LECTURE OUTLINE

• Suboptimal control
• Cost approximation methods: Classification
• Certainty equivalent control: An example
• Limited lookahead policies
• Performance bounds
• Problem approximation approach
• Parametric cost-to-go approximation
PRACTICAL DIFFICULTIES OF DP

• The curse of modeling
• The curse of dimensionality
 – Exponential growth of the computational and storage requirements as the number of state variables and control variables increases
 – Quick explosion of the number of states in combinatorial problems
 – Intractability of imperfect state information problems
• There may be real-time solution constraints
 – A family of problems may be addressed. The data of the problem to be solved is given with little advance notice
 – The problem data may change as the system is controlled – need for on-line replanning
COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equation where the optimal cost-to-go function J_{k+1} is replaced by an approximation \tilde{J}_{k+1}. (Sometimes $E\{g_k\}$ is also replaced by an approximation.)

• Apply $\mu_k(x_k)$, which attains the minimum in

$$\min_{u_k \in U_k(x_k)} E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\}$$

• There are several ways to compute \tilde{J}_{k+1}:

 – **Off-line approximation**: The entire function \tilde{J}_{k+1} is computed for every k, before the control process begins.

 – **On-line approximation**: Only the values $\tilde{J}_{k+1}(x_{k+1})$ at the relevant next states x_{k+1} are computed and used to compute u_k just after the current state x_k becomes known.

 – **Simulation-based methods**: These are off-line and on-line methods that share the common characteristic that they are based on Monte-Carlo simulation. Some of these methods are suitable for problems of very large size.
CERTAINTY EQUIVALENT CONTROL (CEC)

- Idea: Replace the stochastic problem with a deterministic problem

- At each time \(k \), the uncertain quantities are fixed at some “typical” values

- **On-line implementation** for a perfect state info problem. At each time \(k \):

 1. Fix the \(w_i, i \geq k \), at some \(\overline{w}_i \). Solve the deterministic problem:

 \[
 \text{minimize } g_N(x_N) + \sum_{i=k}^{N-1} g_i(x_i, u_i, \overline{w}_i)
 \]

 where \(x_k \) is known, and

 \[u_i \in U_i, \quad x_{i+1} = f_i(x_i, u_i, \overline{w}_i). \]

 2. Use as control the first element in the optimal control sequence found.

- So we apply \(\bar{\mu}_k(x_k) \) that minimizes

 \[
 g_k(x_k, u_k, \overline{w}_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, \overline{w}_k))
 \]

 where \(\tilde{J}_{k+1} \) is the optimal cost of the corresponding deterministic problem.
ALTERNATIVE OFF-LINE IMPLEMENTATION

- Let \(\{\mu_0^d(x_0), \ldots, \mu_{N-1}^d(x_{N-1})\} \) be an optimal controller obtained from the DP algorithm for the deterministic problem

\[
\begin{align*}
\text{minimize} & \quad g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), \overline{w}_k) \\
\text{subject to} & \quad x_{k+1} = f_k(x_k, \mu_k(x_k), \overline{w}_k), \quad \mu_k(x_k) \in U_k
\end{align*}
\]

- The CEC applies at time \(k \) the control input \(\mu_k^d(x_k) \).

- In an imperfect info version, \(x_k \) is replaced by an estimate \(\overline{x}_k(I_k) \).
PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their typical values, fix only some, and treat the rest as stochastic.

• Important special case: Treat an imperfect state information problem as one of perfect state information, using an estimate \(\bar{x}_k(I_k) \) of \(x_k \) as if it were exact.

• Multiaccess communication example: Consider controlling the slotted Aloha system (Example 5.1.1 in the text) by optimally choosing the probability of transmission of waiting packets. This is a hard problem of imperfect state info, whose perfect state info version is easy.

• Natural partially stochastic CEC:

\[
\tilde{\mu}_k(I_k) = \min \left[1, \frac{1}{\bar{x}_k(I_k)} \right],
\]

where \(\bar{x}_k(I_k) \) is an estimate of the current packet backlog based on the entire past channel history of successes, idles, and collisions (which is \(I_k \)).
GENERAL COST-TO-GO APPROXIMATION

- **One-step lookahead (1SL) policy**: At each k and state x_k, use the control $\bar{\mu}_k(x_k)$ that

$$\min_{u_k \in U_k(x_k)} E\{g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k))\},$$

where

- $\tilde{J}_N = g_N$.
- \tilde{J}_{k+1}: approximation to true cost-to-go J_{k+1}

- **Two-step lookahead policy**: At each k and x_k, use the control $\tilde{\mu}_k(x_k)$ attaining the minimum above, where the function \tilde{J}_{k+1} is obtained using a 1SL approximation (solve a 2-step DP problem).

- If \tilde{J}_{k+1} is readily available and the minimization above is not too hard, the 1SL policy is implementable on-line.

- Sometimes one also replaces $U_k(x_k)$ above with a subset of “most promising controls” $\overline{U}_k(x_k)$.

- As the length of lookahead increases, the required computation quickly explodes.
PERFORMANCE BOUNDS FOR 1SL

• Let $\overline{J}_k(x_k)$ be the cost-to-go from (x_k, k) of the 1SL policy, based on functions \tilde{J}_k.

• Assume that for all (x_k, k), we have

$$\hat{J}_k(x_k) \leq \tilde{J}_k(x_k),$$

where $\hat{J}_N = g_N$ and for all k,

$$\hat{J}_k(x_k) = \min_{u_k \in U_k(x_k)} E \{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \},$$

[so $\hat{J}_k(x_k)$ is computed along with $\overline{\mu}_k(x_k)$]. Then

$$\overline{J}_k(x_k) \leq \hat{J}_k(x_k), \quad \text{for all } (x_k, k).$$

• **Important application:** When \tilde{J}_k is the cost-to-go of some heuristic policy (then the 1SL policy is called the **rollout** policy).

• The bound can be extended to the case where there is a δ_k in the RHS of (*). Then

$$\overline{J}_k(x_k) \leq \tilde{J}_k(x_k) + \delta_k + \cdots + \delta_{N-1}$$
COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used to calculate the 1SL or the multistep version [particularly when $U_k(x_k)$ is not a discrete set]. Connection with stochastic programming methods.

• The choice of the approximating functions \tilde{J}_k is critical, and is calculated in a variety of ways.

• Some approaches:

 (a) *Problem Approximation*: Approximate the optimal cost-to-go with some cost derived from a related but simpler problem

 (b) *Parametric Cost-to-Go Approximation*: Approximate the optimal cost-to-go with a function of a suitable parametric form, whose parameters are tuned by some heuristic or systematic scheme (Neuro-Dynamic Programming)

 (c) *Rollout Approach*: Approximate the optimal cost-to-go with the cost of some suboptimal policy, which is calculated either analytically or by simulation
PROBLEM APPROXIMATION

• Many (problem-dependent) possibilities
 – Replace uncertain quantities by nominal values, or simplify the calculation of expected values by limited simulation
 – Simplify difficult constraints or dynamics

• Example of enforced decomposition: Route m vehicles that move over a graph. Each node has a “value.” The first vehicle that passes through the node collects its value. Max the total collected value, subject to initial and final time constraints (plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is much simpler. This motivates an approximation obtained by solving single vehicle problems.

• 1SL scheme: At time k and state x_k (position of vehicles and “collected value nodes”), consider all possible kth moves by the vehicles, and at the resulting states we approximate the optimal value-to-go with the value collected by optimizing the vehicle routes one-at-a-time
PARAMETRIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a parametric class \(\tilde{J}(x, r) \) where \(x \) is the current state and \(r = (r_1, \ldots, r_m) \) is a vector of “tunable” scalars (weights).

• By adjusting the weights, one can change the “shape” of the approximation \(\tilde{J} \) so that it is reasonably close to the true optimal cost-to-go function.

• Two key issues:
 – The choice of parametric class \(\tilde{J}(x, r) \) (the approximation architecture).
 – Method for tuning the weights (“training” the architecture).

• Successful application strongly depends on how these issues are handled, and on insight about the problem.

• Sometimes a simulator is used, particularly when there is no mathematical model of the system.
APPROXIMATION ARCHITECTURES

- Divided in linear and nonlinear [i.e., linear or nonlinear dependence of \(\tilde{J}(x, r) \) on \(r \)].
- Linear architectures are easier to train, but nonlinear ones (e.g., neural networks) are richer.
- Architectures based on feature extraction

![Feature Extraction Diagram]

- Ideally, the features will encode much of the nonlinearity that is inherent in the cost-to-go approximated, and the approximation may be quite accurate without a complicated architecture.
- Sometimes the state space is partitioned, and “local” features are introduced for each subset of the partition (they are 0 outside the subset).
- With a well-chosen feature vector \(y(x) \), we can use a linear architecture

\[
\tilde{J}(x, r) = \hat{J}(y(x), r) = \sum_i r_i y_i(x)
\]
AN EXAMPLE - COMPUTER CHESS

- Programs use a feature-based position evaluator that assigns a score to each move/position.

- Many context-dependent special features.
- Most often the weighting of features is linear but multistep lookahead is involved.
- Most often the training is done by trial and error.