
MITOCW | watch?v=-yIKKST-_Mw

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: OK. In that case let's get going. In today's lecture, we're going to be sort of splitting

the lecture of things, if the timing goes as I plan. We're going to start by finishing

talking about the geodesic equation. And then if all goes well, we will start talking

about the energy of radiation-- completely changing topics altogether.

I want to begin, as usual, by reviewing quickly what we talked about last time, just to

remind us where we are. Last time, we at first, at the beginning of lecture, talked

about how to add time into the Robertson-Walker Metric. And this is the formula that

we claimed was the correct one.

For a spacetime metric, ds squared, the meaning is closely analogous to the

meaning that it would have in special relativity. The main difference being that in

special relativity we always talk about what is observed by inertial frames of

reference and inertial observers.

In general relativity, the concept of an inertial observer is not so clear cut, but we

can talk about observers for whom there is no forces acting on them other than

possibly gravitational forces. And whether or not there are gravitational forces is

always, itself, a framed dependent question. So it does not have a definite answer.

So observers for which there is no forces acting on them other than gravitational

forces are called free-falling observers. And they play the role of inertial observers

that the inertial observers play in special relativity. So if ds squared is positive, it's

the square of the spatial separation measured by a local free-falling observer, for

whom the two events happen at the same time.

Last time, I think, I did not really mention or emphasize the word local. But the point

is that in general relativity we expect in any small region one can construct an
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accelerating coordinate system in which the effects of gravity are canceled out, as

the equivalence principle tells us we can do.

And then you essentially see the effects of special relativity. But it's only a small

region, in principle, on an infinitesimal region. So these measurements that

correspond to special relativity measurements are always made locally by an

observer who is, in principle, arbitrarily close to the events being measured.

If ds squared is negative, then it's equal to minus c squared times the square of the

time separation that would be measured by a local free-falling observer for whom

the two events happen at the same location. I should point out that a special case of

this is an observer looking at his own wristwatch. His own wristwatch is always at the

same location relevant to him, so it's a special case of this statement.

So it says that ds squared is equal to minus c squared times the time that a free-

falling observer would read on his own wrist watch. And If ds squared is 0, it means

that the two events can be joined by a light pulse going from one to the other.

Having said this, we can go back to this formula and understand why the formula is

what it is. The spatial part is what it is because any homogeneous and isotropic

spatial metric can be written in this form. And we are assuming that the universe

we're describing is homogeneous and isotropic.

The dc squared piece is really dictated by item two here. We want the t that we write

in this metric to be the cosmic time variable that we've been speaking about. And

that means that it is the time variable measured on the watches of observers who

are at rest in this coordinate system. And that means that it has to be simply minus

c squared dt squared. Or else dt would not have the right relationship to a ds

squared to be consistent with what the s squared is supposed to be.

And then we also talked about why there are no dt dr terms, or dt d theta, or dt d

phi. We said that any such term would violate isotropy. If you had a dt dr term, for

example, it would make the positive dr direction different from the negative dr

direction. And that can't be something that happens in an isotropic universe. That
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then is our metric for cosmology, the Roberrtson-Walker Metric.

And another important thing is what is it good for, now that we decided that's the

right metric? What use is to us? And what we haven't done yet, but it's actually on

the homework, we need the full spacetime metric to be able to find geodesics, to be

able to learn the paths of particles moving through this model universe.

So we will be making important use of this Roberrtson-Walker Metric with its

spacetime contributions. OK. Any questions about that? Now I'm ready to change

gears to some extent. Yes, Ani?

AUDIANCE: So in general, the spatial part of the metric, we can get from the geometry? And in

general, can you just add a minus c squared dt square for the temporal part?

PROFESSOR: It's not quite general. Remember we used an argument based on isotropy here. So

I think it's safe to say that any metric you'll find in this class is likely to have the time

entering, and nothing more complicated than minus c squared dt squared. But it's

not a general statement about general relativity. Any other questions? Yes.

AUDIANCE: [INAUDIBLE],

PROFESSOR: OK, the question is, what would be a circumstance where we would have to deal

with something more complicated? The answer would be, I think, all you need is to

add to this model universe perturbations that break the uniformity. If we tried to

describe the real universe instead of this ideal universe, where our ideal universe is

perfectly isotropic and homogeneous, if it said we wanted to describe the lumps and

bumps of the real universe, then it would become more complicated. And we would

probably need a dt, dr term.

OK, next we went on to talking about the geodesic equation. According to General

Relativity, the trajectories of particles that have no forces acting on them other than

gravity, these free-falling observers, are geodesics in the spacetime.. So that means

we want to learn how to calculate geodesics, which means paths whose length is

stationary under small variations.
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So we considered first just simple geodesics in the spatial metric, because that's

easier to think about. What is the shortest distance between two points in a space

that's described by some arbitrary metric?

So first we talked about how we describe the metric. And we introduced two

features in this first formula here. One is that instead of calling the coordinates XYZ

or something like that. We called them x1, x2, x3, so that we could talk about them

all together in one formula without writing separate pieces for the different

coordinates. So i and j represent 1, 2, and 3, or just 1, and 2, which is the labeling of

the spatial coordinates.

And the other important piece of notation that is introduced in that formula is the

Einstein summation convention. Whenever there's an index, like i and j here, which

are repeated with one index lower and one index upper, they're automatically

summed over all of the values that the coordinates take, without writing summation

sign.

It saves a lot of writing. And it turns out that one always sums under those

circumstances, so there's no need to write the sums with the summation sign.

Next we want to ask ourselves, how are we going to describe the path? Before we

can find the minimum path, we need at least a language to talk about paths. And we

could describe a path going from some point A to some point B, by giving a function

x supra i of lambda. Well, lambda is an arbitrary parameter, that parametrizes the

path.

x supra i are a set of coordinates. i runs over the values of all the coordinates of

whatever system you're dealing with. And you construct such a function where xi of

0 is the starting point, which are the coordinates of the point A. And xi of some value

lambda f, where f just stands for final, will be the end of the path. And it's supposed

to end at point B. So the final coordinates of the path should be x supra i sub b, the

coordinates of the point B.

Then we want to use this description of the path to figure out what the length is of a
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segment of the path. And then the full length will be the sum of the segments. So for

each segment, we just apply the metric to the change in coordinates. The change in

coordinates, as lambda is varied, is just the derivative of xi with respect to lambda

times the change in lambda.

And putting that in for both dxi and dxj one gets this formula, relating ds squared,

the square of the length of an infinitesimal segment to d lambda squared, the

square of the parameter that describes that length. Then the full length is gotten by,

first of all, taking the square root of this equation to get the infinitesimal length, ds.

And then taking the integral of that over the path from beginning to end.

And that, then, gives us the full length of the path, thinking of it as the sum of the

length of each of infinitesimal segment. OK? Fair enough?

Now that we have this formula for the length, now we have the next challenge,

which is to figure out how to calculate the path which minimizes that length. And I

didn't use the word last time, but that what is called the calculus of variations. And I

looked up a little bit of the history in the Wikipedia.

The calculus of variations dates back to 1696, when Johann Bernoulli invented it,

applied it to the brachistochrone problem, which is the problem of finding a path for

which a frictionless object will slide and get to its destination in the least possible

time. And it turns out to be a cycloid, just like the cycloid that describes our closed

universes, closed matter dominating the universe.

And the problem was also solved by-- Johann Bernoulli then announced this

problem to the world and challenged other mathematicians to solve it. There's a

famous story that Newton noticed this question in his mail when he got home at

4:00 AM, or something like that, from the mint-- he was apparently a hardworking

guy-- but nonetheless when he seen this problem he couldn't go to bed. He went

ahead and solved it by morning, which is a good MIT student kind of thing to do.

So the technique is to consider a small variation from whatever path you're hoping

to be the minimum. And we're going to calculate the first order change in the length
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of the path, starting from our original path, x of lambda, to some new path, x tilde of

lambda. And we parametrize the new path by writing it as the old path, plus a

correction.

And I've introduced a factor, alpha, multiplying the correction, because it makes it

easier to talk about derivatives. And wi of lambda is just some arbitrary deviation

from the original path. But we want to always go through the same starting point to

the same endpoint, because there's never going to be a minimum if we're allowed

to move the endpoints.

So the endpoints are fixed. And that means that this path deviation, w super i in my

notation, has to vanish at the two endpoints. So we impose these two equations on

the variation wi. Then what do I do is take the derivative of the path length of the

varied path, x tilde with respect to alpha, and if we had a minimum length to start

with, the derivative should always vanish. That is, the minimum should always occur

when alpha equals 0, if the original path of the true path, the true minimum path.

And if alpha equals 0 is the minimum, the derivative should always vanish at alpha

equals 0. And vice versa. If we know that this happens for every variation wi, then

we know that our path is at least an extremum, and, presumably, a minimum. And

the path itself is just written by the same formulas we had before, except for x tilde

instead of x itself.

And I've introduced an axillary quantity, a of lambda alpha, which is just what

appears inside the square root. That just saves some writing, because it has to be

written a number of times in the course of the manipulations.

So our goal now is to carry out this derivative. And the derivative acts only on the

integrand, because the limits of integration do not depend on alpha. So just carry

the derivative into the integrand and differentiate this square root of a of lambda,

which is, itself, a product of factors that we have to use-- product rule and chain rule

and various manipulations.

And after we carry out those manipulations, we end up with this expression in a

6



straightforward way involving a few steps, which I won't show again. And the

complication is that what we want to do is to figure out for what paths that

expression will vanish for all wi. We want it to vanish for all possible variations of the

path.

And what's complicated is that wi appears here as a multiplicative factor in the first

term, but as a differentiated factor in the second term. And that makes it very hard

to know, initially, when those two terms might cancel each other to give you 0, which

is what we're looking for. But the brilliant trick that, I guess, Newton invented, along

with Bernoulli and others, is to integrate by parts. Integration by parts, I'm sure, was

not a well-known procedure at that time.

But if we integrate the second term by parts, we could remove the derivative acting

on w, and arrange for w to be a multiplicative factor in both terms. And a crucial

thing that makes the whole thing useful is that when you do integrate by parts, you

discover that you don't get any endpoint contributions, because the endpoint

contributions would be proportional to wi at the endpoints.

And remember, wi has to vanish at the endpoints, because that's the condition that

we're not changing the points A and B. We're always talking about paths that have

the same starting point and the same ending point.

So integrating by parts, we get this expression, where now wi multiplies everything,

as just simply a multiplicative factor. To write it in this form, you had to do a little bit

of juggling of indices. The other important trick in these manipulations is to juggle

indices, which I'll not show you explicitly.

But the thing to remember is that these indices that are being summed over can be

called anything and it's still the same sum. So when you want to get terms to cancel

each other, you may have to change the names of indices to get them to just cancel

identically. But that's straightforward.

So we get this expression. And now we want this expression to vanish for every

possible wi of lambda. And we argued that the only way it could vanish for every
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possible wi of lambda is if the expression in curly brackets, itself, vanishes. Yeah, if

we only know the values for some particular wi of lambda, then there are lots of

ways it could vanish, because it could be positive in some places and negative in

others.

But the only way it could vanish for all wi is for the quantity in curly brackets to

vanish. So that gives us our final, or at least, almost final expression of the geodesic

equation. And that's where we left off last time, with that equation. So note that this

is just an equation that would either be obeyed or not obeyed by the function x

super i of lambda. It's just a differential equation involving x super i of lambda and

the metric, which we assume is given.

OK. So are there any questions about that? Everybody happy? Great. OK, now we'll

continue on on the blackboard.

OK, the first thing I want to do is to simplify the equation a bit. This equation is fairly

complicated, because of those square roots of A's in the denominators. The square

root of A is a pretty complicated thing to start with, and the square root of A here is

even differentiated, because it's got the lambda making an incredible mess, if you

understand all that.

So it would be nice to simplify that. And we do have one trick which we can still do,

which we haven't done yet. We originally constructed our path, xi of lambda, as a

function of some arbitrary parameter, lambda. Lambda just measures arbitrary

points along the path. There are many, many ways to do that, an infinite number of

ways that you can do that. And this formula will work for all of them, it's completely

general.

The formula, when we derived it, we didn't make any assumptions about how

lambda was chosen. But we can simplify the formula by making a particular choice

for lambda. And the choice that simplifies things is to choose lambda to be the arc

length itself. Lambda should be the distance along the path. And then we're trying to

express xi as a function of how far you've already gone.
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And that has the effect, if we go back to what Ai was, A of lambda really is just the

path length per lambda. So if lambda is the path length itself, A is just equal to 1. I'm

trying to get a formula that shows that more clearly. Here.

If we remember that this quantity is A, this tells us that ds squared is equal to A

times d lambda squared. So if ds is the same as d lambda, as you've chosen your

parameter to be the path length, this formula makes it clear that that's equivalent to

A equal to 1.

So going back to the formula, if A is 1, we would just drop it from both sides of the

equation. And all that really matters, I should point out here, maybe, because we'll

be using it later, is that A is a constant. As long as A is a constant, it will not be

differentiated, and then it will cancel on the left side and the right side.

So we don't necessarily care that it is 1, but we do care that it's a constant. And then

it just disappears from the formula. And then we get the simpler formula. And now

we'll continue on the blackboard. The simpler formula is just dds of gij dxj ds is

equal to 1/2 times the derivative of gjk, with respect to xi, times dxj ds dxk ds, where

s is equal to the path length.

So I've replaced lambda by s, because we set lambda equal to s. And s has a more

specific meaning than lambda did. Lambda was a completely arbitrary

parametrization of the path. So this one deserves a big box, because it really is the

final formula for geodesics. Once we write it in terms of different letters, we will later,

but this actually is the formula.

Now I should mention just largely for the sake of your knowing what's going on, if

you ever look at some other general relativity books, this is not the formula that the

geodesic equation is usually written in. Frankly, it is the best form. If you want to find

the geodesic, usually this form of writing the equation is the easiest.

But most general relativity books prefer instead to just give a formula for the second

derivative, here. Which involves just expanding this term, and then when we shuffle

things, to try to simplify the expressions. So one can write, to start, d ds of gij dxj ds.
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We're just going to expand it.

Now we're going to be making use of all the rules of calculus that we've learn. Every

rule you've ever learned will probably get used in this calculation. So it will be using

product rule, of course, because we have a product of two things here. But we also

have the complication that gij is not explicitly a function of s. But gij is a function of

position. And the position that one is that for any given value of s depends on s,

because we're moving along the path, x super i of s.

So the gij here, is evaluated at x super i of s. I should give this a new letter. x super

k of s. So it depends on s, through the argument of its argument. So that's a chain

rule situation.

And what we get here is, from just differentiating the second factor, that's easy. We

get gij DC d squared xj ds squared. And then, from the derivative of the derivative

chain rule piece, we get the partial of gij, with respect to xk times the dxj ds times

dxk ds.

And then to continue, this piece gets brought over to the other side, because we're

trying to get an equation just for the second derivative of the path. So then we get g

sub ij d squared x super j ds squared is equal to 1/2 di-- I'll define that in a second--

g sub jk minus 2 dk gij dxi ds dxj ds. where this partial derivative with the subscript is

just an abbreviation for the derivative with respect to the coordinate with that index.

So that's just an abbreviation.

Now you could think of this as a matrix times a vector is equal to an expression.

What we like to do is just get an expression for this vector. So if we think of it as a

matrix times a vector, all we have to do is invert the matrix to be able to get an

expression for the vector itself.

Yes!

AUDIANCE: Should that closing parenthesis be more [INAUDIBLE]?

PROFESSOR: Oh, Yeah, I think you're right, it doesn't look right. Yeah. Thank you This has to
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multiply everything. Oops! OK, OK. Given enough chances I'll get it right. OK, now

everybody happy this time? Thank you very much for getting it straight.

OK, So as I was saying, we want to isolate this second derivative. We're hoping to

get just an expression for the second derivative. And this can be interpreted as a

matrix times a vector equals something. We want to just invert that matrix. Yes?

AUDIANCE: Isn't the ds and [? the idx ?] [INAUDIBLE]?

PROFESSOR: Oh, do I have that wrong too, perhaps? I think we want j and k there, that don't we?

OK, attempt number four, or did I lose count as well? j and k are the indices and the

i matches the free i on the left. And all the other indices are sound. I think, probably,

I finally achieved the right formula. Thanks for all the help.

So inverting a matrix, the principal is a straightforward mathematical operation. In

general relativity, we give a name to the inverse metric, and it's the same letter g

with indices, with superscripts instead of subscripts. And that's defined to be the

matrix inverse. So g super ij is defined to be the matrix inverse of g sub ij.

And to put that into an equation, we could say that if we take g with upper indices--

and I'll write those upper indices as i and l-- and multiply it by a g with lower indices l

and j, when you sum over adjacent indices in this index notation, that's exactly what

corresponds to the definition of matrix multiplication.

So this is just the matrix g with upper indices times the matrix g with lower indices,

and it's the i j'th element of that matrix. And we're saying it should be the identity

matrix, and that means that the i j'th element should be 0 if it's off diagonal, and 1 if

it's diagonal, if i equals j.

And that's exactly the definition of a chronic or a delta. So this is equal to delta ij. We

remember that delta ij is 0 if i is not equal to j, 1 if i is equal to j. That's the definition.

And it corresponds to that identity matrix in matrix language. So this is the

relationship that actually defines g super il. And it is just the statement that g with

upper indices is the matrix inverse of g with lower indices.
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Using this, we can bring this g to the other side essentially by multiplying by g

inverse. And I will save a little time by not writing that out in gory detail, but rather I'll

just write the result. And the result is written in terms of a new symbol that gets

defined, which is an absolutely standard symbol in General Relativity.

The formula is d squared x i, ds squared is equal to-- we know it's going to be equal

to stuff times the product of two derivatives. And the stuff that appears is just given

a name, capital gamma, which has an upper index i, which matches the left hand

side of the equation. And two lower indices, which I'm calling j and k, which will get

summed with the derivatives that follow, d x j ds, dx k, ds.

And this quantity, gamma super i sub jk are just the terms that would appear when

we do these manipulations. And I'll write what they are. Gamma super i sub jk is

equal to 1/2 g super il times the derivative with respect to j of g sub lk, plus the

derivative with respect to k of g sub lj. And then minus the derivative with respect to l

of g sub jk. And this quantity has several different names.

Everybody agrees how to define it up to the sign. There are different sign

conventions that are used in different books. And there are also different names for

it. It's often called the affine connection. If you look, for example in Steve Weinberg's

General Relativity book, he calls it the affine connection.

It's also very often called the Christofel connection, or the Christofel symbol. And

frankly those are the only names for it that I've seen, personally. But there's a book

about [INAUDIBLE] by Sean Carroll which is a very good book. And he claims that

it's sometimes also called the Riemann connection And it's also sometimes called

the Levi-Civita connection. So it's got lots of names, which I guess means lots of

people's independently invented it.

But in any case, that's the answer. And it's just a way of rewriting the formula we

have up there. And for solving problems, the formula, the way we wrote up there, is

almost always the best way to do it. So this is really just window dressing, largely for

the purpose of making contact with other books that you might come across.
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OK, so that finishes the derivation of the geodesic equation. Now I'd like to give an

example of its use. But before I do that, let me just pause to ask if there are any

questions about the derivation? OK.

So on your homework, you will, in fact, be applying this formalism to the Robertson-

Walker metric. And you'll learn how moving particles slow down as they move

through an expanding universe, completely in an analogy to the way photons, which

we've already learned, lose energy as they travel through an expanding universe.

So particles with mass also lose energy in a well-defined way, which you'll be

calculating on the homework.

For example, though, I'll do something different. A fun metric to talk about is the

Schwarzschild metric, which describes, among other things, black holes. It in

principle, describes anything which is spherically symmetric and has a gravitational

field. But black holes are the most interesting example, because it's where the most

surprises lie.

So the Schwarzschild metric has the form ds squared is equal to minus c squared d

tau squared, which is equal to-- this is just a definition, it defines d tau-- but in terms

of the coordinates, it's minus 1 minus 2 G, Newton's constant, M, the mass of the

object we're discussing-- the mass of the black hole, if it is a black hole-- divided by

r times c squared, r is the radial coordinate, times c squared dt squared, plus 1

minus 2 GM over rc squared times dr squared plus r squared times d theta squared

plus sine squared theta d phi squared.

Now here, theta and phi are the usual polar angles. We're using a polar coordinate

system. So as usual, theta lies between 0 and pi. 0, what we might call the North

Pole, and pi what we might call the South Pole. And phi is what is often called an

azimuthal angle, it goes around. And the way one describes coordinates on the

surface of the Earth, phi would be the longitude variable.

So 0 is less than or equal to phi is less than or equal to 2 pi where phi equals 2 pi is

identified with phi equals 0. And you can go around and come back to where you

started.
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Now notice that if we set capital M, the mass of this object equal to 0, the metric

becomes the trivial metric of Special Relativity written in spherical polar coordinates.

So all complications go away if there's no mass. The object disappears. But as long

as the mass is non-zero there are factors that multiply the dr squared term and the

c squared dt squared term.

Notice that the factors that do that multiplying-- now one of these should be

inverted. Important inverse, it's a minus 1 power for that factor. Notice that r can be

small enough so that these factors will vanish. And the place where that happens is

called the Schwarzschild radius after the same person who invented the metric.

So r sub Schwarzschild is equal to 2 GM divided by c squared. When little r is equal

to that, this quantity in parentheses vanishes, which means we get infinity here,

because it's inverted, and we get a 0 there.

Now when a term in the metric is either 0 or infinite, one calls that a singularity. In

this case, it's a removable singularity. That is, the Schwarzschild singularity is only

there because Schwarzschild chose to use these particular coordinates. These are

simpler than other coordinates. He wasn't foolish to use them.

But the appearance of that singularity is really caused solely by the choice of

coordinates. There really is no singularity at the Schwarzschild horizon.

And that was shown some years later by other people constructing other coordinate

systems. The coordinate system is best known today that avoids the Schwarzschild

singularity is a coordinate system called the Kruskal coordinate system. But we will

not be looking at the Kruskal coordinate system in this class. Leave that for the GR

class that you'll take some time.

OK, now the masses sum parameter, notice that the metric is completely

determined by the mass. And that's the same situation as we found in Newtonian

gravity. The metric outside of the spherically symmetric object, by the gravitational

field in Newtonian Physics outside of a spherical symmetric object, depends only on

the total mass, which does not depend, at all, on how it's distributed as long as it's
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spherically symmetric.

And the same thing here. As long as an object is spherically symmetric, the

gravitational field outside of the object will always look like that formula. Now there

are still two cases-- outside of the object could be larger than or smaller than this

Schwarzschild radius.

So for an object like the sun, the Schwarzschild radius, we could calculate it-- and

it's calculated in the notes-- it's about two or three kilometers. Hold on and I'll tell

you more accurately. It's 2.95 kilometers, the Schwarzschild radius of the sun. But

the sun, of course, is much bigger than that.

And that means that the sun doesn't have a Schwarzschild horizon. That is, at 2.95

kilometers from the center of the sun there's still sun. It's not outside the sun. This

metric only holds outside the spherically symmetric object.

So it does not hold inside the sun. The place where this has the apparent singularity

the metric is not valid at all. So there is nothing that even comes close to anything

worth talking about, as far as the Schwarzschild singularity for an object like the sun.

But if the sun were compressed to a size smaller than 2.95 kilometers with the same

mass, then these factors would be relevant at the places where they vanish. And

whatever consequences they have, we would be dealing with.

Even though r equals r Schwarzschild is not a singular point, it is still a special point.

What you can show-- we won't-- but what we can show is that that is the horizon.

Meaning that if an object falls inside this Schwarzschild radius, there is no trajectory

that will ever get it out. Yes?

AUDIANCE: Say a star is just incredibly dense at its core. Is it possible to have suppression of

some fractional life of a star that's from that mass that it's contained? Or like a

fusion reaction that is going on with the net radius?

PROFESSOR: OK, could there be a horizon inside of a star? I think is what you're asking, basically.

AUDIANCE: One that actually affects the--

15



PROFESSOR: One that really is a horizon.

AUDIANCE: That's outside.

PROFESSOR: Right. If this were the sun you were describing, this formula would just not be valid

inside. There would be no horizon inside. But you're asking a real valid question. If a

star had, for some reason, a very dense spot in the middle, could it actually form a

horizon inside the material?

And the answer is, yes, it could. It would not be stable. The material would ultimately

fall in, but it could happen. Yes?

AUDIANCE: So like our galaxy has a super massive black hole in the center.

PROFESSOR: That's right. Our galaxy does have a super massive black hole in the center.

AUDIANCE: Yeah. So you can consider that as like a larger mass that has black hole, area?

PROFESSOR: Right! Right! That's right. The comment is that if we go from a star to something

bigger than a star we have perfectly good example in our own galaxy, where there

is a black hole in the center, but there is still mass that continues outside of that.

And the black hole is accreting, more matter does keep falling in, it's not really

stable. But it certainly does exist, and can exist. Any other questions?

Well, our goal now is to calculate a geodesic. And I will just calculate one geodesic. I

will calculate what happens if an object starts at some fixed radius at rest and is

released and falls into this black hole.

I first want to just rewrite the geodesic equation in terms of variables that are more

appropriate for this case. When I wrote that, I had a mind just calculating the

geodesics in space, looking for the shortest path between two points.

The geodesic that we're talking about when we're talking about an object in general

relativity moving along the geodesic is a geodesic that's a time-like geodesic. That

is, any increment along the geodesic is a time-like interval, or following a particle.

Particles travel on time-like trajectories in relativity.
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Particles travel on time-like trajectories in relativity.

So the usual notation for time is something like tau rather than s, which is why I

wrote it this way. ds squared is just defined to be minus c squared d tau squared.

So d tau squared has no more or less information than ds squared, but it has the

opposite sign and a difference by a factor of c squared, as well.

And another change in notation which is a rather universal convention is that, when

we talk about space alone we use Latin indices, ijk.. When we talk about spacetime,

where one of the indices might be 0 referring to the time direction, then we usually

use Greek indices, mu, nu, lambda.

So I'm going to rewrite the geodesic equation using tau as my parameter instead of

s, since we're talking about proper time along the trajectory instead of distances.

And using Greek letters instead of Latin letters, because we're talking about

spacetime rather than just space.

So otherwise what I'm going to write is just identical to that. So really is nothing

more than a change in notation. d d tau of g mu nu, dx super nu d tau. And it is

equal to 1/2 times the partial of g lambda sigma with respect to x nu dx lambda d

tau dx sigma d tau.

Now you might want to go through the calculation and make sure of the fact that

now we're dealing with a metric which is not positive, definite, doesn't make any

difference. But it doesn't. It does mean that now we certainly have possibilities of

getting maxima and stationary points as well as minima, because of the variety of

signs that appear in the metric.

But otherwise, the calculations of the geodesic equation goes through exactly as we

calculated it. And the only thing I'm doing here, relative to what we have there, is

just changing the notation a bit to conform to the notaion that is usually used for

talking about spacetime trajectories.

Since we're talking about radio trajectories, we're just going to release a particle at

rest and then it will fall straight towards the center of our spherical object, we know

17



by symmetry that it's not going to be deflected in the positive theta or the negative

theta, or the positive phi or negative phi directions, because that would violate

isotropy. It would violate the rotational symmetry that we know as part of this metric.

This Is just the metric of the surface of the sphere.

So theta and phi will just stay whatever values they have when you drop this object.

So we will not even talk about theta and phi. We will only talk about r and t, how

particle falls in as a function of time.

And then it turns out to be useful to just first write down what the metric itself tells

us. And we'll divide by d tau. So we could talk about derivatives with respect to tau.

So changing an overall sign, since everything's going to be negative and we'd rather

have everything be positive, we can just rewrite the metric equation as saying, that c

squared is equal to 1 minus 2 GM over rc squared, times c squared times dt d tau

squared minus 1 minus 2 GM over rc squared inverse times dr d tau squared.

So this is nothing more than rewriting this equation saying d theta is equal to 0 and

d phi will be 0. Written this way, though, it tells us that we can find dt d tau, for

example, if we know dr d tau. And we also know where we are, you know, little r.

And we'll be using that, shortly.

To continue a little further, we're going to introduce some abbreviations just so

we're don't have to write so much. I'm going to define little h of r as just one minus r

Schwarzschild over r. And this is also 1 minus 2 GM over rc squared. That's a factor

that keeps recurring in our expression for the metric. Yes?

AUDIANCE: The second to last equation is supposed to be a c squared in between the two

parenthesis?

PROFESSOR: Probably. Yes, thank you. G squared, right? Thanks a lot. In terms of h of r, we can

rewrite that equation slightly more simply. I'm going to bring things to the other side

and write it as c squared times dt d tau squared is equal to c squared h inverse of r

plus h to the minus 2 of r times dr d tau squared.
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This is just a rewriting of the above equation, making use of the new notation that

we've introduced. And this is the form we will be using. It explicitly tells us how to

find dt d tau in terms of other things. So dt d tau is not independent.

Since we know dt d tau in terms of dr d tau. If We get an expression for dr d tau

we're sort of finished. We could find everything we want to know about t from the

equation we just wrote. So it turns out that all we need to do to calculate this radial

trajectory is to look at the component of the metric where that free index, mu, mu is

the index that's not summed, we're going to set mu equal to r.

Remember mu is a number that corresponds to a coordinate. And we're going to

set mu equal to the value that corresponds to the r coordinate. And that will be

sufficient to get us our answer.

When we do that, the equation becomes d d tau of g sub r. Now the second index,

nu in the original expression, is summed from 0 to 3 for the gr case, where we have

four coordinates, one time and three spatial coordinates, but we only need to write

the terms where gr nu variable is non-zero. And the metric itself is diagonal.

So if one index is a little r, the other index has to also be r, or else it vanishes. So

the only value of nu that contributes to the sum is when nu is also equal to the r

coordinate. So we get g sub rr d xr-- which, in fact I'll write it as just dr. x super r is

just the r coordinate, which we also just call r times d tau is equal to 1/2 dr.

And now, on the right-hand side, we're summing over lambda and sigma. And

lambda and sigma have to have the property that g sub lambda sigma depends on

r, or else the first factor will vanish. And furthermore, g sub lambda sigma has be

non-zero, for the values of lambda and sigma that you want, which means that

lambda and sigma for this case has to be equal to each other, because we have no

off-diagonal terms to our metric.

So the only contributions we get are from g sub rr and g sub tt. So you get the

derivative with respect to r of g sub rr times dr d tau squared. This become squared,

because lambda is equal to sigma. And then plus 1/2 drg sub tt times dt d tau
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squared.

And note that buried in here is, if we expand this, the second derivative of r with

respect to time-- respect to tau. So we can extract that and solve for it. And things

like dt d tau will appear in our answer, initially, because it's here already.

But we could replace dt d tau by this top equation and eliminate it from our results.

And I'm going to skip the algebra, which is straightforward, although tedious. I urge

you to go through it in the notes. But the end result ends up being remarkably

simple, after a number of cancellations that look like surprises.

And what you find in the end-- and it's just the simplification of this formula, nothing

more-- you find that d squared r d tau squared is just equal to minus Newton's

constant times the mass divided by r squared.

Now this is rather shocking, and even looks exactly like Newtonian mechanics.

However, even though it looks like Newtonian mechanics, it's not really the same as

Newtonian mechanics, because the variables don't mean quite the same thing.

First of all, even r does not really mean radius in the same sense as radius is

defined by Newton. In Newtonian mechanics, radius is the distance from the origin.

If we wanted to know the distance from the origin, we would have to integrate this

metric. And in fact, there isn't even an actual origin here, because you would have

to go through the singularity before you get there. And you really can't. That integral

is not really even defined.

Although, of course, if we had something like the sun, where the metric was

different from this small r, then we could integrate from r equals 0, and that would

define the true radius, distance from the center. But it would not be r. It would be

what you got by integrating with the metric. So r has a different interpretation than it

does for Newtonian physics.

I might add, it still has a simple interpretation. If you look at this metric, the

tangential part, the angular part, is exactly what you have for Euclidean geometry.

It's just r squared times the same combination of d theta and d phi as appears on
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the surface of a sphere.

So little r is sometimes called the circumferential radius, because it really does give

you the circumference of circles at that radial coordinate. If we went around in a

circle at a fixed r, the circle would involve varying phi, for example, over a range of 2

pi, we really would see a total circumference of 2 pi little r. So r is related to

circumferences in exactly the way as it is in Euclidean geometry. But it's not related

to the distance from the origin in the same way as it is in Euclidean geometry.

In addition, tau, here, is not the universal time that Newton imagined. But rather, tau

is measured along the geodesic. It is just ds squared, but remember, ds squared is

being measured along the geodesic, which means that it is, in fact, the proper time

as it would be measured by the person falling with the object towards the black hole.

So tau is proper time as measured by the falling object. And that follows from what

we know about the meaning of the metric itself.

OK, that said we would now like to just study this equation more carefully. And since

the equation itself still has the same form as what you get from Newton, if you

remember what you would have done if this was 801, you can, in fact, do exactly

the same thing here.

And what you probably would have done, if this was 801, would be to recognize that

this equation can be integrated. We can write the equation as d d tau of 1/2 dr d tau

squared minus GM/r equals 0. I you carry out these derivatives you would get that

equation. And this is just the conservation of energy version of the force equation.

And that tells us that this quantity is a constant. If we drop the object from some

initial position, r sub 0, and we drop it with no initial velocity, we just let go of it at r

sub 0, that tells us what this quantity is when we drop it. It's minus GM over r sub 0.

This piece vanishes if there is no initial velocity. And that means it will always have

that value.

And knowing that, we can write dr d tau is equal to-- just solving for that-- minus the

square root of 2GM times r0 minus r over r r0 I've collected two terms and put them
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over a common denominator and added them. So this is not quite as obvious as it

might be. But this is just the statement that that quantity has the same value as it did

when you started.

Now this can be further integrated. We can write it as dr over-- bringing all this to

the other side-- is equal to d tau. And then integrate both sides. Notice when I bring

this to the other side and bring the d tau to the right., everything on the left-hand

side now only depends on r. So this is just an explicit integral over r that we can do.

And I will just tell you that when the integral is done we get a formula for tau as a

function of r. And it's equal to the square root of r sub 0 over 2GM times r0 times

the inverse tangent of the square root of r0 minus r over r plus the square root of r

times r0 minus r.

So when r equals r0, this gives us 0, and that's what we want. When we start we're

at r0, or time 0, or proper time 0. And then as r gets smaller, as it falls in, time

grows. And this gives us the time as a function of r. We might prefer to have r as a

function of time, but that formula can't really be inverted analytically. So that's the

best we can do.

Now one thing that you notice from this is that nothing special happens as r

decreases all the way to 0. Even when you plug in r equals 0 here, you just get

some finite number. So in a finite amount of time, the observer would find himself

falling through the Schwarzchild horizon and all the way to r equals 0.

I didn't mention it but r equals 0 is a true singularity. Our metric is also singular

when r equals 0. These quantities all become infinite. And physically what would

happen is that, as the object falling in approaches r equals 0, the tidal forces, that is

the difference in the gravitational force on one part of the object verses another, will

get stronger and stronger. And objects will just be ripped apart.

And the ripping apart occurs as being spaghetti-ized, that is, the force on the front

gets to be very strong compared to the force on the back. So I'll just get stretched

out along the direction of motion.
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Now the curious thing is what this looks like if we think of it not as a function of the

proper time measured by the wrist watch of the object falling in but rather, we could

try to describe it in terms of our external time variable. The variable t that appears in

the Schwarzchild metric.

And to do that, to make the conversion, we want to calculate what the dr dt is,

instead of dr d tau. Like maybe an analogous formula, in terms of t. And to get that,

we use simply chain rule here. dr dt is equal to dr d tau-- which we've already

calculated-- times d tau dt. And d tau dt is 1 over dt d tau. If you just have two

variables that depend on each other. The derivatives are just the inverse of each

other.

So this could be written as dr d tau-- which we've calculated-- divided by dt d tau.

And dt d tau we've really already calculated as well, because it's just given by this

formula here. So we could write out what that is and figure out how it's going to

behave as the object approaches the Schwarzchild radius.

So it becomes dr dt is equal to, I'll just write the numerator as dr d tau given by that

expression. But what's behaving in a more peculiar way is the denominator, which is

h inverse of r plus c to the minus 2, h to the minus 2 of r times dr d tau squared.

So now we want to look at this function h inverse of r. And this just means 1/h of r. It

doesn't mean functional inverse. That is just equal to r over r minus r Schwarzchild.

And we're going to be interested in what happens when r gets to be very near r

Schwarzchild, because that's where the interesting things happen, as you're

approaching the Schwarzchild horizon. And that means that the behavior of the

numerator won't be important. The denominator will be going up, and that's what

will control everything.

So we can approximate this as just r Schwarzchild over r minus r Schwarzchild. And

this is for r near r Schwarzchild. We've replaced the numerator by a constant.

And then if we look at this formula, this is going to blow up as we approach the

horizon. This is the square of that quantity. It will blow up faster than the first power
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of that quantity. And therefore, this will dominate, the denominator of the

expression. We can ignore this.

When this dominates, the dr d tau pieces cancel. So that's nice. We don't even need

to think about what the dr d tau is. And what we get near the horizon is simply a

factor of c times r minus r Schwarzchild over r Schwarzchild. It's basically just h.

This becomes upstairs with a plus sign. And the square root turns it into h instead of

h squared. So this is the inverse of that.

OK, now if we try to play the same game here as we did here, to determine what

our time variable behaves as a function of r, instead of the proper time variable tau,

what we find is that t of r-- this is for r near r Schwarzchild-- is about equal to minus

r sub s over c times the integral up to r of dr prime over r prime minus rs.

This is dr dt. Yeah, this was dr dt from the beginning. I forgot to write the r

somehow.

AUDIANCE: Doesn't that [INAUDIBLE]?

PROFESSOR: Yeah, I didn't write the lower limit of integration. I was about to comment on that.

The integrand that we're writing is only a good approximation whenever we're near

r. So whatever happens near the lower limit of integration, we just haven't done

accurately.

So I'm going to just not write a lower limit of integration here, meaning that we're

interested only in what happens as the upper limit of integration r becomes very

near r Schwarzchild. And everything will be dominated by what happens near the

upper limit of integration.

AUDIANCE: So would you just integrate over on [INAUDIBLE] for that?

PROFESSOR: That's right, that's right. We just integrated over a small region near, r Schwarzchild.

Nu r, which is also about equal to r Schwarzchild. And the point is, that this diverges

logarithmically as r approaches r Schwarzchild. So it behaves approximately as

minus r Schwarzchild over c times the logarithm of r minus r Schwarzchild.
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So as r approaches r Schwarzchild, this quantity that's the argument of the

logarithm gets closer and closer to 0. It gets smaller and smaller approaching 0. But

the logarithm of a very small number is a negative number, a large negative

number. And then there's a minus sign here. You get a large positive number and it

diverges.

As r approaches r Schwarzchild the time variable approaches infinity. And that

means that at no finite time does the object ever reach the Schwarzchild horizon.

But as seen from the outside, it takes an infinite amount of time for the object to

reach the Schwarzchild horizon. As time gets larger and larger, the object gets and

closer to the Schwarzchild horizon, asymptotically approaching it but never reaching

it.

So this, of course, is very peculiar, because from the point of view of the person

falling into the black hole, all this just happens in a finite amount of time and is over

with. From the outside, it looks like it takes an infinite amount of time. And weird

things like this can happen because of the fact that in general relativity time is a

locally measured variable. You measure your time, I measure my time. They don't

have to agree. And in this case, they can disagree by an infinite amount, which is

rather bizarre, but that's what happens.

So according to classical general relativity, when an object falls into a black hole,

from the point of view of the object nothing special would happen as that object

crossed the Schwarzchild horizon. Everybody believed that that was really the case

until maybe a couple years ago.

Now it's controversial, actually. At the classical level, everybody believes that's still

true. I mean, classical general relativity says that an object can fall through the

Schwarzchild horizon and then nothing happens. It's not really a singularity.

But the issue is that when one incorporates, or attempts to incorporate, the effects

of quantum theory, which nobody really knows how to do in a totally reliable way,

then there are indications that there's something dramatic happening at the
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Schwarzchild horizon. The phrase that's often used for what people think might be

happening at the horizon is the word firewall.

So whether or not there is a firewall at the horizon, is not settled at this point.

Certainly, though, classical general relativity does not predict the firewall. If it exists,

all the arguments that say it might exist are based on the quantum physics of black

holes, and black hole evaporation, and things like that.

As you know quantum mechanically, the black holes are not stable, either, if they

evaporate-- as was derived by Stephen Hawking in, I think, 1974. But that's strictly a

quantum effect. It would go to 0 as h bar goes to 0, and, at the moment, we're only

talking about classical general relativity. So the black hole that we're describing is

perfectly stable. And nothing happens if you fall through the horizon. Except from

the outside, it looks like it would take an infinite amount of time just to reach the

horizon.

So we'll stop there. I guess I'm not going to get to talk about the energy associated

with radiation. But we'll get to that on Thursday. So see you folks on Thursday.
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