Chemical and Biological Reaction Engineering

A real mixed tank can have bypasses, dead volumes, and recirculation.

In a real mixed tank, there is not perfect mixing due to dead volumes, bypasses, and recirculation. In a real plug flow reactor or packed bed reactor, there is back-mixing, axial dispersion, and channeling. See Lec #10 for how to model these behaviors. (Figure by MIT OCW.)

Instructor(s)

MIT Course Number

10.37

As Taught In

Spring 2007

Level

Undergraduate

Cite This Course

Course Features

Course Description

This course applies the concepts of reaction rate, stoichiometry and equilibrium to the analysis of chemical and biological reacting systems, derivation of rate expressions from reaction mechanisms and equilibrium or steady state assumptions, design of chemical and biochemical reactors via synthesis of chemical kinetics, transport phenomena, and mass and energy balances. Topics covered include: chemical/biochemical pathways; enzymatic, pathway, and cell growth kinetics; batch, plug flow and well-stirred reactors for chemical reactions and cultivations of microorganisms and mammalian cells; heterogeneous and enzymatic catalysis; heat and mass transport in reactors, including diffusion to and within catalyst particles and cells or immobilized enzymes.

Wittrup, K., and William Green Jr.. 10.37 Chemical and Biological Reaction Engineering, Spring 2007. (MIT OpenCourseWare: Massachusetts Institute of Technology), http://ocw.mit.edu/courses/chemical-engineering/10-37-chemical-and-biological-reaction-engineering-spring-2007 (Accessed). License: Creative Commons BY-NC-SA


For more information about using these materials and the Creative Commons license, see our Terms of Use.


Close