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PROFESSOR: So good afternoon, everybody. You see the topic for today's class on the screen--

entangled photons. Just to remind you, when we talked about single photons and

Mach-Zender interferometers, we realized that when we have a nonlinear

interferometer where one mode, you can say one beam, affects the phase shift in

the interferometer for the other photon. Then we get a nonlinear situation, and we

can create photon states which no longer factorize.

So we have a system a, a system b, and we can no longer write down the total

wave function in a wave function for system a times system b. And this is something

very interesting, and this is what we feature in this section.

So we finished the last class by defining entanglement. And just to remind you, we

said something is entangled if it is impossible to write it in a product of two wave

functions. So therefore, if you have some correlation between the two systems, then

we call the two systems and the state of the system entangled.

Now this is a definition which needs explanation, so we went through some

examples. And we showed that certain states which on first sight look entangled are

not entangled, because if you try harder, you find the way to factorize the state.

So I want to continue now in explaining different aspects of the definition, in

particular what it means to have a system which has two subsystems, a and b.

Before I do that, do you have any questions up to that point?

So we want to talk about some standard entangled state. And the most basic state

is a single state.
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So if you have a state which is 0 1 minus 1 0 normalized, this is an Einstein-

Podolsky-Rosen state. This needs some explanation. We have often encountered,

in physics, states which are simply a superposition of if you interpret 0 1 as spin up

or spin down, you encounter that quite often. And I want to explain to you now what

is not an entangled state for the reasons of using entanglement as a resource.

So first of all, I want to point out this state is not a single photon, because we have

entangled here two qubits. Let me just contrast it. If you have a single photon after

beam splitter, the single photon after beam splitter is in a superposition of mode a,

mode b, 0 1 minus 1 0 divided by square root 2.

But now 0 is the vacuum. So we have not a system which can be decomposed into

two partial systems a and b. You may even separate the system and then

manipulate your single qubits individually by putting phase shifts on and doing other

operations.

If you have this state which is a superposition between having a photon, not having

a vacuum, and having a vacuum state, you cannot-- the vacuum state itself is not a

separate system. You cannot take the vacuum and perform operations on the

vacuum. So I know it has been confusing for me when I heard about it for the first

time.

We have, so to speak, here an entangled mode, but not an entangled state. It's a

singlet state. It has some aspects of entanglement, but it is not the entanglement we

have defined is a resource.

So let me just repeat-- this may be an entangled mode, but to be in an entangled

state requires systems where you have two parts which you can separate.

The second comment is we have situations where we have two different parts, but

they can't be physically separated. So part of our definition of entanglement as a

resource is that the state must be of two physically distinct systems. And we want to

have parts which can be separately addressed, manipulated, and measured.
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In other words, if you read out one part of an EPR pair, the other part still exists. So

that's sort of what we want.

Let me illustrate that with examples. For instance, in the helium atom, you have two

electrons. And the ground state-- if I use spin notation, is a singlet.

So that's this. But does the ground state of helium fulfill our definition of an

entangled state? Well, if you find a way to switch off the Coulomb potential, and

then the electrons separate from each other, they still maintain their spin singlet

character, then you can take them, measure them, take measurements, manipulate

them. But since nobody has come up with a good idea how to switch off the

Coulomb potential in an atom, you can never separate the states.

And it is physically impossible to address this so the two electrons see them

separately and such. So this state is not entangled, because it's not-- the two

systems cannot be separated. What is usually a good choice for entanglement--

and this is why we discuss it here with photons-- is you have photon states. Photons

always fly away. Photons are in a certain superposition state. You can always

separate them, and take them individually.

So let's assume we have two photons, two modes. We have two photons-- actually,

the two photons can be in one spatial mode, but we are now playing with the

polarization-- horizontal, vertical. So if we have a state with horizontal- vertical

polarization, this is a nice entangled state of two photons.

So what did means is that we have photon each. One is vertical. And one is

horizontal.

But you don't know which one. If you would just look at one photon, it would be 50%

horizontal, 50% vertical. It would be completely unpolarized, which would be a

random state, which would require and density matrix for its description. But if one

photon is horizontal, the other one is vertical and vice versa.

So it's a pure state, but all the pureness of the state comes from the entanglement
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and not from what one photon does by itself. So these are two photons in one

mode, and they are polarization entangled. Or this brings us back to our dual [? Rail

?] single photon states. We have two photons, two qubits and each is in two modes.

So our 0 state-- and just to make sure that you do not confuse it with no photon, our

logic 0 state, so L means logic here-- is that the photon is in the second mode, and

the 1 state of our logic state means that the single photon is in the other mode. So

we can now have an entangled state, which is now this 0 1 1 0 state. But these are

now logic states, which means that the 0 has one photon. It has a photon in one of

the modes, and the one has a photon in the other mode.

So each state here has two photons, but then the two photons have-- 0 1 and 1 0

are switched in the two parts of the wave function. And we actually saw in the last

unit how Kerr medium and an interferometer can generate this state.

So yes?

AUDIENCE: [INAUDIBLE]

PROFESSOR: There are two such states. I mean, I will later tell you what the four famous Bell

states are. There is one which has a plus sign and one which has a minus sign. So

when we talk about spins in singlet state, it's often more natural the minus sign.

Here what naturally emerged was the plus sign, but they are both sort of Bell states

and therefore, they have what Einstein-Podolsky-Rosen introduced into it. So

tolerate both signs. They are two different states, but for the purpose of the current

discussion, they have the same property-- they're maximally entangled.

Other questions?

OK, so let me point out that the properties of entangled states always involve two

qualities. One is the non-local character, because we have correlation between two

subsystems which may be together when they interact, but then they can be

separated. So we have correlations which happen between the two systems which
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are a distance apart.

And we later come back when we talk about Gauss inequalities and that we know

that physics has non-local aspects. And secondly, if you can separate two parts and

they interact with the environment, the environment may interact with them

differently in those two different parts. And therefore, entangled states are always

regarded as fragile against decoherence.

And it's a technical challenge how do you find states? How do you implement

entangled states which are robust?

Just to give you one example, if you have an entangled state which is based on

electron spin, you may be more than 1,000 times more sensitive to magnetic field

fluctuations in your laboratory than if you have qubits which are entangled states

which are based on nuclear spin. So that's a big research area to find states which

are less sensitive, or even you immune against decoherence.

OK, so I've mentioned to you that entangled states are states which you cannot

factorize. But now we can sort of start playing with that definition. And we say, OK, if

you have an entangled state which is up-down plus down-up, but now the

contribution of down-up has only a tiny, little amplitude.

So it's almost a pure state which can be factorized with a little bit of an extra

configuration which prevents us from factorizing that. I mean, that doesn't look like

good entanglement. It looks at the whole entanglement of the state depends on

very small admixture to the wave function.

And so what we want to address now is how can we quantify that? How can we look

at this data and say, hey, this is sort of not a strongly entangled state. It has only a

weak amount of entanglement.

So let's not forget, entanglement is a resource. Entanglement allows you to do

teleportation. Entanglement allows you to do more precise measurements.

And what I want to convey you, if a state is only weakly entangled, it doesn't help
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you much to achieve precision beyond the standard limit, effective teleportation, and

such things.

Before I introduce several measures for entanglement, let me talk about

entanglement purification. It's a very nice subject which tells you that if you have

weakly entangled state, you can make them more entangled. And actually, the effort

you have to spend to make a weakly entangled state more entangled can actually

act as a measurement how entangled was your state in the first place. So the

purification is introducing us with one measurement for entanglement, as I just said,

but it also gives you an idea how quantum state can be manipulated.

Purification is also the first example we encounter in this course for new insight into

quantum physics. A lot of people thought quantum physics, at least non-relativistic

quantum physics that was invented in the '20s in the last century, and by now we've

understood it all. But there was an aspect of quantum physics, which I think nobody

understood.

And this is when you have a quantum state, which may decohere, a quantum state

which may no longer be pure, that you have ways to error correction. You have

ways to get the pure quantum state back. And ultimately, I mean, in the early days

when I learned quantum physics, I thought if you have a quantum state, that's nice.

But if the quantum-ness has decayed away, you can't get it back.

But this is something we learn now from the new methods and new approach in

quantum information science that you can do quantum error correction. You can

have a stage which has decohered and you can get back to it. And there is

something which-- it's not yet that which we're discussing today-- but in purification,

you have states which have inferior entanglement, but you don't need to get stuck

with that. You can take several of the purely entangled states and create the

maximally entangled state out of it.

So that's what I want to show you. So you should look at it as one example that

wow, it's really cool how we can have quantum states with inferior quality. And by

doing quantum operation on those states, we get something which is more
6



entangled, and therefore, if that's our purpose, has a higher quality.

So to introduce purification, I'm simply mentioning what are-- for two qubits-- the

standard, maximally entangled states. In 10 minutes or so, we talk about how do we

measure entanglement, and indeed, those states will come out as being maximally

entangled.

But you already get the idea. Maximally entangled means they're not factorizable

and not just by a small margin. They may be two equal parts of-- you always need

two equal parts of 0 1 and 1 0, and this state has maximally entangled. It's

maximally non-factorizable.

So the four states which are actually the Bell states-- the famous Bell basis-- are 0 1

plus minus 1 0 and 0 0 plus minus 1 1. Just to remind you if if you have two

systems, each of them has two states. You can think of spin-- spin up, down for

particle one, spin up down for particle two. That Hilbert space is four-dimensional.

So you need a four-dimensional basis. And the trivial basis is up up, down down, up

down, down up.

But what is relevant for entangled states, we often use the basis of Bell states. And

this is a new basis which spans the four-dimensional Hilbert space, but each of

those bases function is maximally entangled.

OK we should correctly normalize them. And that state is often called psi plus

minus. And this here is phi plus minus.

OK, so now let's get a purely entangled state. And let this state 0 0 plus 1 1. But we

will have an example where b may be very, very small. So those states, this state is

entangled for all choices of a and b.

So the question is now how can we take such an arbitrary state where a and b-- one

of them may be small, and create a standard Bell state?

So what we have to assume for that is that we have a large supply of such states.
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And so let's assume we have large supply, identical copies. And now we want to

take two such copies.

And what I want to outline you is the following-- you take sort of two of your copies,

and you do a measurement. And I will tell you what kind of qubit operation we need,

what kind of measurement we perform. And then when the outcome of the

measurement is such and such, you say-- OK let me be specific.

So if you take two copies, we have a total of two states with two photons each. And

now we perform a quantum operation on two of the photons, and the other two

photons we leave untouched. So now it depends when the measurement of the two

photons has a good outcome, we know those other two photons are maximally

entangled. They're in a Bell state.

If the outcome of the measurement is bad, it tells us the two photons are not

entangled, and we throw them away. So therefore, we have a finite probability by

performing measurements that a pair of our sample state with the coefficient a and

b will result into a maximally entangled state-- in a Bell state.

And I want to describe now what is the protocol, what is the procedure to implement

that. And what we will find-- and this is what I think you should expect here-- if the

initial state has very bad entanglement in the sense that b is very small, we will need

many, many attempts doing many measurements on our pair of states before we

produce a Bell state. It's probabilistic, but the probability to succeed in preparing a

Bell state will depend on-- we will see-- the product of a and b. Any questions? Yes.

AUDIENCE: Does the assumption of large supply of the state violate no-cloning in any sense?

PROFESSOR: The question is, does it violate the no-cloning theorem? No, it doesn't, otherwise I

would not say we have a large supply, because the no-cloning theorem is absolute.

But it simply means we cannot have one state, and then clone and clone more and

more copies. Let me be specific. If you have an experiment which produces a

certain superposition state, you can just push the button on your experiment many

times, and produce, in the identical create, as many states as you want. If you have
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spin-up state-- well, this is now for two photons, but if you have a spin-up state, you

can make as many copies as you want of the state which has been rotated by a

certain angle. So therefore, in state preparation, by going through the exact

procedure, we can just create as many copies of a state we want.

The no-cloning [INAUDIBLE] meant the following-- I give you one state which may

be a spin which has been rotated at a certain angle. You know nothing about the

state. And now you should try to make a copy out of it.

And the answer is you can't, because any measurement you do is-- if the particle

were spin up and you would measure spin up or speed down, you could say I got

spin up. Now I produce 10 spin up particles. But you don't know along which axis

the spin has been prepared.

So unless you know which axis the spin has been oriented, and if you choose

another axis, you have irreversibly lost information which cannot be retrieved.

I don't know if it helps you, but if you have a certain state, and you're going to

measure it without destroying it, you need a quantum non-demolition measurement.

If you're in energy eigenstate, you can measure energy. If you're in a spin

eigenstate which points along Z, you can measure the direction of the spin in the Z

direction without destroying it.

So if you can do a quantum non-demolition measurement on a state, you could

clone it. But that violates the assumption that if I give you an arbitrary state, you do

not know by definition what kind of measurement is a non-demolition measurement.

You just take your chance, you try to take a Stern-Gerlach experiment, separate the

spins in the Z component, and then it turns out I gave you a state which is polarized

along x.

So that's a subtle, but important difference. Other questions?

So we take two copies and let's bring in Alice and Bob. So the first photon we

associate with Alice. And the second photon is associated with Bob.
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So if you take two copies-- we have now is an Hilbert space, a four-dimensional

Hilbert space, a direct product. And if you just take the state and calculate the direct

product, you get four terms-- 0 0 1 1, 0 0 1 1, 1 1 0 0, and 1 1 1 1. And the

coefficients are given here.

Let me just underline that it if you think we have some state with some

entanglement, and we separate the system, one goes to Alice and one goes to Bob.

So the one which Alice has is the first part of it those states. And Bob has the other

part.

So the protocol is now that Alice and Bob first, they're not doing a measurement.

They're not reading out the system. They perform a unitary operation.

And what Alice and Bob have formed is the controlled NOT operation on the two

qubits. Let me just write it down and then explain it. Perform what is called the

controlled NOT or CNOT gate. And I've explained before in the last section how the

controlled NOT can be performed using a non-linear Mach-Zehnder interferometer.

So Bob and Alice both run their two photons with the non-linear Mach-Zehnder

interferometer. So what is a controlled NOT? Let me remind you. If you have two

qubits, the first one is the control. If the control is 1, you flip the second one. If the

control is 0, you do nothing to the second one.

So the controlled CNOT transforms. So since the first qubit is the control qubit, out

of those four combinations, the controlled NOT only does something if Alice's

controls and Bob's controls is 1, and then the second bit is flipped. If Alice's and

Bob's controls are 0, they do nothing to the second bit.

So therefore, the 1 1 0 is transformed into 1 1 1, and the 1 1 1 1 is transformed into

1 1 0 0.

So that's the first operation. Let me just indicate it. So what has happened here, the

0 0 has been flipped into 1 1 and the 1 1 has been flipped into 0 0.

That's the first step. The second step is that now Alice and Bob measure their target
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qubit.

What does that mean? We have a controlled NOT operation. In the controlled NOT

operation, we have the first one is the control qubit. The second one is the target of

the operation. So in our, the way how we write it, Alice's target is the third in line,

and Bob is the fourth in line.

So now Alice and Bob measure the target qubits. Let me just be specific. So Alice

has number one and number three. Bob has number two and four, and the target

qubits are the third and fourth.

So what is the probability that Alice and Bob measure both 1 1, that they both find

the target qubit of 1? Well, it is this one and it is this one where the controlled NOT

has flipped it. So one has the probability a squared b squared.

The other one has probability a squared b squared. So with probability 2 a squared

b squared-- well, let's allow a and b to be complex. They obtain 1 and 1.

So in this case, what is left is here 0 0. What is here left is 1 1. You may just need

an intermediate line to write down what the state is after the measurement. But if

you read it off here, you find that when they obtain 1 1 1, that implies the post

measurement state is then 0 0 plus 1 1 divided by square of 2, and this is one of our

Bell states.

So what we had is we had a system of four photons after a qubit operation, the

controlled NOT. Alice and Bob do a measurement together on two of the photons.

Collins. And if the outcome of this measurement is 1 1, the rest of the system is in

the Bell state.

So we assume that Alice and Bob have a large supply of those copies. So let's

assume that they start with n copies of psi. And then, because the probability is m

over n, they successfully obtain m copies of the Bell state.
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And the question is, what is the probability in the limit of a large ensemble. And we

will see in a few moments that this is actually a measurement of how entangled the

original space is.

Any questions about purification?

Well, then let's measure entanglement.

The basic idea here is that if you have a state up/down plus down/up, it's a pure

state. But this pure state has a correlation between the two subsystems. And the

idea is now entanglement is that there is a correlation between the two subsystems.

And you can say well, it would be a good way to characterize entanglement if I only

look at one subsystem. In this case, you look at one subsystem, and you would just

randomly see spin up, spin down. Spin up spin down is described by the unity

density matrix, which is, therefore, the most random state on earth.

So if you have a pure state and you only look at one subsystem, the more random

the subsystem is, the more the pureness of the initial state comes from correlations,

comes what is entanglement. So therefore, what I want to introduce now as a

measure of entanglement is that we take the total system and then we perform the

partial trace. We only look at one subsystem.

And the purer the subsystem is, the less entangled it is, because in the ultimate limit

that our system factorizes into two pure states, when we look at the subsystem, we

still have a pure state. So the purity of the subsystem in terms of pure state is now a

measure of entanglement. The purer the subsystem is, the less entangled it was.

So the basic idea here is entanglement is related to correlations. And if you take half

of a Bell state-- so if two particles which are an EPR pair and we take half of it-- then

half of it is completely random. So let me illustrate that. So if you take one half of--

let's just take one of the Bell states, phi plus, which was the superposition of 0 0 plus

1 1.
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So let me be specific, because we need it for the definition. We describe this

ensemble of this system in a pure EPR state by a density matrix. The density matrix

is nothing else than you take your total system.

So this is now the density matrix. So in our case, psi a b is just the state. And now

we describe the subsystem by performing a partial trace on rho. The partial trace is

over the system b. And that means we take all eigenfunctions k b of state b, sum

over all k's, and this is our partial trace.

So therefore, we would take our statistical operator from the line above, and

perform the partial trace where those states are the state 0 and 1 of b. So these are

the states of b. So when you do that, you just insert that. You find that what you get

is 1/2. a has been traced out, so b has been traced out.

And what we obtain for a is just from the two terms above. This gives that, and this

gives that. And you immediately realize that this is 1/2 times the identity matrix.

So therefore, we have shown that this is a completely random state. So now we can

characterize the randomness of the partial trace of the density operator obtained by

performing the partial trace with the standard von Neumann entropy.

As a reminder, the von Neumann entropy for statistical operator rho is defined as

the expectation value of rho log rho, where we take the logarithm with respect to the

base 2. So this is the trace of rho log rho. Or if we use the eigenvalues of rho, we

multiply eigenvalues with the logarithm of the eigenvalues.

So for a pure state, the entropy is 0, because a pure state has one eigenvalue,

which is 1, and the log of 1 is 0, so we get 0 for pure state. For completely mixed

state, we're talking about a state which has two dimensions, so it can be up and

down. A completely unique state has probabilities of 1/2 each. And then we say the

entropy of this state is one, or we call it one bit. Yes.

AUDIENCE: About the volume [INAUDIBLE] expectation of rho log rho is called a trace

[INAUDIBLE] expectation of log rho, expectation of [INAUDIBLE] trace of the
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operator times density matrix.

PROFESSOR: OK, so this is just a reminder of how we measure entropy of density matrix. And

now we apply it to entanglement. We define now the entanglement for the

entanglement e over state psi a b to be the entropy of the density matrix for system

a after tracing out system b.

And for pure state, this is-- it doesn't matter whether we trace out a or b if you start

with a pure state. The entanglement, the entropy of the statistical operator rho a

and rho b are the same.

I tried for a moment to prove it. I saw it quoted somewhere. I didn't succeed in a

split second, so either I overlooked something, or it's a little bit more involved to

show that.

So therefore, to use the inverts, our definition says that the entropy, so the

entanglement, is nothing else than the entropy of the reduced density matrix. And

we immediately see if we have any of the four Bell states, by performing the partial

trace over one qubit, we obtain the identity matrix. So therefore, the entropy of all

the Bell states is 1.

Let me state without proof-- when we come back to the purification scheme the

result is that the probability or the optimum probability-- if you do stupid

measurements on your states, of course you get nothing. But the optimum strategy

to create pure Bell states out of your reservoir of poorly entangled states-- so for an

optimum strategy, the success probability m over n actually turns out to be not a

different measure of entanglement. It is the entanglement which we have just

defined through the entropy of the partial trace.

So therefore-- and I think this is nicely illustrated with the purification scheme--

entanglement is a real resource. When you have better entanglement to start with,

then you can get more copies. You can get more pure Bell states out of your supply

of poorly entangled states.
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So therefore, you lose more if your states are not fully entangled. You lose more of

them, and therefore, the success of the purification scheme makes it clear how

entanglement is a resource. If you have entanglement, it's precious. You had to do

something to get it.

I didn't point out entanglement is not something which one number characterize it,

it's all. We introduced to you already another measurement of entanglement

through the Schmidt number, which was in homework number two. And usually

when you have different measures for entanglement, they're not one to one related.

It seems that, similarly when we measured non-classic light, we had a G2 function.

We had [INAUDIBLE] bunching, antibunching. We have negative quasi probabilities.

And it's often clear that one system which is truly non-classical, fulfills all the criteria,

but how the quantitative measurements are related to each other is really subtle.

In the case of entanglement, for a long time it has even been a big question in

research-- if you have an arbitrary density matrix with a complicated many-body

system, how can you even characterize the entanglement? We are focusing here

on pure states where things are fairly simple. But in the general situation of a many-

body system, it can be quite challenging just define and measure entanglement.

Any questions? Yes.

AUDIENCE: If you have a general [INAUDIBLE] that's not necessarily a pure state, can you show

that it's always the reduced trace of the bigger [INAUDIBLE]?

PROFESSOR: Say again, if I have a general state which is--

AUDIENCE: You have a subsystem-- let's say you have two spins, and then you have a density

matrix for the first-- or actually just to say that you have one spin and you have a

density matrix for that single spin, it's a matrix, not necessarily a pure state. Let's

say it's a mixed state. Then you can introduce a fake second spin and show that this

matrix is the trace of a matrix [INAUDIBLE] and maybe just put that one in a pure

state and do some stuff, do some calculations more easily.

15



PROFESSOR: Yes. If you have a density matrix, you can always regard it as a partial trace of a

bigger system. That means you always represent your state as a pure state, but it is

entangled with a bigger system. However, what the big system is, is by no means

unique.

I'm missing the technical word-- it's called unraveling the density matrix. You can

always represent the density matrix written down in forms of pure state. But this

unraveling of the density matrix-- no, actually, its related.

When I said yes, I thought about the unraveling of the density matrix. You can

always write down a density matrix as a mixture of pure states, but which are the

pure states is not unique. So when you say my density matrix is half of the atoms

are spin up and half of the atoms are spin down, somebody else would say, no,

that's not true. Half of the atoms are spin [INAUDIBLE] and spin x and some are in

spin minus x, and those representations are equivalent.

So I was just thinking of that as to write down the density matrix in the pure state

basis. But you are asking about--

AUDIENCE: [INAUDIBLE] what he's asking about [INAUDIBLE]

PROFESSOR: Somehow, but I was thinking of that, but I think the answer to your question is yes.

So you said, you confirmed that.

AUDIENCE: Yes, but I am forgetting the name of the theorem here.

AUDIENCE: Isn't it just purification again?

AUDIENCE: Yeah, it's related to purification. You can prove that you're using purification.

AUDIENCE: [INAUDIBLE]

AUDIENCE: Using purification [INAUDIBLE] but I'm completely forgetting the names of

[INAUDIBLE]

16



PROFESSOR: But wait. We've talked here about-- just to be clear, we've talked here about

purification of a pure state. We started with a pure state and we purified it to be a

Bell state by doing certain measurements. So we've not talked here about density

matrices, but it sounds very plausible that you can always construct a bigger

system.

But I should look it up and see if there is an exact proof. It's-- intuitively it sounds

correct. Other questions?

OK, so we have discussed the definition of entangled state. We've talked about

purification of entangled states and how to measure it. I want to talk now about how

we can create entangled states for atoms.

Maybe let me say the following-- so by now we are convinced. Entangled states are

great, and we want to create them. And for photons, I showed you that some simple

element-- beam splitters, Kerr medium-- can create entanglement. It's much harder

to do that with atoms.

Now, we want to do it with atoms, because atoms-- in contrast to light-- they're

pretty much staying still, whereas photons always move at the speed of light. And

the only way to make photons stand still is you put them in a cavity and then they

bounce back and forth. But even in super cavities with the highest reflectivity mirror,

you get-- what are the longest ring-down times you get-- fraction of a second,

milliseconds, depending kind of in which domain you work-- microwave domain,

optical domain.

Whereas atoms, you can hold onto your qubits for a long time. So therefore, if you

want to use entanglement as a resource for certain protocols, you want to have

entangled atoms where the entanglement would like for a long time. So the question

is now for atoms, we do not have perfect beam splitters and perfect Kerr mediums.

Also, we can control interactions between atoms for [INAUDIBLE] using VSEPR

resonances, but that's another story.

But now let me ask a question, how do we entangle atoms?

17



And I want to first show you that if you had the right system, things can be fairly

simple. This is a suggestion which was made almost 20 years ago, and it goes like

follows-- if you have a diatomic molecule of two identical atoms, in this case

mercury, and mercury doesn't have-- this molecule doesn't have any electron spin,

but mercury has a nuclear spin.

And if you now photo-dissociate mercury and two mercury atoms fly away, then you

have separated a spin singlet into two parts. And now you have created the Bell

state up/down minus down/up. So you could say this is sort of the example-- this

realizes very closely the example I gave you with the helium atom, where I said you

have an electron in spin up and spin down, but there was no way to separate the

electrons. Therefore, you can say it is a state which has entanglement, but it's not

entanglement as a resource.

But right now, here it becomes a resource once you have found a method to

separate the two parts of the wave function that you can give one to Alice, give one

to Bob, and they can perform the operations on it. Well, if it looks so simple, why

don't we have entangled atoms everywhere? This experiment has been suggested

20 years ago, but nobody has done it, or some several groups have worked on it.

You need a molecule with suitable states. You don't want any electron spin which

interferes with that. All you want to have is two nuclear spins. You want a singlet

state here. So those requirements are not easily fulfilled with real atoms.

Of course we liked-- and also who wants to work with mercury? Mercury has

transitions in the ultraviolet. I think there's only one group in the world who has

operated a magneto optic trap with mercury. So it's not your tabletop atom.

So therefore, let's now talk about a method how we can entangle atoms by using

light. So if you take atoms, maybe we can use the light which has been emitted from

the atoms, performing measurement on the light, and then depending on the

outcome of the measurement, we know the atoms are entangled.
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So Professor [? Swann ?] calls this the poor man's entangler. I don't know why poor

man's. You still need quite a bit of equipment to do it. But at least it seems the poor

man's solution if you can't make the above experiment work.

So this addresses a question that, just for technical reasons matter is more difficult

to entangle. Whereas photons are easy.

Yeah so you can say the idea is related to the purification scheme. We can't take a

system of two atoms, atom one and atom two which are unentangled, and we shine

some laser light on them, excite them. Then they emit photons. So all we can do is--

we can only talk to the atoms with the photons. So the only thing we can do now is

we can measure the two photons. And then the situation will be similar as in the

purification scheme, where Alice and Bob did a measurement.

If Alice and Bob said both of our target qubits are one, then what was left behind

was in a pure, entangled Bell state. And similarly, what you want to do here is we

have two atoms. There was nothing special about them but they scatter light. And if

you now perform a measurement on the photons and the outcome of the

measurement is positive, then we know for sure what has been left behind is

entangled. That's the idea.

So it shares with the purification scheme that it is a probabilistic entanglement. You

run your experiment many times. You do a measurement. If the measurement is

positive, you say now I have an entangled state.

And maybe then you can move on to measure the entanglement. You can move on

to do teleportation, other things you want to do with entangled states. But if your

measurements says no, bad luck. The probability hasn't worked out this time. You

just press a button again, scatter light again of your two atoms and/or your two ions

and hope that the next outcome is positive.

So the idea is we want to introduce now a probabilistic method. It's based on two

atoms emitting light. And the result is with a certain probability that we get entangled

atoms.
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Let me just scroll down and show you one thing I want to--

When I prepare the notes and everything is clear to me, but then I want to explain it

to you and say hey, I have to motivate you. If I just go through a few lines, you

wonder what it leads to. So let me maybe first give you the explanation I would have

given you a little bit later.

What is an entangled state is if the atoms are in maybe one of two ground states--

one atom is in one ground state, the other one is in the other one, or it is flipped. So

we know one atom is in the ground state one. One atom is in the ground state two,

but we don't know which one is in which. It is in the superposition state.

So what you need now in this scheme is the following-- if the atoms scatter light,

they can go to two different ground states. And we know to which ground state they

have gone, because due to selection rules, they reach one ground state with

polarization one. They reach one ground state with polarization two.

So therefore, when we had two atoms, they emit light and we would measure the

polarization of the light, we would know in which state they are. But if you know

atom 1 is in state 1, and atom 2 is in state 2, this is not entangled.

So what we have to do is when the two atoms have emitted photons, we have to

mix the photon at the beam splitter. And after the beam splitter, when we measure

that the photon is polarized, we know that one of the atoms is in one of the ground

states, but we don't know which. So therefore, we can now use-- the photon carries

through the polarization the information in which ground state the atom is. But now

we have to perform operations to the photons that for fundamental reasons,

fundamental quantum measurement, we know there is one photon in one state, but

we have no way to ever figure out which atom has emitted the photon.

So that's the idea, and the protocol I want to show you now is what do we have to

do to the two photons to make sure that we never know, that we can't find out which
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atom has emitted the photon. And we have to do little bit more tricks also to make

sure that when we do a measurement on the photon, we know the atoms are in the

Bell state. Questions about that?

So therefore, we need a beam splitter. So we can come back to what we have

already introduced in the last section.

So each atom will emit a photon. And I will actually show you at the end of the class

that people have entangled with that scheme two ions which were in two different

ion traps. So you have two distance atoms. They emit light, and after the

measurement process, you know they are entangled. And that's pretty cool.

So the situation how we do it is we have two photons which come. But the first thing

we have to make sure is we have to scramble the photons. We have to make sure

that we can't find out from which atom the photon has come, and this is done with

the beam splitter.

So there is one aspect of beam splitters and two photons which have to explain to

you now. And this is this famous HUM, Hong-Ou-Mandel. This is the Hong-Ou-

Mandel interference. It's a very famous effect, and it's actually very, very special. So

let me explain what happens when we have two photons in the same state-- two

identical photons, same frequency, same polarization-- coming to a beam splitter.

So we have already all the tools. So we have a beam splitter characterized by this

angle theta, which through cosine theta, sine theta determines what the beam

splitter is doing. And all we want to do is we apply it now to the state 1 1.

So what we will find is that there is a probability to get one photon each. Then there

is a probability to get two photons in one output. And it will actually be the same

probability with a minus sign in the amplitude to get 0 2.

And the matrix which acts on each of the photons has cosines and sines. So what

we get is products of trigonometric functions. And here for getting two photons in

one arm, it's square root 2, cosine theta, sine theta.
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And the spectacular thing here is what happens when we have a balanced beam

splitter.

If you have the 50-50 beam splitter-- and this is called the Hong-Ou-Mandel

interference, you have the situation where you have a beam splitter, you have one

photon, you have two photons. And it is absolutely impossible that afterwards, you

have one photon in each arm. So you send two photons on a beam splitter, and

after the beam splitter is, you have either two photons coming out here, or two

photons coming out there.

You can say it's Poissonic stimulation photons and bosons. That all plays a role. If

one photon goes one path, the other photons follow suit.

This is now very powerful, because it already happens, of course, when the two

photons are identical. We had to use in this formalism the photon is in the same

mode on each part. But that means now the following-- if you set up photo detectors

here, and each photon detector makes click, you know you had one photon each.

And that tells you that the two photons were not identical-- for instance, because

they have different polarizations.

So if you want to now, with the atoms, get a Bell state, where atoms decay-- one

atom decays to state one, one atom decays to state two-- the signature of that

would be that we have one atom each. And if you do it right, one atom each is an

ingredient for 1 2 plus 2 1 for Bell state. We can detect that we have one photon

each because at such a beam splitter, it's only in this situation that we can get one

photon after each beam splitter if we start with two non-identical photons.

Of course, by the way, experimentally there are quite some challenges, even if you

have identical photons of the same polarization, if they arrive as a nanosecond

pulse, and they don't arrive exactly at the same time at the beam splitter, then you

first split one photon, and then the next photon, and the two photons cannot

influence each other. So there are a lot of experimental requirements to realize this

22



ideal experiment.

So as I was preparing for today's class, I actually saw a paper which just came out

in "Science."

So in this month's "Science" they discussed the Hong-Ou-Mandel interference

experiment with fermions. So let me just explain what happens.

OK, now it fits.

So if you have two identical photons, if you have two particles which impinge on the

beam splitter-- they are the two input beams for the beam splitter-- you would say

you have four different outcomes. One is both come out here, both come out here.

Or they are both reflected, or they are both transmitted through.

And what happens is bosons-- as I just pointed out-- bosons characterized by

photons can only do that. Identical photons want two bunch up. They appear in

pairs-- 50% left output, 50% right output.

Well, for fermions, they just do the opposite. For fermions, you will always get one

particle each. You may immediately, of course, explain it with the Pauli Exclusion

Principle, which does not allow two particles to be in the same state after the beam

splitter.

And you should contrast it with classical particles. When you have two classical

particles, you will actually find that all of those four possibilities, each of them has a

25% probability. So it was a major experiment which was featured in "Science" when

people realized that with electrons, they created electrons in a semiconductor

structure, and showed through some statistical measurement that this was the

physics which happened.

The measurement they did is, I forgot details-- if you have bosons and you get

either two here or two there, you have more fluctuations in your system than for

fermions. And they conclusively showed that they had realized the Hong-Ou-Mandel
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interference for fermions.

I think we have to stop. Let me just add one more thing and then we are done. So

this Hong-Ou-Mandel interference is at the heart of how perform the measurement

which is ultimately entangling the atoms. But we need one more element. We need

sort of to scramble the photons in one more way, and this is by adding circular

polarizers at the input.

So we assume for now that we start out with linear polarization in those states. And

here is our beam splitter. Here is mode a and mode be, which we detect. And

before we measure this Hong interference, we put in quarter-wave plates which

provide circular polarization.

If you start with linearly polarized light-- we put in a polarizer-- after the circular

polarizer, we have this linear superposition of horizontal and vertical at mode one,

and we have linear polarization-- superposition of linear polarization in mode two.

So this is a situation at the input of the beam splitter. And if we expand it, we have

probabilities where the polarization is different, and where the polarization is the

same.

So we have two detectors here. And if both detectors click, then we know that the

input to the interferometer was not H H nor V V, because in that case, the Hong-Ou-

Mandel interference would have directed both photons to one output, and we would

not have obtained clicks from both.

So therefore, when both detectors click, we know that the quantum state before the

interferometer-- before the beam splitter-- was H V or V H-- or, of course, in another

basis, one of those. And this is sort of the ingredient, which I will show you on

Wednesday, which can lead to probabilistic entanglement of atoms. Any questions?

OK, one announcement-- we post this week's homework assignment later today. It

will be due in a week. See you on Wednesday.
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