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PROFESSOR: OK. Good morning, everybody. Let's get started. Let me just begin by asking if there

are any questions, either about logistical issues or about physics issues?

OK. Today we'll be finishing our discussion of black-body radiation by talking about

the actual spectrum of the cosmic microwave background that we find in our

universe. And then move on to talk about the rather exciting discovery in 1998 of

the fact that our universe today appears to have a nonzero cosmological constant.

So I want to begin by reviewing what we did last time. And one of the reasons why I

do this is I think it's a good opportunity for you to ask questions that don't occur to

you the first time we go through. And that, from my point of view, has been an

extraordinary success. I think you've asked great questions. So we'll see what

comes up today.

We began the last lecture by recalling, I think from the previous lecture actually, the

basic formulas for black-body radiation, which is just the radiation of massless

particles at a given temperature. And we have formulas for the energy density, the

pressure, the number density, and the entropy density, all of which are given in

terms of two constants, little g and little g star, which is the only place where the

actual nature of the matter comes in.

G and g-star are both equal to 2 for photons, but these formulas allow us to talk

about other kinds of black-body radiation as well, black-body radiation of other kinds

of particles. As neutrinos are also effectively massless, so they contribute. And in

addition, e plus e minus pairs, if the temperature gets hot enough so that the mass

of the electrons becomes negligible compared to kt, also contribute to the cosmic

background radiation. And if we want the higher temperatures, other particle will
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start to contribute. And at the highest temperatures all particles act like black-body

radiation.

The general formula for g and g star is that there is a factor out front that depends

on whether the particle is a boson or a fermion, a particle which does or does not

obey the Pauli exclusion principle. Fermions do not, bosons-- excuse me, I said that

backwards. Fermions obey the Pauli exclusion principle, bosons do not. G and g

star are both 1 for bosons. But for fermions there's a factor of 7/8 for g and 3/4 for g

star.

Yes?

AUDIENCE: Would you mind quickly restating why the positron-electron pairs act like radiation

above that temperature?

PROFESSOR: OK. The question is, why do electron-positron pairs act like radiation at these high

temperatures? And the answer is that radiation is just characterized by the fact that

the particles are effectively massless. And the effective energy scale is kt, that's the

average thermal energy in a thermal mix. So as long as m e c squared is small

compared to kt, electrons and positrons think that they're massless and act like

they're massless. And as I said, if you go to higher temperatures still, all particles

will act like they're massless.

Coming back to the story of g and g star, we have the factor out front which

depends on whether they're bosons or fermions. And then that just multiplies the

total number of particle types, whereby a particle type-- we made a complete

specification of what kind of a thing it is. And that includes specifying what species of

particle it is, whether it's a particle or an anti-particle if that distinction exists, and

what the spin state is if the particle has spin.

So we can try this out now on some examples. First example, will be neutrinos

which play a very important role in the early universe, and even in the particle

number balance of today's universe. Neutrinos actually have a small mass, as we

talked about last time and as I'll review again this time. But nonetheless, as far as
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cosmology is concerned, they effectively act like massless particles although the

story about why they act like massless particles is a little complicated. It's more than

just saying that they're mass is small, for reasons that we'll see.

But anyway, I'm nonetheless going to start by describing neutrinos as if they were

massless, as was believed to be the case really until 15 years ago or so.

The massless model of the neutrino was a particle which was always left-handed.

And by left-handed what I mean is that for neutrinos, if you took the angular

momentum of the neutrino in the direction of the momentum, p hat there means

dotted with the unit vector in the direction of the spatial momentum, you'd always

get minus 1/2 in units of h bar. And conversely, all new bars are right-handed which

just means the same equation holds with the opposite sign. So neutrinos always

have spins that oppose the direction of motion, and anti-neutrinos always have

spins aligned with the direction of motion.

Now, it's not obvious but, if neutrinos were massless this would be a Lorentz

invariant statement. If neutrinos have a mass, that statement is obviously not learn

Lorentz invariant. As you can see by imagining a neutrino coming by, and you can

get into a rocket ship, chase it, and pass it, and then see it going the other way out

your window because you're going faster than it. You would see the momentum in

the opposite direction from the way it looked to begin with. But the spin would look

like it was the same direction as it did to begin with, and therefore the spin would

now be aligned with the momentum instead of opposite the momentum.

So this could not possibly hold universally if the neutrino has a mass. But for the

time being our neutrinos are massless. So we're going to take this as a given fact.

And it certainly is a fact for all neutrinos that have ever been actually measured.

Given this model of the neutrino, the g for neutrinos is 7/8 because they're fermions.

Then there's a factor of 3, because there are three different species of neutrinos-

electron neutrinos, muon neutrinos, tau neutrinos. Neutrinos come in particles or

anti-particles which are distinct from each other, we think. So there's a factor of 2

associated with the particle anti-particle duality. And there's only one spin state. The
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spin that's anti-aligned with the momentum, or aligned for the anti-neutrinos. But

only one spin state in either case. So just a factor of 1 from spin states, and

multiplying that through we get 21/4 for g, and 9/2 for g star.

Yes?

AUDIENCE: If we found out that they were Majorana, that they were their own anti-particles,

would that change what we expect the temperature [INAUDIBLE] to be?

PROFESSOR: No, it would not. OK. The question was, if we find that they're Majorana particles--

which I'm going to be talking about in a minute-- where the particles would be their

own anti-particles, which would mean that the right-handed anti-neutrino would

really just be the anti-particle of the left-handed neutrino, it would not change these

final numbers at all.

What it would do is, instead of having the 2 for particle anti-particle, we would have

a 2 for spin states. So there would still be two kinds of neutrinos, but instead of

calling them the neutrino and the anti-neutrino, the right words would be right-

handed neutrino and left-handed neutrino. But the product would still be the same.

AUDIENCE: Wait, they have mass and they are Majorana?

PROFESSOR: If they have mass and Majorana, what I just said applies. The fact that they have a

mass would mean at the lowest possible temperatures they would not act like black-

body radiation. Kt would have to be bigger than their mass times c squared. But

that's only on the order of electron volts at most. So I'll talk later about why the true

model neutrinos which have masses give the same result as this.

OK. Then we can also, just as an exercise, calculate g and g star. It's more than an

exercise. We like to know the results. We can calculate g and g star for e plus e

minus pairs, which is relevant for when kt is large compared to the rest energy of an

electron. And again, they are fermions so we get a factor of 7/8 appearing in the

expression for g, and 3/4 appearing in the expression for g star.

And then we just have to multiply that times the total number of types of electrons
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that exist. There's only one species called an electron, so we only get a factor of

one in the species slot of the product. There are both electrons and anti-electrons

where the anti-electrons are usually called positrons. So we get a factor of 2 in

particle anti-particle. Two spin states because an electron can be spin up or spin

down, and that gives us 7/2 and 3.

Given that, we can go ahead and calculate what the energy density and radiation

should be for the present universe given the temperature of the photons, the

temperature of the cosmic microwave background. And in doing that there's an

important catch which is something which is the subject of a homework problem that

you'll be doing on problem set seven.

When the electron-positron pairs disappear from the thermal equilibrium mix, if

everything were still in thermal contact, its heat would be shared between the

photons and the neutrinos in a way that would keep a common temperature. But in

fact, when the e plus e minus pairs disappear, things are not in thermal contact

anymore. And in particular, the neutrinos have decoupled. They're effectively not

interacting with anything anymore. So the neutrinos keep their own entropy and do

not absorb any entropy coming from the e plus e minus pairs. So all the entropy of

the e plus e minus pairs gets transferred only to the photons. And that heats the

photons relative to the neutrinos in a calculable amount, which you will calculate on

the homework problem.

And the answer is that the temperature of the neutrinos ends up being only 4/11 to

the 1/3 power, times the temperature of the photons. And that's important for

understanding what's been happening in the universe since this time. That ratio is

maintained forever from that time onward.

So if we want to write down the formula for energy density and radiation today it

would have two terms. The 2 here is the g for the photons, and this, times that

expression is the energy density in photons. The second term is the energy density

in neutrinos. And it has the factor of 21/4 which was the g factor for neutrinos. But

then there's also a correction factor for the temperature, because on the right hand
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side here I put t gamma to the fourth. So this factor corrects it to make it into t

neutrino to the fourth, which is what we need there to give the right energy density

for the neutrinos today. And this is just that ratio to the fourth power.

And once you plug in numbers there it's 7.01 times 10 to the minus 14th joules per

meter cubed, which is, from the beginning, what we said was the energy density in

radiation of the universe today.

OK. Finally I'd like to come back to this real story of neutrinos and their masses and

why, even though they have small masses, the answers that we gave for the

massless model of the neutrino are completely accurate for cosmology.

We've never actually measured the mass of a neutrino. But what we have seen is

that neutrinos of one species can oscillate into neutrinos of the other species. And it

turns out, theoretically, that that requires them to have a mass. And by seeing how

fast they oscillate you can actually measure the difference in the mass squareds

between the two species. So it's still possible actually, in principle, that one of the

species could have zero mass. But they can't all have zero mass because we know

the differences in the squares of their masses.

So in particular, delta m squared 2 1 times c to the fourth, meaning the mass

expressed as an energy, is 7.5 times 10 to the minus 5 eV squared. And larger

values obtained for 2 3, which is 2.3 times 10 to the minus 3 eV squared. We're still

talking about fractions of an eV.

The other of the three possible combinations here are just not known yet.

Now, if neutrinos have a mass, that does actually change things rather dramatically

because of what we said about-- the statement that the neutrinos always align their

spins with their motion just cannot be true if neutrinos have a mass. And more

generally, for any particle with a mass of arbitrary spin j, the statement is that, the

component of j along any particular axis-- and we'll call it the z-axis-- always takes

on the possible values in terms of h bar going from minus j up to j with no

emissions. It's different for massless particles. For massless particles every one of
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these elements on the right hand side is independent and, by itself, a Lorentz

invariant possibility.

But, coming back to neutrinos-- if the neutrinos have a mass, in addition to the left-

handed neutrinos there has to be a right-handed partner. And the question then is,

what's the story behind that? And it turns out we don't know the story. But we know

two possible stories.

And one of the possible stories is that could be what's called a Dirac mass. And for

Dirac mass what it means is that, the right-handed neutrino is simply a new type of

particle which just happens to be a particle that we've never seen, but a particle

which would have a perfectly real existence. It would however, to fit into theory and

observation, be an extremely weakly interacting particle. The interactions of the

right-handed one do not have to be the same as the interactions of the left-handed

one. That is, the interactions can depend explicitly on p hat dot j. So depending its

value, you could affect what the interactions are, again, in a Lorentz invariant way.

And in practice, the right-handed neutrinos would indirect so weakly that we would

not expect to see them in the laboratory. And we would not expect even in the early

universe that they would have been produced in any significant number. So even

though it would be a particle that, in principle, exists, we would not expect to see it.

And we would not expected it to affect the early universe.

Alternatively-- and in some ways a more subtle idea-- is that the mass of the

neutrino could be what's called a Majorana mass. Where Majorana, like Dirac, is the

name of a person-- perhaps less well known than Dirac, but made important

contributions in this context nonetheless.

In this case, it can only occur if lepton number is not conserved. And if lepton

number is not conserved then there are really no quantum numbers that separate

the particle that we call a neutrino from the particle that we call an anti-neutrino. And

if that's the case, the particle that we call the anti-neutrino could, in fact, just be the

right-handed partner of the neutrino.

7



So for the Majorana mass case we don't need to introduce any new things that we

haven't already seen. We just have to rename the thing that we've been calling the

anti-neutrino the neutrino with helicity plus 1 instead of minus 1-- it's with j hat dot p

with j dot p hat, equal to plus 1/2 instead of minus 1/2. So these would just be the

two spin states of the neutrino instead of the neutrino and the anti-neutrino. And

that's a possibility.

And this would also change nothing as far as the counting that we did. It would just

change where the factors go instead of having a factor of 2 for particle anti-particle

and this type counting. We'd have a factor of 2 in the spin state factor, and a factor

of 1 in the particle anti-particle [INAUDIBLE]. The particle and the anti-particle would

be the same thing.

OK. Any questions about that?

OK. Finally-- and I think this is my last slide of the summary. At the end of the

lecture we just pointed out a number of tidbits of information.

We can calculate the temperature of the early universe at any time from the

formulas that we already had on the slide. We know how to calculate the energy

density at any time. And by knowing about black-body radiation we can convert that

into a temperature.

And for an important interval of time, which is when kt is small enough so that you

don't make muon anti-muon pairs, but large enough so that electron-positron pairs

act like they are massless, and this very large range kt is equal to 0.860 m e v,

divided by the square root of time where time is measured in seconds. So in

particular, at 1 second kt is 0.86 m e v. And it does apply at 1 second. Because 0.86

m e v is in this range.

We also then talked about the implications of the conservation of entropy. If total

entropy is conserved, the entropy density has to just fall off like 1 over the cube of

the volume. Total entropy is conserved for almost all processes in the early

universe. So the entropy falls off like 1 over a cubed. And that means that, as long
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as we're talking about a period of time during which little g does not change-- and

little g only changes when particles freeze out, like when the electron-positron pairs

disappear-- but as long as little g doesn't change, s [INAUDIBLE] 1 over a cubed

means simply that the temperature falls like 1 over a. And when little g changes you

can even calculate corrections to this as, effectively you're doing when you calculate

this relationship between the neutrino temperature and the photon temperature.

And finally, we talked about the behavior of the atoms in the universe as the

universe cools. For temperatures above about 4,000 degrees the universe, which is

mainly hydrogen, is mainly a hydrogen plasma. Isolated protons and electrons

zipping through space independently. At about 4,000 Kelvin-- and this is a stat [?

mac ?] calculation, which we're not doing-- but using the answer.

At about 4,000 Kelvin-- which is a number which depends on the density of

hydrogen in the universe, it's not a universal property of hydrogen-- but for the

density of hydrogen in the universe, at about 4,000 Kelvin hydrogen recombines. It

becomes neutral atoms.

And slightly colder, at about 3,000, the degree of ionization becomes small enough

so that the photons become effectively free. The photons decouple. In between

4,000 and 3,000 the hydrogen is mostly neutral, but they're still enough ionized so

that the photons are still interacting.

So the most important temperatures-- the 3,000 Kelvin, when the photons are

released, when the photons are no longer trapped with the matter of the universe.

And last time we estimated the time at which that happens. That should be a small t,

sorry. The time of decoupling is about 380,000 years. And that number is actually

very accurate, even though we didn't calculate it very accurately.

And that's the end of my summary. Any questions about the summary?

OK. In that case, let's go on to talk first about the spectrum of the cosmic

background radiation. And then we'll move on to talk about the cosmological

constant.
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CMB is cosmic microwave background. And that's a very, very standard

abbreviation these days.

So when the cosmic microwave background was first discovered by Penzias and

Wilson in 1965-- which, I might point out, is going to have its 50th anniversary in the

coming year-- they only measured it at one frequency. It was a real tour de force to

measure it at the one frequency and to convince themselves that the buzz that they

were hearing in their detector was not just some kind of random electrical noise, but

really was some signal coming from outer space.

And the main clue that it was some signal coming from outer space was that they

were able to compare it with a cold load, a liquid helium-cooled source, and find that

that comparison worked the way they expected. And the main reason for believing it

was cosmological rather than local is that they got the same reading no matter what

direction they pointed their antenna.

This just took a lot of radio technique skill to convince themselves that it wasn't just

some radio tube that was malfunctioning or something. They even worried that it

may have been caused by pigeon droppings in their antenna, I actually read about

in Weinberg's book. But they finally convinced themselves that it was real. They

were still not convinced really that it was a sign for the big bang and-- you may

recall, again, from reading Weinberg that there were two papers published back-to-

back. The experimental paper by Penzias and Wilson, which really just described

the experiment, mentioning that a possible explanation was in this other paper by

Dickie, Peebles, Roll, and Wilkinson which described the theory that this was

radiation that originated with the big bang. But it's all based on one point at one

frequency.

Shortly afterwards, I guess within the same year, Roll and Wilkinson were able to

measure it at a slightly different frequency. And when I wrote my popular-level book

I tabulated all of the data that was known in 1975. And this mess is the graph.

This shows sort of the full range of interesting frequencies. The solid line here is the

expected theoretical curve corresponding to a modern measurement of the
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temperature 2.726 degrees Kelvin. All of the interesting historical points are in this

tiny little corner on the left, which is magnified above. The original Penzias and

Wilson point is way down here at very low frequencies by the standards of radiation

at 2.726 degrees Kelvin.

The Roll and Wilkinson point is there. These blobs indicate error bars. The [?

cyanogen ?] points that you read about in Weinberg are shown there and there.

The first measurement that showed that, it didn't only go up but started to go down

like black-body radiation should, was a balloon flight-- this 1971 balloon flight which

produce that blob and that bound. This was an experiment by MIT's own Ray

Weiss. And it was very important in the history because it was the first evidence that

we weren't just seeing some straight line, but we were seeing something which did

indeed rise and fall the way black-body radiation should.

A later balloon flight in 1974 produced error bars that are shown by this gray area.

Incredibly broad. So the bottom line that this graph was intended by me to illustrate

is that, in 1975 you could believe that this was black-body radiation if you so wished.

But there was not really a lot of evidence that it was black-body radiation.

The situation did not get better quickly. The next significant measurement came in

1987 which was a rocket flight, which was a collaboration between a group at

Berkeley and a group at Nagoya, Japan. I believe it was the Japanese group that

supplied the rocket and the American group that supplied the instrumentation.

And they measured the radiation at three points. I can give you the number that

goes with those graphical points. I guess what I have tabulated here is the effect of

temperature that those points correspond to.

As you can see from the graph, those points are all well above the black-body

curve. Significantly more radiation than what was expected by people who thought it

should be black-body.

And 0.2 up there would correspond to a temperature of 2.955 plus or minus 0.017

K. The size of the vertical bars there are the error bars that the experimenters
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found. And 0.3 was t equals 3.175 plus or minus 0.027 K.

So these were higher temperatures then the 2.7 that fit the lower part of the

spectrum. And very, very small error bars.

So this data came out in 1987. And, in truth, nobody knew what to make out of it.

The experimental group were well aware that this was not what people wanted them

to find. And they certainly examined their data very carefully to figure at what could

have conceivably gone wrong. And they were going around the country giving talks

about this. And I heard one or two of them in which they described how surprised

they were by the results, but emphasized that they analyzed the experiment very,

very carefully and couldn't find anything wrong with it. And this was the situation for

awhile.

I should point out that I think this point number three is something like 16 standard

deviations off of the theory. And usually when somebody makes a measurement

that's three or four standard deviations off of your theory, you really start to worry.

16 standard deviations is certainly a bit extreme.

Nonetheless, nobody had any good explanation for this. So, well, different people

had different attitudes. There were some people who tried to construct theories that

would account for this. And there were others who waited for it to go away. I'm

pretty sure I was among those who waited for it to go away, and we were right.

So the next important piece of data came from the first satellite dedicated to

measuring the cosmic background radiation. The famous COBE Satellite-- Cosmic

Background Explorer-- I guess I didn't write down the name here. Oh, it's in the title.

Preliminary measurement of the cosmic microwave background spectrum by the

Cosmic Background Explorer, COBE Satellite.

So COBE was the first satellite dedicated to measuring the cosmic background

radiation. It was launched in 1989, I guess, and released its first data in January of

1990.
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Back in those days there was no internet or archive. So you may or may not know

that the way physics results were first announced to the world were in the form of

what were called pre-prints, which were essentially xeroxed copies of the paper that

were sent out to a mailing list. Typically, I think, institutions had mailing lists of

maybe 100 other institutions. And every physics department had a pre-print library

that people can go to and find these pre-prints.

So this is the COBE pre-print. 90-01, the first pre-print from 1990. And this is the

data. So it is kind of breathtaking, I think. It suddenly changed the entire field, and in

some sense really change cosmology for the field. Where we only had approximate

ideas of the way things worked, to suddenly having a really precise science in which

precise measurements could be made, and cleared up the issue of the radiation. It

wasn't just a mess like this, or a terrible fit like that, but a fantastically good fit. Really

nailing the radiation as having a thermal spectrum.

So the history is that John Mather presented this data at the January 1990

American Physical Society meeting, and was given a standing ovation. And he later

won the Nobel Prize for this work. He was the head of the team that brought this

data. He won the Nobel Prize in 2006 along with George Smoot, who was

responsible for one of the other experiments on the COBE satellite.

Yes?

AUDIENCE: So do we know what happened with the other measurements?

PROFESSOR: To tell you the truth, I don't think the other measurements ever-- the other people

ever really published what they think happened. But the widespread rumor, which I

imagine is true, is that they were seeing their own rocket exhaust. And there were, I

think, some arguments going on between the Americans and the Japanese, with the

Americans more or less accusing the Japanese of not really telling them how the

rocket was set up.

Yes?

AUDIENCE: Are the error bars plugged on those points, or is it just that good?
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PROFESSOR: Those are the error bars?

AUDIENCE: OK.

PROFESSOR: And even more spectacular, a couple years later, I guess it was-- this was actually

just based on nine minutes of data or something like that. But a couple years later

they published their full data set, where the size of the error bars were reduced by a

factor of 10. And still a perfect fit. They didn't even know how to plot it, so I think

they plotted the same graph, and said the error bars are a factor of 10 smalled than

what's shown. It was gorgeous.

So I think I forgot to tell you what the spectrum is supposed to look like exactly. And

this is just a formula that I want you to understand the meaning of, but not the

derivation of. We-- as with the other stat mech results that we're relying on, we're

going to relegate their derivation to the stat mech course that you either have taken

or will take.

But the spectrum is completely determined because the principle of thermal

equilibrium is sort of absolute in statistical mechanics. And in order for a black-body

radiating object to be in thermal equilibrium with an environment at that

temperature, it has to have not only the right emission rate but also the right

spectrum. If the spectrum weren't right you could imagine putting in filters that would

trap in some frequencies and let out others. And then you would move away from

thermal equilibrium if the spectrum were right or wrong because you'd be trapping

in more radiation-- you could arrange for the filters to trap in more radiation than

they are letting out.

So the spectrum is calculable. And in terms of-- I guess this is energy density. I

have to admit, I usually call energy density u and in these notes here it's called rho.

We'll figure out the units after I write it down and make sure that it is energy density.

Rho sub nu of nu d nu, means-- with this product it means the total energy density,

energy per volume, per frequency interval, d nu-- well, it's times d nu, so if you

multiply by times nu, this is the total energy for frequencies between nu and nu plus
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d nu.

And the formula is 16 pi squared h bar nu cubed, divided by c cubed times 1 over e

to the 2 pi h bar nu over kt, minus 1 d nu.

OK. And actually, the unit's not that transparent. I believe this is energy density and

not mass density. But maybe I'll make sure of that and let you know next time.

And this is what produces that curve that you saw on the slides. I've included the

subscript nu here to indicate that it's the number which, when you multiply it by d nu,

gives you the energy density between nu and nu plus d nu.

If instead you wanted to know the energy density between lambda and lambda plus

d lambda, there'd be a kinematic factor that you'd have to put in here-- the factor

that relates d lambda to d nu. And you could imagine working that out.

I might add that, in Weinberg's book, he actually plots both sub lambda of nu. So his

curve looks somewhat different than the curves that I showed you. This is not

exactly the same thing.

Now, what this extremely accurately black-body curve proves is that the early

universe really was very accurately in thermal equilibrium. And that can only happen

if the early universe was very dense. And of course, our model of the universe goes

back to infinite density. So the model predicts that it should be in thermal

equilibrium.

But in particular, the numbers that we have here, if you ask how much could you

change the model and still expect these curves the answer is roughly that, all of the

important energy-releasing processes have to have happened before about one

year after the Big Bang. Anything that happened after one year would still show up

as some glitch in the black-body spectrum. So the big bag model really is confirmed

back to about one year on the basis of this precise measurement of the spectrum of

the cosmic background radiation.

And the COBE measurement is still, by the way, the best measurement of the
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spectrum. We've had other very important experiments, that we'll talk about later,

which measure the non-uniformity of the black-body radiation. Which is very small,

but nonetheless very, very important [? effect. ?]

So we've had WMAP and now Planck which have been dedicated to measuring the

anisotropies of the radiation. COBE also made initial measurements of the

anisotropies. And we'll be talking about anisotropies later in the course.

Yes?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Sorry?

AUDIENCE: The units of the right-hand side are energy density.

PROFESSOR: Energy density. OK. Thanks. OK. Good. So my words were right. I should have

called it u, I think, to be consistent with my usual notation. Thanks.

OK. Any other questions about the CMB? Because if not, we're going to change

gears completely and start talking about one of the other crucially important

observational discoveries in cosmology in the last 20 years.

OK. So what I want to talk about next is the very important discovery originally made

in 1998-- also resulting in a Nobel Prize-- that the universe is accelerating.

And this was a discovery that involved two experimental groups, and a total of

something like 52 astronomers between the two groups. Which actually meant that--

I'm exaggerating slightly, I suppose. But it really involved the majority of the

astronomers of the world, and therefore there weren't a lot of astronomers to argue

with them about whether or not the result was right. But there still was some

argument.

The announcement was initially made at a AAS meeting in January of 1998 by--

which group was first? I think that was the High-Z Supernova-- where are they?

Yeah. That was the High-Z Supernova Search Team. And then there was also a
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group largely based at Berkeley. The High-Z Supernova Search Team was actually

fairly diffused, although based to some extent at Harvard. And the Supernova

Cosmology Project was based rather squarely in Berkeley, headed by Saul

Perlmutter.

And they both agreed. And what they found was, by looking at distant supernovae

of a particular type-- type 1a-- they were able to use these supernovae as standard

candles. And because supernovae are brighter than other standard candles that

had been studied earlier in history, they were able to go out to much greater

distances. And that means to look much further back in time than previous studies.

And what they discovered was that the expansion rate of the universe today was

actually faster, and not slower, than the expansion rate about five billion years ago.

And that was a big shock because until then everybody expected that gravity would

be slowing down the expansion of the universe. And when these guys started to

make these measurements they were just simply trying to figure out how fast the

universe was slowing down. And they were shocked to discover that it was not

slowing down, but instead speeding up.

Initially there was some controversy about it. People did try to invent other

explanations for this data. But the data has, in fact, held up for the period from 1998

to the present. And in fact, it has been strongly supported by evidence from these

anisotropies in the cosmic microwave background radiation, which we'll be talking

about later. But it turns out, you can get a lot of information from these anisotropies

in the cosmic background radiation.

So the picture now is really quite secure, that the acceleration-- the expansion of the

universe is actually accelerating, and not decelerating. And the simplest explanation

for that, which is the one that-- well, certainly because it's the most plausible, and

the one that most of us take seriously, and it's the only one that fits the data

extraordinarily well. So we've not seen any reason not to use this explanation. The

simplest explanation is that there's a nonzero energy density to the vacuum, which

is also what Einstein called the cosmological constant.
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So we should begin by writing down the equations that describe this issue. So we've

learned how to write down the second order Friedmann equation, which describes

how the scale factor of the universe accelerates. And on the right-hand side, once

we included materials with nonzero pressures, we discover that we need on the

right-hand side, rho plus 3 p, over c squared-- excuse me-- times a.

Now when the cosmological constant was born, was when Einstein first turned his

theory of general relativity to cosmology. Einstein invented the theory of general

relativity in 1916. And just one year later, in 1917, he was applying it to the universe

as a whole to see if he could get a cosmological model consistent with general

relativity.

Einstein at that point was under the misconception that the universe was static, as

Newton had also thought, and as far as we know, as everybody between Newton

and Einstein thought. If you look up at the stars, the universe looks pretty static. And

people took this very seriously. In hindsight, it's a little hard to know why they took it

so seriously, but they did.

So when Einstein discovered this equation he was assuming that the universe

consisted of basically non-relativistic stuff. Stars are essentially non-relativistic

hunks of matter. So he thought that rho would be positive, the effective pressure

would be zero. And he immediately noticed that this equation would imply that the

scale factor would have a negative acceleration. So that if you tried to set up a static

universe it would instantly collapse.

And as we talked about earlier, Newton had talked himself out of that conclusion.

And I think the real difference, as I think we also talked about earlier, was that

Newton was thinking of the law of gravity as an action at a distance, where you

determine the total force on something by integrating the forces caused by all other

masses.

And then things get complicated and divergent, actually, for an infinite, static

universe. And Newton managed to convince himself that you could have a static

universe of that type, a statement that we now consider to be incorrect even in the
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context of Newtonian mechanics.

But this fact that it's incorrect even in the context of Newtonian mechanics was really

not discovered until Einstein wrote down this equation. And then Einstein himself

also gave a Newtonian argument showing that, at least with a modern interpretation

of Newtonian mechanics. It doesn't work in Newtonian gravity either to have a static

universe.

But Einstein was still convinced that the universe was static. And he realized that he

could modify his field equations-- the equations that we have not written down in this

course, the equations that describe how matter create gravitational fields-- by

adding a new term with a new coefficient in front of it which he called lambda.

And this extra term, lambda, could produce a kind of a universal gravitational

repulsion. And he realised he had to adjust the constant to be just right to balance

the amount of matter in the universe. But he didn't let that bother him. And if he

adjusted it to be just right, and the universe was perfectly homogeneous, he could

arrange for it to balance the standard force of gravity.

We can understand what lambda does to the equations because it does, in fact,

have a simple description in terms of things that we have discussed and do

understand. That is, you could think of lambda as simply corresponding to a

vacuum energy density. Einstein did not make that connection.

And not being an historian of science, I can speculate as much as I want. So my

speculation is that, the reason this did not occur to Einstein is that Einstein was a

fully classical physicist who was not at this time or maybe never accepting the

notions of quantum theory. And in any case, quantum field theory was still far in the

future.

So in classical physics the vacuum is just plain empty. And if the vacuum is just plain

empty it shouldn't have any energy density. The quantum field theory picture of the

vacuum, however, is vastly more complex. So to a modern quantum field theory-

oriented theoretical physicist the vacuum has particle, anti-particle pairs appearing
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and disappearing all the time. We are now convinced that there's also this Higgs

field that has even a nonzero mean value in the vacuum.

So the vacuum is a very complicated state which, if anything characterizes it, it's

simply the state of lowest possible energy density. But because of, basically, the

uncertainty principles of quantum mechanics, the lowest possible energy density

does not mean that all the fields are just zero and stay zero. They're constantly

fluctuating as they must according to the uncertainty principle, which applies to

fields as well particles.

So we have no reason anymore to expect the energy density of the vacuum to be

zero. So from a modern perspective it's very natural to simply equate the idea of the

cosmological constant to the idea of a nonzero vacuum energy density. And there

are some unit differences-- just constants related to the historical way that Einstein

added this term his equations. So the energy density of the vacuum-- which is also

the mass density of the vacuum times c squared-- is equal to Einstein's lambda

times c to the fourth, over 8 pi G.

And this is really just an historical accident that it's defined this way. But this is the

way Einstein defined lambda.

Now, if the vacuum has an energy density, as the universe expands the space is still

filled with vacuum. At least, if it was filled with vacuum. If it was matter it would thin

out. But we can imagine a region of space that was just vacuum, and as it expands

it would have to just stay vacuum. What else could it become? And that means that

we know that, for a vacuum, rho dot should equal zero.

Now we've also learned earlier, by applying conservation of energy to the

expanding universe, that rho dot in an expanding universe, is equal to minus 3 a dot

over a. Or we could write this as h times rho plus p over c squared.

This is basically a rewriting of d u equals minus p d v, applying it to the expanding

universe. So I won't re-derive it. We already derived it. Actually, I think you derived it

on the homework, was the way it actually worked.
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But in any case, this immediately tells us that if rho dot is going to be 0 for vacuum

energy, this has to be 0. And therefore p vacuum has to be equal to minus rho

vacuum times c squared.

And if we know the energy density in the pressure of this stuff called vacuum, that's

all we need to know to put it into the Friedmann equations and find out how things

behave. Otherwise this vacuum energy behaves no differently from anything else. It

just has a particular relationship between the pressure and the energy density, with

a very peculiar feature- that the pressure is negative. And that's an important

feature because we had commented earlier that a negative pressure can drive

acceleration. And now we're in a good position to see exactly how that works.

To sort of keep things straight I'm going to divide the mass density of the universe

into a vacuum piece and a normal piece, where normal represents matter, or

radiation, or anything else, if we ever discover something else. But in fact it will just

be matter or radiation for anything that we'll be doing in this course, or anything

that's really done in current cosmology.

And similarly, I'm going to write pressure as p vac plus p normal. "N" is for normal.

But p vac I don't really need to use, because p vac I can rewrite in terms of rho vac.

So in the end I can express everything just in terms of rho vac.

And I can write down the second order Friedmann equation. And it's just a matter of

substituting in that rho and that p into the Friedmann equation that we've already

written. And we get minus 4 pi over 3 G, times rho normal plus 3 p normal, over c

squared.

And the vacuum pieces-- have two pieces because there's a vacuum piece there

and a vacuum piece there. it can all be expressed in terms of rho vac and collected.

And what you get is minus 2 rho vac times a. Showing just what we were talking

about. That because of that minus sign, multiplies that minus sign, vacuum energy

drives acceleration, not deceleration.

And that's why vacuum energy can explain these famous results of 1998. And we'll
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see later that, for the same reason vacuum energy or things like vacuum energy

can actually drive the expansion of the universe in the first place in what we call

inflation.

Yes?

AUDIENCE: So for the equation without the cosmological constant it's, let's say, rho and p are

about the constant, then wouldn't that be the equation for a simple harmonic

function [INAUDIBLE] or the oscillation of a [INAUDIBLE] is some negative constant

times a?

PROFESSOR: That's right, except that you would probably not believe the equations with the

bounds.

AUDIENCE: OK.

PROFESSOR: And when a went negative you wouldn't really have a cosmological interpretation

anymore, I don't think. But it is, in fact, true that if rho and p were constants-- I'm not

sure of any model that actually does that-- this would give you sinusoidal behavior

during the expanding and contracting phase.

Yes?

AUDIENCE: [INAUDIBLE] the vacuum energy is constant over time, is it also makes sense

[INAUDIBLE]?

AUDIENCE: Are you asking, does it make sense for maybe the vacuum energy to change with

time? I think, if it changed with time, you wouldn't call it vacuum energy. Because

the vacuum is more or less defined as the lowest possible energy state allowed by

the laws of physics. And the laws of physics, as far as we know, do not change with

time.

It's certainly true that, in a completely different context, you might imagine the laws

of physics might change with time. And then thing would get more complicated. But

that would really take you somewhat outside the sphere of physics as we know it.

You could always explore things like that, and it may turn out to be right. But at least
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within the context of physics as we currently envision it, vacuum energies are

constant, pretty much by definition.

Now I should maybe qualify that within the context of what we understand, there

may, in fact, be multiple vacua. For example, if you have a field theory one can

have a potential energy function for one or more fields. And that potential energy

function could have more than one local minimum. And then any one of those local

minima is effectively a vacuum. And that could very likely be the situation that

describes the real world. And then you could tunnel from one vacuum to another,

changing the vacuum energy. But that would not be a smooth evolution. That would

be a sudden tunneling.

OK. So this is what happens to the second order Friedmann equation. It is also very

useful to look at the first order Friedmann equation, which is a dot over a squared, 8

pi over 3 G. And in its native way of being written we would just have 8 pi over 3 G

rho, minus k over-- kc squared over a squared.

And all I want to do now is replace rho by rho vac plus rho n. And this is a first order

Friedmann equation. And we can expand rho n if we want more details, as rho

matter plus rho radiation. And rho matter, we know, varies with time proportional to

1 over a cubed. Rho radiation behaves with time as 1 over a to the fourth. So all of

the terms here, except for rho vac, fall off as a grows.

And that implies that if you're not somehow turned around firsts, which you can be--

you could have a closed universe that collapses before vacuum energy can take

over. But as the universe gets larger, if it doesn't turn around, eventually rho vac will

win. It will become larger than anything else because everything else is just getting

smaller and smaller. And once that starts to happen everything else will get smaller

and smaller, faster and faster, because a will start to grow exponentially.

If rho vac dominates-- which it will, as I said, unless the universe re-collapses first--

so for a large class of solutions rho vac will dominate-- then you can solve that

equation. And you have h, which is a dot over a, approaches, as a goes to infinity,

the square root of 8 pi over 3 G rho vac.
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So h will approach a fixed value for a universe which is ultimately dominated by rho

vacuum. And if a dot over a is a constant, that means that a grows exponentially.

So we could maybe give this a name-- h vac. The value h has when it's completely

dominated by the vacuum energy. And then we can write that a of t is ultimately

going to be proportional to e to the h vac times t. Which is what you get when you

solve the equation, a dot over a equals this constant.

OK. Now one thing which you can see very quickly-- let's see how far I should plan

to get today. OK. I'll probably make one qualitative argument and then start a

calculation that won't get very far. I will continue next time.

One qualitative point which you can see from just glancing at these equations is that

the cosmological constant, when added to the other ingredients that we've already

put into our model universe, will have the effect of increasing the age of the

universe for a given value of h. And that's something that we said earlier in the

course, we're looking forward to.

Because the model of the universe that we're been constructing so far have always

turned out to be too young for the measured value of h. That is, the oldest stars

look like they're older than the universe. And that's not good. So we'd like to make

universe look older. And one of the beauties of having this vacuum energy, as far as

making things fit together, is that it does make the universe older.

And the easiest way to see that-- at least a way to see that-- is to imagine drawing a

graph of h versus t. Hubble expansion rate versus t. And if we look at the formula

for h here we see that the rho vac piece just puts in a floor as h evolves with time,

instead of going to 0 as it wood in most models-- at least, as it would in open-

universe model. It stops at some floor. And certainly for the models that we've been

dealing with, h just decreases to some-- this is supposed to represent the present

time. So this is previous models.

Now as you might say, that what I'm trying to describe here is not quite a theorem if
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you considered closed universes where this k piece could be causing a positive-- a

negative contribution to h, which is then decreasing with time. Things can get

complicated. But for the models that we've been considering which are nearly flat,

that k piece is absent. And then we just have pieces that go like, 1 over a cubed, 1

over a to the fourth, and constant. All of which are positive.

Then in the absence of vacuum energy we would have h falling. And with the

presence of vacuum energy it would not fall as fast because we have this constant

piece that would not be decreasing. So this is previous models. This is with rho vac.

And I'm always talking about positive rho vac because that is what our universe has.

So this would be the two different behaviors of h for the model without vacuum

energy and the model with vacuum energy. And if we're trying to calculate the age

of the universe we would basically be extrapolating this curve back to the point

where h was infinite, at the big bang. And we could see that, since this curve is

always below this curve, it will take longer before it turns up and becomes infinite.

So the age will always increase by adding vacuum energy.

With rho vac h equals infinity is further to the left. And notice that I'm comparing two

different theories, both of which are the same age today. Because that's what we're

interested in. We've measured the value of h. We're trying to infer the age of the

universe.

OK. Maybe I'll just say a couple words about the calculation that we'll be starting

with next time. We want to be able to precisely calculate things like the age of the

universe, including the effect of this vacuum energy. And we'll be able to do that in a

very straightforward way by using this first order Friedmann equation.

We know how each term in this Friedmann equation varies with a. And we can

measure the amount of matter, and the amount of radiation, and in principal the

amount of curvature-- it's negligibly small-- in our current universe. And once you

have those parameters you can use that equation to extrapolate, to know what h

was at any time in the past. And that tells you how the derivative-- it tells you the

value of a dot at any time in the past. And if you know the value of a dot at any time
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in the past, it's a principle just a matter of integration to figure out when a was 0.

And that's the calculation that we'll begin by doing next time. And we'll be able to get

an integral expression for the age of the universe for an arbitrary value. We'll, at the

end, express the matter density and the radiation density as fractions of omega,

fractions of the critical density. And for any value of omega matter, omega radiation,

and we'll even express the curvature as an omega curvature. The effective fraction

of the critical density that this term represents.

And in terms of those different omegas, we'll be able to write down an integral for

the total age of the universe. And that really is going to be state of the art. That is

what the Planck team uses when they're analyzing their data to try to understand

what the age of universe is according to the measurements that they're making. So

we will finally come up to the present as far as the actual understanding of

cosmology by the experts.

So that's all for today. see you all next Tuesday.
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