Review of Basic Concepts: Normal form

14.126 Game Theory
Muhamet Yildiz

Road Map

• Normal-form Games
• Dominance & Rationalizability
• Nash Equilibrium
 – Existence and continuity properties
• Bayesian Games
 – Normal-form/agent-normal-form representations
 – Bayesian Nash equilibrium—equivalence to Nash equilibrium, existence and continuity
Normal-form games

- A (normal form) game is a triplet $\langle N, S, u \rangle$:
 - $N = \{1, \ldots, n\}$ is a (finite) set of players.
 - $S = S_1 \times \ldots \times S_n$ where S_i is the set of pure strategies of player i.
 - $u = (u_1,\ldots,u_n)$ where $u_i : S \to \mathbb{R}$ is player i's vNM utility function.

- A normal form game is finite if S and N are finite.
- The game is common knowledge.

Mixed Strategies, beliefs

- $\Delta(X) =$ Probability distributions on X.
- $\Delta(S_i) = $ Mixed strategies of player i.
- Independent strategy profile:
 $\sigma = \sigma_1 \times \ldots \times \sigma_n \in \Delta(S_1) \times \ldots \times \Delta(S_n)$
- Correlated strategy profile:
 $\sigma \in \Delta(S)$
- $\Delta(S_{-i}) = $ possible conjectures of player i (beliefs about the other players’ strategies). $[\sigma_{-i} \in \Delta(S_{-i})]$
 - A player may believe that the other players’ strategies are correlated!
- Expected payoffs:
 $u_i(\sigma) = E_\sigma(u_i) = \Sigma_{s \in S} \sigma(s) u_i(s)$
Rationality & Dominance

• Player i is rational if he maximizes his expected payoff given his belief.
• s_i^* is a best reply to a belief σ_i iff
 $\forall s_i \in S_i: u_i(s_i^*, \sigma_i) \geq u_i(s_i, \sigma_i)$.
• $B_i(\sigma_i)$ = best replies to σ_i.
• σ_i strictly dominates s_i iff
 $\forall s_j \in S_j: u_i(\sigma_i, s_j) > u_i(s_i, s_j)$.
• σ_i weakly dominates s_i iff
 $\forall s_j \in S_j: u_i(\sigma_i, s_j) \geq u_i(s_i, s_j)$ with a strict inequality.

Theorem: In a finite game, s_i^* is never a best reply to a (possibly correlated) conjecture σ_i iff s_i^* is strictly dominated (by a possibly mixed strategy).

Proof of Theorem

• Let
 - $S_i = \{s_i^1, \ldots, s_i^m\}$
 - $u_i(s_i^k) = (u_i(s_i^k, s_{-i}^1), \ldots, u_i(s_i^k, s_{-i}^m))$
 - $U = \{u_i(s_i) | s_i \in S_i\}$
 - $Co(U)$ = convex hull of $U = \{u_i(\sigma_i) | \sigma_i \in \Delta(S_i)\}$
 - (\Rightarrow) Assume $s_i^* \in B_i(\sigma_i)$.
 $\Rightarrow \forall s_i, u_i(s_i^*, \sigma_i) \geq u_i(s_i, \sigma_i)$
 $\Rightarrow \forall \sigma_i, u_i(s_i^*, \sigma_i) \geq u_i(\sigma_i, \sigma_i)$
 \Rightarrow No σ_i strictly dominates s_i^*.

• SHT: Let C and D be non-empty, disjoint subsets of \mathbb{R}^m with C closed. Then, $\exists r \in \mathbb{R}^m(0): \forall x \in \text{cl}(D) \forall y \in C, \ r \cdot x \geq r \cdot y$.

• (\Leftarrow) Define
 $D = \{x \in \mathbb{R}^m | x_k > u_i(s_i^*, s_{-i}^k) \ \forall k\}$.
 Assume s_i^* is not strictly dominated.
 $\Rightarrow Co(U)$ and D are disjoint.
 \Rightarrow By SHT, $\exists r: \forall \sigma_i, u_i(s_i^*, \sigma_i) \geq u_i(\sigma_i, \sigma_i)$
 $\Rightarrow u_i(s_i^*, \sigma_i) \geq u_i(\sigma_i, \sigma_i)$
 where $\sigma_i(s_{-i}^k) = r^k/(r^1 + \ldots + r^m)$.
Iterated strict dominance & Rationalizability

• $S^0 = S$
• $S^k_i = B_i(\Delta(S^k_{-i}))$
• (Correlated) Rationalizable strategies:

 $S^\infty = \bigcap_{k=0}^\infty S^k_i$

• Independent rationalizability: $s_i \in S^k_i$ iff $s_i \in B_i(\prod_{j \neq i} \sigma_j)$ where $\sigma_j \in \Delta(S^k_{-i}) \forall j$.
• σ_i is rationalizable iff $\sigma_i \in B_i(\Delta(S^\infty_{-i}))$.

Theorem (fixed-point definition): S^∞ is the largest set $Z_1 \times \ldots \times Z_n$ s.t. $Z_i \subseteq B_i(\Delta(Z_{-i}))$ for each i. (s_i is rationalizable iff $s_i \in Z_i$ for such $Z_1 \times \ldots \times Z_n$.)

Foundations of rationalizability

• If the game and rationality are common knowledge, then each player plays a rationalizable strategy.
• Each rationalizable strategy profile is the outcome of a situation in which the game and rationality are common knowledge.
• In any “adaptive” learning model the ratio of players who play a non-rationalizable strategy goes to zero as the system evolves.
Rationalizability in Cournot Duopoly

Simultaneously, each firm \(i \in \{1,2\} \) produces \(q_i \) units at marginal cost \(c \), and sells it at price \(P = \max\{0,1-q_1-q_2\} \).

\[
\begin{align*}
q_2 & \leq 1-c \\
1-c & \geq q_2 \\
\frac{1-c}{2} & \leq q_1 \\
\frac{1-c}{2} & \geq q_1 \\
1-c & \geq q_1 \\
1-c & \leq q_2 \\
\end{align*}
\]

As \(n \to \infty \), \(q^n \to (1-c)/3 \).
Nash Equilibrium

• The following are equivalent:
 – $\sigma^* = (\sigma_1^*, \ldots, \sigma_n^*)$ is a Nash Equilibrium
 – $\forall i, \sigma_i^* \in B(\sigma_i^*)$, where B_i contains mixed best replies
 – $\forall i, \forall s_i \in S_i : u(\sigma_i^*, \sigma_i^*) \geq u(s_i, \sigma_i^*)$,
 – $\forall i, \text{supp}(\sigma_i^*) \subseteq B(\sigma_i^*)$.

• Aumann & Brandenburger: In a 2-person game, if game, rationality, and conjectures are all mutually known, then the conjectures constitute a Nash equilibrium.

• For $n > 2$ players, we need common prior assumption and common knowledge of conjectures.

• Steady states of any adaptive learning process are Nash equilibria.

Existence and continuity

• For any correspondence $F : X \rightarrow 2^Y$, where X compact and Y bounded, F is upper-hemicontinuous iff F has closed graph:
 \[
 [x_m \rightarrow x & y_m \rightarrow y & y_m \in F(x_m)] \Rightarrow y \in F(x).
 \]

• Berge’s Maximum Theorem (existence and continuity of individual optimum): Assume $f : X \times Z \rightarrow Y$ is continuous and X, Y, Z are compact. Let
 \[
 F(x) = \text{arg max}_{z \in Z} f(x, z).
 \]
 Then, F is non-empty, compact-valued, and upper-hemicontinuous.

• Kakutani’s Fixed-point theorem: Let X be a convex, compact subset of \mathbb{R}^m and let $F : X \rightarrow 2^X$ be a non-empty, convex-valued correspondence with closed graph. Then, there exists $x \in X$ such that $x \in F(x)$.
Existence of Nash Equilibrium

Theorem: Let each S_i be a convex, compact subset of a Euclidean space and each u_i be continuous in s and quasi-concave in s_i. Then, there exists a Nash equilibrium $s \in S$.

Corollary: Each finite game has a (possibly mixed) Nash equilibrium σ^*.

Proof of corollary: Each $\Delta(S_i) \subseteq \mathbb{R}^m$ is convex and compact. Each $u_i(\sigma)$ is continuous, and linear in σ_i. Then, the game with strategy spaces $\Delta(S_i)$ has a NE $\sigma^* \in \Delta(S_1) \times \ldots \times \Delta(S_n)$.

Proof of Existence Theorem

- Let $F : S \to 2^S$ be the “best reply” correspondence:
 \[F_i(s) = B_i(s_{-i}) \]
- By the Maximum Theorem, F is non-empty and has closed graph.
- By quasi-concavity, F is convex valued.
- By Kakutani fixed-point theorem, F has a fixed point: $s^* \in F(s^*)$.
- s^* is a Nash equilibrium.
Upper-hemicontinuity of NE

- X, S are compact metric spaces
- $u^x(s)$ is continuous in $x \in X$ and $s \in S$.
- $\text{NE}(x)$ is the set of Nash equilibria of (N,S,u^x).
- $\text{PNE}(x)$ is pure Nash equilibria of (N,S,u^x).

Theorem: NE and PNE are upper-hemicontinuous.

Corollary: If S is finite, NE is non-empty, compact-valued, and upper-hemicontinuous.

Proof:
- $\Delta(S_i)$ is compact and $u^x(\sigma)$ is continuous in (x,σ).
- Suppose: $x_m \to x$, $\sigma^m \in \text{NE}(x_m)$, $\sigma \not\in \text{NE}(x)$.
- $\exists i, s_i$: $u^x(s_i, \sigma_{-i}) > u^x(\sigma)$.
- $u^{x_m}(s_i, \sigma_{-i}^m) > u^{x_m}(\sigma^m)$ for large m.

Bayesian Games

- A **Bayesian game** is a list (N, A, Θ, T, u, p):
 - $N = \{1, \ldots, n\}$ is a (finite) set of players;
 - $A = A_1 \times \ldots \times A_n$; A_i is the set of actions of i;
 - Θ is the set of payoff relevant parameters;
 - $T = T_1 \times \ldots \times T_n$; T_i is the set of types of i;
 - $u = (u_1, \ldots, u_n)$; $u_i : \Theta \times A \to \mathbb{R}$ is i's vNM utility function;
 - $p \in \Delta(\Theta \times T)$ is a common prior.
- A **Bayesian game** is a list (N, A, Θ, T, u, p) as above except $u_i : \Theta \times T \times A \to \mathbb{R}$.
- A **Bayesian game** is a list (N, A, T, u, p) as above except $u_i : T \times A \to \mathbb{R}$.

Fact: All three formulations are equivalent (as long as you know what you are doing).

Fact: We can replace p with p_1, \ldots, p_n, dropping CPA.
Normal-form representations

- Given a Bayesian game $\Gamma = (N, A, \Theta, T, u, p)$,
- Normal Form: $G(\Gamma) = (N, S, U)$:
 - $S_i = \{\text{functions } s_i: T_i \to A_i\}$
 - $U_i(s) = E_p[u_i(\theta, s_1(t_1), \ldots, s_n(t_n))]$.
- Agent-Normal Form: $AG(\Gamma) = (N, S, U)$:
 - $N = T_1 \cup \cdots \cup T_n$
 - $S_{t_i} = A_i$ for each $t_i \in T_i$
 - $U_{t_i}(s) = E_p[u_i(\theta, s_1(t_1), \ldots, s_n(t_n)) | t_i]$.

Bayesian Nash equilibrium

Definition: $\sigma^* = (\sigma_1^*, \ldots, \sigma_n^*)$ is a Bayesian Nash Equilibrium iff for each i, t_i,

$$\sigma_i^*(a_i | t_i) > 0 \Rightarrow a_i \in \arg \max_{a_i} E_p[u_i(\theta, a_i, \sigma_{-i}^*(a_{-i} | t_{-i})) | t_i]$$

Fact: σ^* is a Bayesian Nash equilibrium of Γ iff the profile $\sigma^*(\cdot | t_i)$, $t_i \in T_i$, $i \in N$ is a Nash equilibrium of $AG(\Gamma)$.

Fact: If σ^* is a Bayesian Nash equilibrium of Γ, then σ^* is a Nash equilibrium of $G(\Gamma)$. If $p(t_i) > 0$ for each t_i, the converse is also true.
Existence of BNE

Consider $\Gamma=(N,A,\Theta,T,u,p)$ with finite N and T.

Theorem: If

- each A_i is compact and convex
- each u_i is bounded, continuous in a, concave in a_i

then Γ has a pure Bayesian Nash equilibrium.

Proof: $AG(\Gamma)$ has a pure Nash equilibrium.

Corollary: If A is finite, Γ has a (possibly mixed) Bayesian Nash equilibrium.

Upper-hemicontinuity of BNE

- A, T finite and Θ, X compact.
- $u^x_i(\theta,a)$ continuous in (x,θ,a)
- BNE(x) Bayesian NE of $\Gamma^x=(N,A,\Theta,T,u^x,p)$.
- BNE(p) Bayesian Nash equilibria of (N,A,Θ,T,u,p).

Theorem: BNE is upper-hemicontinuous.

Proof: BNE$(x) = NE(AG(\Gamma^x))$.

Theorem: Assume $p(t_i) > 0 \forall p \in P$, $\forall t_i \in T$, for compact $P \subseteq \Delta(\Theta \times T)$. BNE$(p)$ is upper-hemicontinuous on P.

Proof: $U_i(s;p) = E_p[u_i(\theta,s_1(t_1),...,s_n(t_n))]$ is continuous; BNE$(p) = NE(G((N,A,\Theta,T,u,p)))$.