LECTURE OUTLINE

- Review of stochastic shortest path problems
- Computational methods for SSP
 - Value iteration
 - Policy iteration
 - Linear programming
- Computational methods for discounted problems
STOCHASTIC SHORTEST PATH PROBLEMS

- Assume finite-state system: States 1, \ldots, n and special cost-free termination state \(t \)
 - Transition probabilities \(p_{ij}(u) \)
 - Control constraints \(u \in U(i) \)
 - Cost of policy \(\pi = \{\mu_0, \mu_1, \ldots\} \) is

\[
J_{\pi}(i) = \lim_{N \to \infty} E \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k)) \middle| x_0 = i \right\}
\]

- Optimal policy if \(J_{\pi}(i) = J^*(i) \) for all \(i \).
- Special notation: For stationary policies \(\pi = \{\mu, \mu, \ldots\} \), we use \(J_{\mu}(i) \) in place of \(J_{\pi}(i) \).

- Assumption (Termination inevitable): There exists integer \(m \) such that for every policy and initial state, there is positive probability that the termination state will be reached after no more than \(m \) stages; for all \(\pi \), we have

\[
\rho_{\pi} = \max_{i=1, \ldots, n} P\{x_m \neq t \mid x_0 = i, \pi \} < 1
\]
MAIN RESULT

• Given any initial conditions $J_0(1), \ldots, J_0(n)$, the sequence $J_k(i)$ generated by value iteration

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \ \forall \ i$$

converges to the optimal cost $J^*(i)$ for each i.

• Bellman’s equation has $J^*(i)$ as unique solution:

$$J^*(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J^*(j) \right], \ \forall \ i$$

• A stationary policy μ is optimal if and only if for every state i, $\mu(i)$ attains the minimum in Bellman’s equation.

• Key proof idea: The “tail” of the cost series,

$$\sum_{k=mK}^{\infty} E \left\{ g(x_k, \mu_k(x_k)) \right\}$$

vanishes as K increases to ∞.

BELLMAN’S EQUATION FOR A SINGLE POLICY

- Consider a stationary policy \(\mu \)
- \(J_\mu(i), \ i = 1, \ldots, n, \) are the unique solution of the linear system of \(n \) equations

\[
J_\mu(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i)) J_\mu(j), \quad \forall \ i = 1, \ldots, n
\]

- **Proof:** This is just Bellman’s equation for a modified/restricted problem where there is only one policy, the stationary policy \(\mu \), i.e., the control constraint set at state \(i \) is \(\tilde{U}(i) = \{ \mu(i) \} \)
- The equation provides a way to compute \(J_\mu(i), \ i = 1, \ldots, n, \) but the computation is substantial for large \(n \) \([O(n^3)] \)
- For large \(n \), value iteration may be preferable. (Typical case of a large linear system of equations, where an iterative method may be better than a direct solution method.)
- For VERY large \(n \), exact methods cannot be applied, and approximations are needed. (We will discuss these later.)
POLICY ITERATION

• It generates a sequence μ^1, μ^2, \ldots of stationary policies, starting with any stationary policy μ^0.

• At the typical iteration, given μ^k, we perform a policy evaluation step, that computes the $J_{\mu^k}(i)$ as the solution of the (linear) system of equations

$$J(i) = g(i, \mu^k(i)) + \sum_{j=1}^{n} p_{ij}(\mu^k(i))J(j), \quad i = 1, \ldots, n,$$

in the n unknowns $J(1), \ldots, J(n)$. We then perform a policy improvement step, which computes a new policy μ^{k+1} as

$$\mu^{k+1}(i) = \arg \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J_{\mu^k}(j) \right], \quad \forall i$$

• The algorithm stops when $J_{\mu^k}(i) = J_{\mu^{k+1}}(i)$ for all i

• Note the connection with the rollout algorithm, which is just a single policy iteration
JUSTIFICATION OF POLICY ITERATION

- We can show that $J_{\mu^{k+1}}(i) \leq J_{\mu^k}(i)$ for all i, k
- Fix k and consider the sequence generated by

$$J_{N+1}(i) = g(i, \mu^{k+1}(i)) + \sum_{j=1}^{n} p_{ij}(\mu^{k+1}(i)) J_{N}(j)$$

where $J_0(i) = J_{\mu^k}(i)$. We have

$$J_0(i) = g(i, \mu^k(i)) + \sum_{j=1}^{n} p_{ij}(\mu^k(i)) J_0(j)$$

$$\geq g(i, \mu^{k+1}(i)) + \sum_{j=1}^{n} p_{ij}(\mu^{k+1}(i)) J_0(j) = J_1(i)$$

Using the monotonicity property of DP,

$$J_0(i) \geq J_1(i) \geq \cdots \geq J_N(i) \geq J_{N+1}(i) \geq \cdots, \quad \forall i$$

Since $J_N(i) \to J_{\mu^{k+1}}(i)$ as $N \to \infty$, we obtain

$J_{\mu^k}(i) = J_0(i) \geq J_{\mu^{k+1}}(i)$ for all i. Also if $J_{\mu^k}(i) = J_{\mu^{k+1}}(i)$ for all i, J_{μ^k} solves Bellman’s equation and is therefore equal to J^*

- A policy cannot be repeated, there are finitely many stationary policies, so the algorithm terminates with an optimal policy
• We claim that J^* is the “largest” J that satisfies the constraint

$$J(i) \leq g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J(j),$$

for all $i = 1, \ldots, n$ and $u \in U(i)$.

• **Proof:** If we use value iteration to generate a sequence of vectors $J_k = (J_k(1), \ldots, J_k(n))$ starting with a J_0 such that

$$J_0(i) \leq \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_0(j) \right], \ \forall \ i$$

Then, $J_k(i) \leq J_{k+1}(i)$ for all k and i (monotonicity property of DP) and $J_k \to J^*$, so that $J_0(i) \leq J^*(i)$ for all i.

• So $J^* = (J^*(1), \ldots, J^*(n))$ is the solution of the linear program of maximizing $\sum_{i=1}^{n} J(i)$ subject to the constraint (1).
- Drawback: For large n the dimension of this program is very large. Furthermore, the number of constraints is equal to the number of state-control pairs.
DISCOUNTED PROBLEMS

- Assume a discount factor $\alpha < 1$.
- Conversion to an SSP problem.

- Value iteration converges to J^* for all initial J_0:

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u)J_k(j) \right], \forall i$$

- J^* is the unique solution of Bellman’s equation:

$$J^*(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u)J^*(j) \right], \forall i$$
DISCOUNTED PROBLEMS (CONTINUED)

- Policy iteration converges finitely to an optimal policy, and linear programming works.

- **Example:** Asset selling over an infinite horizon. If accepted, the offer x_k of period k, is invested at a rate of interest r.

- By depreciating the sale amount to period 0 dollars, we view $(1 + r)^{-k}x_k$ as the reward for selling the asset in period k at a price x_k, where $r > 0$ is the rate of interest. So the discount factor is $\alpha = 1/(1 + r)$.

- J^* is the unique solution of Bellman’s equation

\[
J^*(x) = \max \left[x, \frac{E\{J^*(w)\}}{1 + r} \right].
\]

- An optimal policy is to sell if and only if the current offer x_k is greater than or equal to $\bar{\alpha}$, where

\[
\bar{\alpha} = \frac{E\{J^*(w)\}}{1 + r}.
\]
6.231 Dynamic Programming and Stochastic Control
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.