6.763 | Fall 2005 | Graduate

Applied Superconductivity

Course Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, …
This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London’s model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.
Learning Resource Types
Lecture Notes
Problem Sets
Image of a superconductor component.
Superconducting Josephson qubit surrounded by a SQUID readout circuit. (Image by Terry Orlando.)