# Resource Index

This resource index gives users access to most of the course resources in a single location.

## Unit I: Probability Models and Discrete Random Variables

TITLEs LECTURE VIDEOs SLIDES TEXTBOOK READINGS RECITATIONS TUTORIALS HELP VIDEOS PROBLEM SETS
Probability Models and Axioms Lecture 1: Probability Models and Axioms1 Lecture 1: Probability Models and Axioms Slides (PDF) Sections 1.1–1.2

Recitation 1 Problems (PDF)

Recitation 1 Solutions (PDF)

None

Flash and JavaScript are required for this feature.

The Probability of the Difference of Two Events (00:05:55)

Flash and JavaScript are required for this feature.

Geniuses and Chocolates (00:08:43)

Flash and JavaScript are required for this feature.

Uniform Probabilities on a Square (00:09:17)

Problem Set 1 (PDF)

Problem Set 1 Solutions (PDF)

Conditioning and Bayes' Rule Lecture 2: Conditioning and Bayes' Rule2 Lecture 2: Conditioning and Bayes' Rule Slides (PDF)

Sections 1.3–1.4

Recitation 2 Problems (PDF)

Recitation 2 Solutions (PDF)

None

Flash and JavaScript are required for this feature.

A Coin Tossing Puzzle (00:08:11)

Flash and JavaScript are required for this feature.

Conditional Probability Example (00:14:22)

Flash and JavaScript are required for this feature.

The Monty Hall Problem (00:15:59)

None
Independence Lecture 3: Independence Lecture 3: Independence Slides (PDF) Section 1.5

Recitation 3 Problems (PDF)

Recitation 3 Solutions (PDF)

Tutorial 1 Problems (PDF)

Tutorial 1 Solutions (PDF)

Flash and JavaScript are required for this feature.

A Random Walker (00:05:52)

Flash and JavaScript are required for this feature.

Communication over a Noisy Channel (00:19:53)

Flash and JavaScript are required for this feature.

Network Reliability (00:17:24)

Flash and JavaScript are required for this feature.

A Chess Tournament Problem (00:18:33)

Problem Set 2 (PDF)

Problem Set 2 Solutions (PDF)

Counting Lecture 4: Counting Lecture 4: Counting Slides (PDF) Section 1.6

Recitation 4 Problems (PDF)

Recitation 4 Solutions (PDF)

Tutorial 2 Problems (PDF)

Tutorial 2 Solutions (PDF)

Flash and JavaScript are required for this feature.

Rooks on a Chessboard (00:18:28)

Flash and JavaScript are required for this feature.

Hypergeometric Probabilities (00:05:49)

None
Discrete Random Variables; Probability Mass Functions; Expectations Lecture 5: Discrete Random Variables; Probability Mass Functions; Expectations Lecture 5: Discrete Random Variables; Probability Mass Functions; Expectations Slides (PDF) Sections 2.1–2.3

Recitation 5 Problems (PDF)

Recitation 5 Solutions (PDF)

Tutorial 2 Problems (PDF)

Tutorial 2 Solutions (PDF)

Tutorial 3 Problems (PDF)

Tutorial 3 Solutions (PDF)

Flash and JavaScript are required for this feature.

Sampling People on Buses (00:11:56)

Flash and JavaScript are required for this feature.

PMF of a Function of a Random Variable (00:15:26)

Problem Set 3 (PDF)

Problem Set 3 Solutions (PDF)

Discrete Random Variable Examples; Joint PMFs Lecture 6: Discrete Random Variable Examples; Joint PMFs Lecture 6: Discrete Random Variable Examples; Joint PMFs Slides (PDF) Sections 2.4–2.6

Recitation 6 Problems (PDF)

Recitation 6 Solutions (PDF)

Tutorial 3 Problems (PDF)

Tutorial 3 Solutions (PDF)

Flash and JavaScript are required for this feature.

Flipping a Coin a Random Number of Times (00:08:43)

Flash and JavaScript are required for this feature.

Joint Probability Mass Function (PMF) Drill 1 (00:17:37)

Flash and JavaScript are required for this feature.

The Coupon Collector Problem (00:07:15)

None
Multiple Discrete Random Variables Lecture 7: Multiple Discrete Random Variables Lecture 7: Multiple Discrete Random Variables Slides (PDF) Sections 2.6–2.7

Recitation 7 Problems (PDF)

Recitation 7 Solutions (PDF)

Tutorial 3 Problems (PDF)

Tutorial 3 Solutions (PDF)

Joint Probability Mass Function (PMF) Drill 2 (00:13:45)

Problem Set 4 (PDF)

Problem Set 4 Solutions (PDF)

## Quiz I

QUIZ SCOPE PREPARATION MATERIALS QUIZ AND SOLUTIONS
Quiz 1 covers
• Lectures 1 through 7
• Textbook Chapters 1 and 2
• Recitations 1 through 7
• Tutorials 1 through 3
• Problem Sets 1 through 4

Quiz 1 Slides (PDF)

Quiz 1 (PDF)

Quiz 1 Solutions (PDF)

## Unit II: General Random Variables

TITLEs LECTURE VIDEOs SLIDES TEXTBOOK READINGS RECITATIONS TUTORIALS HELP VIDEOS PROBLEM SETS
Continuous Random Variables Lecture 8: Continuous Random Variables Lecture 8: Continuous Random Variables Slides (PDF) Sections 3.1–3.3

Recitation 8 Problems (PDF)

Recitation 8 Solutions (PDF)

Tutorial 4 Problems (PDF)

Tutorial 4 Solutions (PDF)

Flash and JavaScript are required for this feature.

Calculating a Cumulative Distribution Function (CDF) (00:08:44)

Flash and JavaScript are required for this feature.

A Mixed Distribution Example (00:13:25)

Flash and JavaScript are required for this feature.

Mean and Variance of the Exponential (00:15:11)

Flash and JavaScript are required for this feature.

Normal Probability Calculation (00:05:25)

None

Multiple Continuous Random Variables Lecture 9: Multiple continuous Random Variables Lecture 9: Multiple Continuous Random Variables Slides (PDF) Sections 3.4–3.5

Recitation 9 Problems (PDF)

Recitation 9 Solutions (PDF)

Tutorial 4 Problems (PDF)

Tutorial 4 Solutions (PDF)

Flash and JavaScript are required for this feature.

Uniform Probabilities on a Triangle (00:22:58)

Flash and JavaScript are required for this feature.

Probability that Three Pieces Form a Triangle (00:12:30)

Flash and JavaScript are required for this feature.

The Absent Minded Professor (00:13:09)

Problem Set 5 (PDF)

Problem Set 5 Solutions (PDF)

Continuous Bayes' Rule; Derived Distributions Lecture 10: Continuous Bayes' Rule; Derived Distributions Lecture 10: Continuous Bayes' Rule; Derived Distributions Slides (PDF) Sections 3.6 and 4.1

Recitation 11 Problems (PDF)

Recitation 11 Solutions (PDF)

Tutorial 5 Problems (PDF)

Tutorial 5 Solutions (PDF)

Flash and JavaScript are required for this feature.

Inferring a Discrete Random Variable from a Continuous Measurement (00:18:37)

Flash and JavaScript are required for this feature.

Inferring a Continuous Random Variable from a Discrete Measurement (00:11:35)

Flash and JavaScript are required for this feature.

A Derived Distribution Example (00:09:30)

Flash and JavaScript are required for this feature.

The Probability Distribution Function (PDF) of [X] (00:09:06)

Flash and JavaScript are required for this feature.

Ambulance Travel Time (00:06:47)

None
Derived Distributions; Convolution; Covariance and Correlation Lecture 11: Derived Distributions; Convolution; Covariance and Correlation Lecture 11: Derived Distributions; Convolution; Covariance and Correlation Slides (PDF) Sections 4.1–4.2

Recitation 12 Problems (PDF)

Recitation 12 Solutions (PDF)

Tutorial 6 Problems (PDF)

Tutorial 6 Solutions (PDF)

Flash and JavaScript are required for this feature.

The Difference of Two Independent Exponential Random Variables (00:06:12)

Flash and JavaScript are required for this feature.

The Sum of Discrete and Continuous Random Variables (00:05:37)

None
Iterated Expectations; Sum of a Random Number of Random Variables Lecture 12: Iterated Expectations; Sum of a Random Number of Random variables Lecture 12: Iterated Expectations; Sum of a Random Number of Random Variables Slides (PDF) Sections 4.3 and 4.5

Recitation 13 Problems (PDF)

Recitation 13 Solutions (PDF)

Tutorial 6 Problems (PDF)

Tutorial 6 Solutions (PDF)

Flash and JavaScript are required for this feature.

The Variance in the Stick Breaking Problem (00:11:30)

Flash and JavaScript are required for this feature.

Widgets and Crates (00:10:06)

Flash and JavaScript are required for this feature.

Using the Conditional Expectation and Variance (00:10:10)

Flash and JavaScript are required for this feature.

A Random Number of Coin Flips (00:07:19)

Flash and JavaScript are required for this feature.

A Coin with Random Bias (00:22:58)

Problem Set 6 (PDF)

Problem Set 6 Solutions (PDF)

## Quiz 2

QUIZ SCOPE PREPARATION MATERIALS QUIZ AND SOLUTIONS
Quiz 2 covers
• Lectures 1 through 12
• Textbook Chapters 1 and 4
• Recitations 1 through 13
• Tutorials 1 through 6
• Problem Sets 1 through 6

Quiz 2 Slides (PDF)

Quiz 2 (PDF)

Quiz 2 Solutions (PDF)

## Unit III: Random Processes

TITLEs LECTURE VIDEOs SLIDES TEXTBOOK READINGS RECITATIONS TUTORIALS HELP VIDEOS PROBLEM SETS
Bernoulli Process Lecture 13: Bernoulli Process Lecture 13: Bernoulli Process Slides (PDF) Section 6.1

Recitation 14 Problems (PDF)

Recitation 14 Solutions (PDF)

Tutorial 7 Problems (PDF)

Tutorial 7 Solutions (PDF)

Bernoulli Process Practice (00:08:22) None
Poisson Process - I Lecture 14: Poisson Process - I Lecture 14: Poisson Process - I Slides (PDF) Section 6.2

Recitation 15 Problems (PDF)

Recitation 15 Solutions (PDF)

Tutorial 7 Problems (PDF)

Tutorial 7 Solutions (PDF)

Competing Exponentials (00:07:43) None
Poisson Process - II Lecture 15: Poisson Process - II Lecture 15: Poisson Process - II Slides (PDF) Section 6.2

Recitation 17 Problems (PDF)

Recitation 17 Solutions (PDF)

Tutorial 8 Problems (PDF)

Tutorial 8 Solutions (PDF)

Random Incidence Under Erlang Arrivals (00:09:43)

Problem Set 7 (PDF)

Problem Set 7 Solutions (PDF)

Markov Chains - I Lecture 16: Markov Chains - I Lecture 16: Markov Chains - I Slides (PDF) Sections 7.1–7.2

Recitation 18 Problems (PDF)

Recitation 18 Solutions (PDF)

Tutorial 9 Problems (PDF)

Tutorial 9 Solutions (PDF)

Flash and JavaScript are required for this feature.

Setting Up a Markov Chain (00:10:36)

Flash and JavaScript are required for this feature.

Markov Chain Practice 1 (00:11:41)

None
Markov Chains - II Lecture 17: Markov Chains - II Lecture 17: Markov Chains - II Slides (PDF) Section 7.3 None

Tutorial 9 Problems (PDF)

Tutorial 9 Solutions (PDF)

None

Problem Set 8 (PDF)

Problem Set 8 Solutions (PDF)

Markov Chains - III Lecture 18: Markov Chains - III Lecture 18: Markov Chains - III Slides (PDF) Section 7.4

Recitation 19 Problems (PDF)

Recitation 19 Solutions (PDF)

Tutorial 10 Problems (PDF)

Tutorial 10 Solutions (PDF)

Mean First Passage and Recurrence Times (00:09:27) None

## Unit IV: Laws Of Large Numbers And Inference

TITLEs LECTURE VIDEOs SLIDES TEXTBOOK READINGS RECITATIONS TUTORIALS HELP VIDEOS PROBLEM SETS
Weak Law of Large Numbers Lecture 19: Weak Law of Large Numbers Lecture 19: Weak Law of Large Numbers Slides (PDF) Sections 5.1–5.3

Recitation 20 Problems (PDF)

Recitation 20 Solutions (PDF)

Tutorial 10 Problems (PDF)

Tutorial 10 Solutions (PDF)

Flash and JavaScript are required for this feature.

Convergence in Probability and in the Mean Part 1 (00:13:37)

Flash and JavaScript are required for this feature.

Convergence in Probability and in the Mean Part 2 (00:05:46)

Flash and JavaScript are required for this feature.

Convergence in Probability Example (00:07:37)

Problem Set 9 (PDF)

Problem Set 9 Solutions (PDF)

Central Limit Theorem Lecture 20: Central Limit Theorem Lecture 20: Central Limit Theorem Slides (PDF) Section 6.2

Recitation 21 Problems (PDF)

Recitation 21 Solutions (PDF)

None

Flash and JavaScript are required for this feature.

Probabilty Bounds (00:10:46)

Flash and JavaScript are required for this feature.

Using the Central Limit Theorem (00:11:25)

None
Bayesian Statistical Inference - I Lecture 21: Bayesian Statistical Inference - I Lecture 21: Bayesian Statistical Inference - I Slides (PDF)   None None None None
Bayesian Statistical Inference - II Lecture 22: Bayesian Statistical Inference - II Lecture 22: Bayesian Statistical Inference - II Slides (PDF) Sections 8.3–8.4

Recitation 22 Problems (PDF)

Recitation 22 Solutions (PDF)

Tutorial 11 Problems (PDF)

Tutorial 11 Solutions (PDF)

Flash and JavaScript are required for this feature.

Inferring a Parameter of Uniform Part 1 (00:24:52)

Flash and JavaScript are required for this feature.

Inferring a Parameter of Uniform Part 2 (00:19:36)

Flash and JavaScript are required for this feature.

An Inference Example (00:27:51)

Problem Set 10 (PDF)

Problem Set 10 Solutions (PDF)

Classical Statistical Inference - I Lecture 23 Classical Statistical Inference - I Lecture 23: Classical Statistical Inference - I Slides (PDF) Section 7.3

Recitation 23 Problems (PDF)

Recitation 23 Solutions (PDF)

Recitation 24 Problems (PDF)

Recitation 24 Solutions (PDF)

Tutorial 11 Problems (PDF)

Tutorial 11 Solutions (PDF)

None None
Classical Inference - II Lecture 24: Classical Inference - II Lecture 24: Classical Inference - II Slides (PDF) Sections 9.2–9.3

Recitation 24 Problems (PDF)

Recitation 24 Solutions (PDF)

None None None
Classical Inference - III Lecture 25: Classical Inference - III; Course Review Lecture 25: Classical Inference - III Slides (PDF) Section 9.4 None None None

Problem Set 11 (PDF)

Problem Set 11 Solutions (PDF)

## Final Exam

FINAL EXAM SCOPE PREPARATION MATERIALS QUIZ AND SOLUTIONS
The Final Exam covers the entire course, however the emphasis is on the material not covered in Quiz 1 and Quiz 2.

Final Exam (PDF)

Final Exam Solutions (PDF)