

8.512 Theory of Solids II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1. (a) Using linear response theory, derive the following expression for the magnetic susceptibility  $\chi_{\parallel} = \partial M_z / \partial H_z$ .

$$\chi_{\parallel} = \lim_{q \to 0} \int \frac{d\omega}{2\pi} \langle S_z(q,\omega) S_z(-q,-\omega) \rangle \frac{\left(1 - e^{-\frac{\hbar\omega}{kT}}\right)}{\omega}$$

(b) Provided that the total magnetization  $M_z = \sum_i S_{iz}$  commutes with the Hamiltonian, we can start from the expression  $F = -kT \ln Tr\{e^{-\beta(H-M_zH_z)}\}$  and take derivatives with respect to  $H_z$  to derive the simpler expression

$$\chi_{\parallel} = \frac{1}{kT} \langle M_z^2 \rangle$$

Show that this is consistent with the more general expression obtained in 1(a). [Hint: in this special case  $\lim_{q\to 0} \langle |S_z(q,\omega)|^2 \rangle \sim \delta(\omega)$ .]

- 2. Using the results of Problem 1,
  - (a) Calculate the low temperature  $\chi_{\parallel}(T)$  for a Heisenberg antiferromagnet. Show that it is proportional to  $T^2$ .
  - (b) For an antiferromagnet with an Ising anisotropy, argue that  $\chi_{\parallel} \sim e^{-\Delta/T}$ . What is the value of  $\Delta$ ?