LECTURE SLIDES - DYNAMIC PROGRAMMING

BASED ON LECTURES GIVEN AT THE

MASSACHUSETTS INST. OF TECHNOLOGY

CAMBRIDGE, MASS

FALL 2011

DIMITRI P. BERTSEKAS

http://www.atherasc.com/dpbook.html
LECTURE OUTLINE

• Problem Formulation
• Examples
• The Basic Problem
• Significance of Feedback
DP AS AN OPTIMIZATION METHODOLOGY

• Generic optimization problem:

\[
\min_{u \in U} g(u)
\]

where \(u \) is the optimization/decision variable, \(g(u) \) is the cost function, and \(U \) is the constraint set.

• Categories of problems:
 – Discrete (\(U \) is finite) or continuous
 – Linear (\(g \) is linear and \(U \) is polyhedral) or nonlinear
 – Stochastic or deterministic: In stochastic problems the cost involves a stochastic parameter \(w \), which is averaged, i.e., it has the form

\[
g(u) = E_w \{G(u, w)\}
\]

where \(w \) is a random parameter.

• DP can deal with complex stochastic problems where information about \(w \) becomes available in stages, and the decisions are also made in stages and make use of this information.
BASIC STRUCTURE OF STOCHASTIC DP

- Discrete-time system

\[x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, 1, \ldots, N - 1 \]

- \(k \): Discrete time
- \(x_k \): State; summarizes past information that is relevant for future optimization
- \(u_k \): Control; decision to be selected at time \(k \) from a given set
- \(w_k \): Random parameter (also called disturbance or noise depending on the context)
- \(N \): Horizon or number of times control is applied

- Cost function that is additive over time

\[
E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) \right\}
\]

- Alternative system description: \(P(x_{k+1} \mid x_k, u_k) \)

\[x_{k+1} = w_k \quad \text{with} \quad P(w_k \mid x_k, u_k) = P(x_{k+1} \mid x_k, u_k) \]
INVENTORY CONTROL EXAMPLE

- **Discrete-time system**

\[x_{k+1} = f_k(x_k, u_k, w_k) = x_k + u_k - w_k \]

- **Cost function that is additive over time**

\[
E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) \right\} \\
= E \left\{ \sum_{k=0}^{N-1} (cu_k + r(x_k + u_k - w_k)) \right\}
\]

- **Optimization over policies**: Rules/functions \(u_k = \mu_k(x_k) \) that map states to controls
ADDITIONAL ASSUMPTIONS

• The set of values that the control u_k can take depend at most on x_k and not on prior x or u

• Probability distribution of w_k does not depend on past values w_{k-1}, \ldots, w_0, but may depend on x_k and u_k
 – Otherwise past values of w or x would be useful for future optimization

• Sequence of events envisioned in period k:
 – x_k occurs according to

\[x_k = f_{k-1}(x_{k-1}, u_{k-1}, w_{k-1}) \]

 – u_k is selected with knowledge of x_k, i.e.,

\[u_k \in U_k(x_k) \]

 – w_k is random and generated according to a distribution

\[P_{w_k}(x_k, u_k) \]
DETERMINISTIC FINITE-STATE PROBLEMS

- Scheduling example: Find optimal sequence of operations A, B, C, D
- A must precede B, and C must precede D
- Given startup cost S_A and S_C, and setup transition cost C_{mn} from operation m to operation n
STOCHASTIC FINITE-STATE PROBLEMS

- Example: Find two-game chess match strategy
- *Timid* play draws with prob. $p_d > 0$ and loses with prob. $1 - p_d$. *Bold* play wins with prob. $p_w < \frac{1}{2}$ and loses with prob. $1 - p_w$
BASIC PROBLEM

• System \(x_{k+1} = f_k(x_k, u_k, w_k) \), \(k = 0, \ldots, N - 1 \)

• Control constraints \(u_k \in U_k(x_k) \)

• Probability distribution \(P_k(\cdot \mid x_k, u_k) \) of \(w_k \)

• Policies \(\pi = \{\mu_0, \ldots, \mu_{N-1}\} \), where \(\mu_k \) maps states \(x_k \) into controls \(u_k = \mu_k(x_k) \) and is such that \(\mu_k(x_k) \in U_k(x_k) \) for all \(x_k \)

• Expected cost of \(\pi \) starting at \(x_0 \) is

\[
J_\pi(x_0) = E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\}
\]

• Optimal cost function

\[
J^*(x_0) = \min_{\pi} J_\pi(x_0)
\]

• Optimal policy \(\pi^* \) satisfies

\[
J_{\pi^*}(x_0) = J^*(x_0)
\]

When produced by DP, \(\pi^* \) is independent of \(x_0 \).
SIGNIFICANCE OF FEEDBACK

- Open-loop versus closed-loop policies

\[u_k = \mu_k(x_k) \]

- In deterministic problems open loop is as good as closed loop
- Value of information; chess match example
- Example of open-loop policy: Play always bold
- Consider the closed-loop policy: Play timid if and only if you are ahead
VARIANTS OF DP PROBLEMS

- Continuous-time problems
- Imperfect state information problems
- Infinite horizon problems
- Suboptimal control
LECTURE BREAKDOWN

• **Finite Horizon Problems** (Vol. 1, Ch. 1-6)
 – Ch. 1: The DP algorithm (2 lectures)
 – Ch. 2: Deterministic finite-state problems (1 lecture)
 – Ch. 3: Deterministic continuous-time problems (1 lecture)
 – Ch. 4: Stochastic DP problems (2 lectures)
 – Ch. 5: Imperfect state information problems (2 lectures)
 – Ch. 6: Suboptimal control (2 lectures)

• **Infinite Horizon Problems - Simple** (Vol. 1, Ch. 7, 3 lectures)

• **Infinite Horizon Problems - Advanced** (Vol. 2)
 – Ch. 1: Discounted problems - Computational methods (3 lectures)
 – Ch. 2: Stochastic shortest path problems (1 lecture)
 – Ch. 6: Approximate DP (6 lectures)
A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text
• Don’t expect a rigorous mathematical development or precise mathematical statements
• Figures are meant to convey and enhance ideas, not to express them precisely
• Omitted proofs and a much fuller discussion can be found in the texts, which these slides follow