatively will

still tell us what that clock will do even when that clock accelerates. The answer,

however, from that calculation, you might imagine, is very, very complicated.

Because the physics of any actual clock, my wrist watch as an example, is pretty

damn complicated. And we're not really going to write down the equations that
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describe my wrist watch to figure out how it's going to behave when it accelerates.

So what are we going to do? Let me point out that you already have pretty much

experience with accelerating clocks, because all of you-- well, many of you-- wear

wrist watches like I do that are accelerating all the time. And they tend to work. You

basically assume that even though they're accelerating they've been designed well

enough so they can withstand the accelerations that your wrist gives them and still

read the right time.

On the other hand, one could imagine contrary situations. Probably my wrist watch

would survive this, but if you take a mechanical clock, a windup clock, and heave it

against the wall and let it smash against the wall and come to a stop, as it smashes

against the wall, it wanted to go a very large acceleration. And if the acceleration is

large enough, we can predict the effect it will have the clock, even though it's a

complicated interaction. If the acceleration is large enough, it'll simply break the

clock and it will stop. And that's one possible effect that acceleration can have a

clock.

And other effects are similar in nature. If there's any effect that the motion of my

hand has on the wrist watch, it would be a mechanical effect that you'd calculate by

understanding the mechanics of how the watch works, not by understanding any

principles of general relativity. What's at stake underlying this-- you might wonder

what the real difference is-- special relativity can make precise predictions about

how a clock will behave if it moves at a uniform velocity, even without knowing

anything about the details of that clock. Special relativity could make that prediction

because there's a symmetry, Lorentz symmetry, which relates those two situations.

And that's an exact symmetry of nature. So no matter what the clock is made out of,

if it's moving at a uniform velocity, special relativity tells you there's no doubt it would

run slowly by a factor of gamma.

On the other hand, there's no such principle of any kind, either in special relativity or

general relativity, about acceleration. So if you want to know the effect of

acceleration on a clock, it really depends in detail on how large the acceleration is of
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course and the detailed physics of the clock and how much acceleration it takes to

effect it and in what way it affects, precisely. So what's the bottom line? The bottom

line is that when we want to talk about an accelerated clock, which we really do all

the time, what we always do is simply assume that the clock is built well enough so

that the acceleration does not affect its speed. And that really can be said very

precisely. The assumption that we're going to be making is that these are ideal

clocks, meaning that they're built well. And when we say the acceleration does not

affect the speed of the clock, what we're saying is that the clock will run at precisely

the same speed as another clock that's, say, moving instantaneously alongside it

with the same velocity but with no acceleration.

So at any point in the motion of my arm here, my wrist watch will have some specific

velocity. The velocity will affect in some tiny way the speed of the clock by this factor

gamma, which will be very close to 1 for that case. But we're going to assume, if we

call my watch an ideal clock, that in the even time, it will be running at exactly the

same speed as a clock which is not accelerating, but which is moving with the same

velocity as the wrist watch. Therefore, the factor of gamma will be there, but there'll

be no effect of acceleration. The speed of the clock will be determined only by its

velocity relative to our reference frame. OK, is that clear enough? And that's what

you need to assume about some accelerating clocks that show up on the problem

set. That's why I wanted to get it in today.

OK, if there are no other questions about that, I'd like to come back and talk a little

bit more about special relativity and its consequences. Sometime later in the course,

we'll talk a little bit more about what I would call the dynamical consequences of

special relativity, which include well known equations like e equals mc squared, for

example. But before one talks about energy and momentum, which are quantities

which I will dub dynamical, there kinematic effects of special relativity of which this

time dilation is one. And by kinematic I really just mean the consequences of special

relativity for the measurements of times and distances.

And if one limits oneself to discussing consequences for times and distances,

kinematic consequences, there really are precisely three and no more
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consequences of special relativity. And really all special relativity in some sense is

embodied by these three statements that we're going to be talking about, the first of

which was time dilation, which we've already seen. I'll just remind you. Time dilation

says that any clock which is moving at speed d relative to a given reference frame

will appear in quotation marks to an observer using that reference frame to run

slower than normal by a factor denoted by the Greek letter gamma.

Turn out the board lights in case they're distracting. And again, "appear" refers not

to how it would actually look to any particular observer, because any particular

observer in a particular location is going to be waiting for light rays to reach that

observer. And they'll take different amounts of time depending on where they start.

"Appear" refers to measurements made in the reference frame of the observer,

where we assume that all the actual measurements are made by on the spot clocks

and rulers who measure where the object actually were at the time these events

happened and not what it looks like at sometime later when light rays reach some

observer.

OK, the second consequence, and again all these will involve the word "appear."

And I'll always write it in quotation marks to remind you that it's not exactly what a

person would see. The second one is another famous effect of special relativity,

Lorentz contraction, or sometimes called Lorentz-Fitzgerald contraction. Any rod

which is moving at a speed v along its length relative to a given reference frame will

appear-- and again appear to an observer using that reference frame-- to be

shorter than its normal length by the same factor, gamma. A rod which is moving

perpendicular to its length does not undo that change in apparent length. So these

pictures kind of show it all. A rod, that bar is the rod, a rod which is moving at speed

v will look contracted, will appear to be contracted, by a factor of gamma. And a rod

which is moving perpendicular to its length, a rod which is like this moving this way,

has no such effect, we'll appear to have its natural length.

And this is a very famous consequence of special relativity. It means that moving

rocket ships shorter and shorter and faster they go, and so on. And again, you

should remember, it's not what you'd actually see. It's what you'd measure if you
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had on the spot local observers making these measurements, which you then later

compile. OK, that's actually all I want to say about the contraction. Any questions?

OK, next and last is an effect we just talked about less because it's a little bit more

intricate to describe. But the other crucially important effect-- these would not be

consistent if you didn't have all three. The other crucially important effect is the

changing simultaneity, the relativity of simultaneity. And it takes more words

describe it, so there's more words on the slide than on the other slides. And the

pictures are a little bit more complicated too. But the pictures do say it all, really.

The point is that if you have a system consisting of two clocks which have been

synchronized in their own rest frame-- they're both at rest with respect to each other

and they've been synchronized in their own rest frame-- and they're connected by

say a rod, which has some length which we'll call l sub 0 in the rest frame of the two

clocks . If that whole system moves relative to us by speed v along the length, those

clocks, even though they were synchronized in the rest frame, would not look

synchronized to us but rather would look like they're out of synchronization.

And in particular, it will look like the trailing clock, the one on the back of this

combination of clocks, will look a little bit like it reads a little bit later in the day by a

factor which is beta times l sub 0 times c. Beta remember is v over c. l sub 0 is the

distance between the clocks as measured in the rest frame of the clocks. And c is of

course the speed of light. On the other hand, if these two clocks were moving in a

direction which is perpendicular to the line that joins them, then there's no change in

the synchronization.

Now I should mention that this really is crucially important to the consistency of the

whole picture. And actually showing that the picture is consistent is more than we're

going to do. It's not impossible to do at this level by any means. But it's more than

we're going to do in this class, since we're not focusing on special relativity. But

when you hear about special relativity and look at these postulates, you might

realize that there seems to be a pretty obvious tension between the idea that

moving clocks run slowly and that all observers experience the same laws of
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physics. Because it means that if you and I are moving with respect to each other, I

would claim that your clock was running slowly. But at the same time, you would

claim that my clock was running slowly. Because from your point of view, you're at

some fixed velocity and therefore an inertial frame. And I'm moving relative to you.

So as you would describe it, I would be a moving clock. And my clock would be

running slowly.

So I think your clock is running slowly. You think my clock is running slowly. That

seems to contradict. What happens if we hold the clocks next to each other and

really just watch how they compare? Which one gets ahead? How can we disagree

on that? Well of course, we can't hold the clock next to each other and also have

them moving relative to each other. That's part of how you get out of this conflict.

But let's think in a little bit more detail about what we're really saying when I say that

your clock is running slowly. Remember, I want to make all my observations not by

watching you, because then there's this time delay effect which complicates things. I

make all of my observations by having a family of local observers surrounding me

all at rest relative to me. And they report back to me. And only when I receive those

reports and piece them together do I get the simple picture of what happened

where when, which is the simple picture that is described by these "appear"

relationships.

So when I say your clock is running slowly, what I mean is that if I have a network of

clocks all at rest relative to me, and your clock comes shooting by, I would measure

what time it reads as it goes past all my local clocks. Rather, they would measure

what time your clock reads as it goes past each local clock. And then they would all

report back to me. So if your clock is running slowly, for example, let's say by a

factor of two, it would mean that when you're clock passes my clock and my clock

reads one second, your clock would only read half a second, because it's running

slowly. It hasn't ticked off as much time. When it passes some later clock of my

sequence of clocks, where my clock reads two seconds, your clock will read one

second, and so on. So in that sense, I would say your clock was running slowly.

Now that has to be consistent with you thinking that my clocks are all running slowly
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as well. So if you agree that my clocks were all synchronized, then you would

conclude that my clocks must be running fast. Because when your clock reads a

half second, my clock reads one second. When your clock reads one second, my

clock reads two seconds. You would say that my clocks were reading fast if we just

made that direct comparison.

But at the same time, we know that's not the right answer. You should see the same

physics and I see. If you and I are moving with respect to each other, you should

see my clocks running slowly. So the way out of that is this question of simultaneity.

From the point of view of your clocks going past all my clocks, if you just looked at

the time on my clocks as you passed them, you would actually think that they were

running fast relative to your clock. But you would also, however, not think of those

clocks were synchronized with each other. So you don't determine what speed

they're running by looking at two different clocks.

If you want to figure out whether my clocks running fast or slow, you want to look at

one of my clocks and see how it changes with time, not comparing different clocks.

Because the different clocks would just be out of synchronism with respect to each

other as you would see it. And we're not going to go through the details. But if you

do look at my clocks consistently using a family of your clocks that are stationary

relative to you, just as I thought about a network of clocks when I was trying to

measure the speed of your clock, then everything's consistent. You would see all

my clocks running slowly. I would see all of your clocks running slowly. And because

we disagree on what's simultaneous, there are no contradictions. So simultaneity is

absolutely crucial to get out of what would otherwise be a glaring contradiction in the

whole system.

OK, that's about all I really wanted to say today. But let me just give a preview of

things that we'll talk about later in the course concerning relativity. So far I think

we've said all we are going to say, unless the questions. I think we've said all we're

going to say about the kinematic consequences of special relativity. And we're not

going to be trying to derive them, as I said. If you're interested, by the way, the

notes recommend several references, including the lecture notes from eight to 86
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from earlier years when special relativity was included as a real topic. So certainly if

you're interested in learning about this and you haven't already seen it, I'm happy to

help you. But otherwise, it will not be part of this course to discuss how these three

consequences of special relativity arise from the basic postulates of special

relativity.

But later we will be saying things that follow further along the line by pursuing the

consequences of special relativity for momentum and energy, which will be

important to us. The connection is the important connection and simple connection

that energy and momentum are only interesting to us if they're defined in a way

which makes them conserved quantities. That's why energy and momentum are

important in physics. Because for a closed system, the total energy and the total

momentum do not change. Energy and momentum can be transferred from one

part of a system to another. But energy and momentum cannot be either made nor

destroyed.

Now if we took Newton's definitions of energy and momentum, and used relativistic

kinematics, what we would find is that if we looked at, say, a collision of two

particles, the Newtonian definitions of energy and momentum, if we took those

seriously, would tell us what might happen in a collision. Usually there's an angle

that's undetermined. But given an angle, it determines everything else. If we used

special relativity to then describe what that same collision would look like in a

different frame, we would find that these Newtonian definitions of energy and

momentum would not be conserved in the other frame, if they were conserved in

the first frame. The conservation laws are dependent on what reference frame

you're using.

So what Einstein amended was slightly modified definitions of energy and

momentum, which are determined by the criterion that these slightly modified

definitions of energy and momentum should, if they are conserved in one frame be

also concerned in any other frame, which are related by the relationships to special

relativity. So that's why it was essential once one changed the kinematics of going

from one frame to another to also change the definitions of energy and momentum
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so that the conservation laws would hold in all frames using the new transformation

equations to get from frame to frame. And that's why later in the course we will be

introducing a slightly modified, slightly non-Newtonian, definitions of energy and

momentum of moving particles. OK, that's all for today. I will see folks next Tuesday.
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