LECTURE OUTLINE

• Average cost per stage problems
• Connection with stochastic shortest path problems
• Bellman’s equation
• Value iteration
• Policy iteration
AVERAGE COST PER STAGE PROBLEM

- Stationary system with finite number of states and controls
- Minimize over policies \(\pi = \{\mu_0, \mu_1, \ldots\} \)

\[
J_\pi(x_0) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}_{w_k} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}
\]

- Important characteristics (not shared by other types of infinite horizon problems)
 - For any fixed \(K \), the cost incurred up to time \(K \) does not matter (only the state that we are at time \(K \) matters)
 - If all states “communicate” the optimal cost is independent of the initial state [if we can go from \(i \) to \(j \) in finite expected time, we must have \(J^*(i) \leq J^*(j) \)]. So \(J^*(i) \equiv \lambda^* \) for all \(i \).
 - Because “communication” issues are so important, the methodology relies heavily on Markov chain theory.
CONNECTION WITH SSP

- **Assumption**: State n is such that for all initial states and all policies, n will be visited infinitely often (with probability 1).
- Divide the sequence of generated states into cycles marked by successive visits to n.
- Each of the cycles can be viewed as a state trajectory of a corresponding stochastic shortest path problem with n as the termination state.

- Let the cost at i of the SSP be $g(i, u) - \lambda^*$
- We will show that

$\text{Av. Cost Probl.} \equiv \text{A Min Cost Cycle Probl.} \equiv \text{SSP Probl.}$
CONNECTION WITH SSP (CONTINUED)

- Consider a minimum cycle cost problem: Find a stationary policy \(\mu \) that minimizes the expected cost per transition within a cycle

\[
\frac{C_{nn}(\mu)}{N_{nn}(\mu)},
\]

where for a fixed \(\mu \),

\[
C_{nn}(\mu) : E\{\text{cost from } n \text{ up to the first return to } n\}
\]

\[
N_{nn}(\mu) : E\{\text{time from } n \text{ up to the first return to } n\}
\]

- Intuitively, \(C_{nn}(\mu)/N_{nn}(\mu) = \text{average cost of } \mu \), and optimal cycle cost = \(\lambda^* \), so

\[
C_{nn}(\mu) - N_{nn}(\mu)\lambda^* \geq 0,
\]

with equality if \(\mu \) is optimal.

- Thus, the optimal \(\mu \) must minimize over \(\mu \) the expression \(C_{nn}(\mu) - N_{nn}(\mu)\lambda^* \), which is the expected cost of \(\mu \) starting from \(n \) in the SSP with stage costs \(g(i, u) - \lambda^* \).

- Also: Optimal SSP Cost = 0.
BELLMAN’S EQUATION

• Let \(h^*(i) \) the optimal cost of this SSP problem when starting at the nontermination states \(i = 1, \ldots, n \). Then, \(h^*(n) = 0 \), and \(h^*(1), \ldots, h^*(n) \) solve uniquely the corresponding Bellman’s equation

\[
h^*(i) = \min_{u \in U(i)} \left[g(i, u) - \lambda^* + \sum_{j=1}^{n-1} p_{ij}(u) h^*(j) \right], \forall i
\]

• If \(\mu^* \) is an optimal stationary policy for the SSP problem, we have (since Optimal SSP Cost = 0)

\[
h^*(n) = C_{nn}(\mu^*) - N_{nn}(\mu^*) \lambda^* = 0
\]

• Combining these equations, we have

\[
\lambda^* + h^*(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) h^*(j) \right], \forall i
\]

• If \(\mu^*(i) \) attains the min for each \(i \), \(\mu^* \) is optimal.
MORE ON THE CONNECTION WITH SSP

• Interpretation of $h^*(i)$ as a relative or differential cost: It is the minimum of

$E\{\text{cost to reach } n \text{ from } i \text{ for the first time}\}$
 $- E\{\text{cost if the stage cost were } \lambda^* \text{ and not } g(i, u)\}$

• We don’t know λ^*, so we can’t solve the average cost problem as an SSP problem. But similar value and policy iteration algorithms are possible.

• **Example:** A manufacturer at each time:
 $- \text{ Receives an order with prob. } p \text{ and no order with prob. } 1 - p.$
 $- \text{ May process all unfilled orders at cost } K > 0, \text{ or process no order at all. The cost per unfilled order at each time is } c > 0.$
 $- \text{ Maximum number of orders that can remain unfilled is } n.$
 $- \text{ Find a processing policy that minimizes the total expected cost per stage.}$
EXAMPLE (CONTINUED)

- State = number of unfilled orders. State 0 is the special state for the SSP formulation.

- **Bellman’s equation:** For states $i = 0, 1, \ldots, n-1$

\[
\lambda^* + h^*(i) = \min \left[K + (1 - p)h^*(0) + ph^*(1), \right.
\]
\[
\left. ci + (1 - p)h^*(i) + ph^*(i + 1) \right],
\]

and for state n

\[
\lambda^* + h^*(n) = K + (1 - p)h^*(0) + ph^*(1)
\]

- **Optimal policy:** Process i unfilled orders if

\[
K + (1 - p)h^*(0) + ph^*(1) \leq ci + (1 - p)h^*(i) + ph^*(i + 1).
\]

- Intuitively, $h^*(i)$ is monotonically nondecreasing with i (interpret $h^*(i)$ as optimal costs-to-go for the associate SSP problem). So a *threshold policy* is optimal: process the orders if their number exceeds some threshold integer m^*.
VALUE ITERATION

• **Natural value iteration method:** Generate optimal k-stage costs by DP algorithm starting with any J_0:

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \ \forall \ i$$

• **Result:** $\lim_{k \to \infty} J_k(i)/k = \lambda^*$ for all i.

• **Proof outline:** Let J_k^* be so generated from the initial condition $J_0^* = h^*$. Then, by induction,

$$J_k^*(i) = k\lambda^* + h^*(i), \ \ \forall i, \ \forall k.$$

On the other hand,

$$|J_k(i) - J_k^*(i)| \leq \max_{j=1,\ldots,n} |J_0(j) - h^*(j)|, \ \ \forall i$$

since $J_k(i)$ and $J_k^*(i)$ are optimal costs for two k-stage problems that differ only in the terminal cost functions, which are J_0 and h^*.
RELATIVE VALUE ITERATION

• The value iteration method just described has two drawbacks:
 – Since typically some components of J_k diverge to ∞ or $-\infty$, calculating $\lim_{k \to \infty} J_k(i)/k$ is numerically cumbersome.
 – The method will not compute a corresponding differential cost vector h^*.

• We can bypass both difficulties by subtracting a constant from all components of the vector J_k, so that the difference, call it h_k, remains bounded.

• Relative value iteration algorithm: Pick any state s, and iterate according to

$$h_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u)h_k(j) \right]$$

$$- \min_{u \in U(s)} \left[g(s, u) + \sum_{j=1}^{n} p_{sj}(u)h_k(j) \right], \quad \forall \ i$$

• Then we can show $h_k \to h^*$ (under an extra assumption).
POLICY ITERATION

- At the typical iteration, we have a stationary μ^k.
- Policy evaluation: Compute λ^k and $h^k(i)$ of μ^k, using the $n + 1$ equations $h^k(n) = 0$ and
\[
\lambda^k + h^k(i) = g(i, \mu^k(i)) + \sum_{j=1}^{n} p_{ij}(\mu^k(i)) h^k(j), \quad \forall \, i
\]
- Policy improvement: (For the λ^k-SSP) Find for all i
\[
\mu^{k+1}(i) = \arg \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) h^k(j) \right]
\]
- If $\lambda^{k+1} = \lambda^k$ and $h^{k+1}(i) = h^k(i)$ for all i, stop; otherwise, repeat with μ^{k+1} replacing μ^k.
- Result: For each k, we either have $\lambda^{k+1} < \lambda^k$ or we have policy improvement for the λ^k-SSP:
\[
\lambda^{k+1} = \lambda^k, \quad h^{k+1}(i) \leq h^k(i), \quad i = 1, \ldots, n.
\]
The algorithm terminates with an optimal policy.