8.311: Electromagnetic Theory Problem Set \# 10 Due: 4/23/04

Retarded electromagnetic Green's function. Energy balance in radiation.

 Reading: Schwinger, Chaps. 31, 32.1. Charge moving at constant velocity. (Schwinger, Problems 1 \& 2, Chap 31)
(a) A particle with charge e moves with constant velocity \mathbf{v}. Its position is given by $\mathbf{r}(t)=\mathbf{v} t$.

Construct the potentials, ϕ and \mathbf{A}, in the Lorentz gauge, and show that

$$
\begin{equation*}
\phi=\frac{e}{\sqrt{(\mathbf{r}-\mathbf{v} t)^{2}-\frac{v^{2}}{c^{2}} \mathbf{r}_{\perp}^{2}}}, \quad \mathbf{A}=\frac{\mathbf{v}}{c} \phi \tag{1}
\end{equation*}
$$

where \mathbf{r}_{\perp} is the component of particle radius vector perpendicular to the velocity.
(b) What are the electric and magnetic fields for this particle?
(Hint: A particle in uniform motion is not very different from a particle at rest. One can either follow the route suggested in the textbook and use Eqs. (31.20),(31.21), or apply a Lorentz transformation to the fields of a stationary particle.)
2. Potentials and fields of an arbitrarily moving charge. (Schwinger, Problems 5 86 Chap 31)
(a) The charge and current densities of a point charge are given by $\rho(\mathbf{r}, t)=e \delta(\mathbf{r}-\mathbf{r}(t))$, $\mathbf{j}(\mathbf{r}, t)=e \mathbf{v}(t) \delta(\mathbf{r}-\mathbf{r}(t))$. From the retarded potentials Eqs. (31.49),(31.50), derive the LienardWiehert potentials

$$
\begin{equation*}
\phi(\mathbf{r}, t)=\frac{e}{\left|\mathbf{r}-\mathbf{r}\left(t^{\prime}\right)\right|-\left(\mathbf{r}-\mathbf{r}\left(t^{\prime}\right)\right) \cdot \frac{\mathbf{v}\left(t^{\prime}\right)}{c}}, \quad \mathbf{A}(\mathbf{r}, t)=\frac{\mathbf{v}\left(t^{\prime}\right)}{c} \phi(\mathbf{r}, t) \tag{2}
\end{equation*}
$$

where the retarded time t^{\prime} is defined by

$$
\begin{equation*}
t-t^{\prime}=\frac{\left|\mathbf{r}-\mathbf{r}\left(t^{\prime}\right)\right|}{c} \tag{3}
\end{equation*}
$$

(b) From potentials of part (a) compute \mathbf{E} and \mathbf{B}. Express the answer as the sum of a "velocity" part (involving \mathbf{v} only, and asymptotic to $1 / r^{2}$), and an "acceleration" part (proportional to $\dot{\mathbf{v}}$ and asymptotic to $1 / r$). Only the latter is significant for radiation.
3. Radiation of an electron moving in a magnetic field. (Schwinger, Problem 1, Chap 32)

A nonrelativistic particle of charge e and mass m moves in a uniform magnetic field \mathbf{B}. Suppose the motion is confined to the plane perpendicular to \mathbf{B}. Calculate the radiated power P and express it in terms of particle energy, $-P=d E / d t$. For the energy E, derive an ordinary differential equation

$$
\begin{equation*}
-\frac{d E}{d t}=\gamma E \tag{4}
\end{equation*}
$$

and find γ in term of \mathbf{B}. For an electron, find $1 / \gamma$ in seconds for a magnetic field of 10^{4} gauss.
4. Radiation of a classical hydrogen atom. (Schwinger, Problem 3, Chap 32)

A nonrelativistic electron of charge e and mass m moves in a circular orbit under Coulomb forces produced by a proton. The average potential energy is related to the total energy by $E=\frac{1}{2} \bar{V}$.

Suppose that, as it radiates, the electron continues to move in a circle, and calculate the power radiated, and thereby $-d E / d t$, as a function of E (the relation is no longer linear). Integrate this result and find how long it takes for the energy to change from E_{2} to E_{1}.

Show that the electron reaches the center in a finite time. Calculate how long it takes an electron to hit the proton if it starts from an initial radius of $r_{0}=10^{-8} \mathrm{~cm}$. (This radiation instability of a classical atom was one of the reasons for the discovery of quantum mechanics.)

5. Dipole radiation.

(a) A nonrelativistic electron of charge e and mass m is driven by a time-dependent electric field $\mathbf{E}=E_{0} \widehat{\mathbf{z}} \cos \omega t$. Show that the radiation is given by that of an oscillating dipole $\mathbf{d}(t)=e \mathbf{r}(t)$, and find the angular distribution of radiated power averaged over oscillation cycle.
(b) A nonrelativistic electron of charge e and mass m moves in a uniform and constant magnetic field \mathbf{B}. As in part a), show that the radiation is given by that of a rotating dipole $\mathbf{d}(t)=e \mathbf{r}(t)$, and find the time-averaged radiated power angular distribution.

