6.772 | Spring 2003 | Graduate

Compound Semiconductor Devices

Readings

General Bibiliography 
Compound Semiconductor Materials 
Metal-Semiconductor Junctions Books 
Heterojunctions 
Epitaxy: CBE vs MBE 
Mismatched Epitaxy - Metamorphic Layers 
Group-III Nitrides 
FETs 
Quantum Structures 
Heterojunction Bipolar Transistors (HBTs) 
Optoelectronics - General Texts 
Optical Recombination Processes 
Optical Dispersion Relationship Calculation For Semiconductors 
Photonic Crystals 
LEDs - General Texts 
Resonant and Micro-cavity LEDs 
Nitride LEDs 
White LEDs, Solid State Illumination 
Phosphors 
Organic LEDs 
Recombination in Silicon 
Crystal Growth 
Laser Diodes - General Texts 
VCSELs

General Bibiliography

Shur, M. S. Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall, 1990. ISBN: 0136664962.

Swaminathan, V., and A. T. Macrander. Materials Aspects of GaAs and InP Based Structures. Englewood Cliffs, NJ: Prentice-Hall, 1991. ISBN: 0133468267.

Sze, S. M. Physics of Semiconductor Devices. 2nd ed. New York, NY: Wiley, 1981. ISBN: 047109837X.

———. Semiconductor Devices, Physics, and Technology. New York, NY: Wiley, 1985. ISBN: 0471874248.

Sze, S. M., ed. High Speed Semiconductor Devices. New York, NY: Wiley, 1990. ISBN: 0471623075.

Compound Semiconductor Materials

Books

Adachi, Sadao. Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. New York, NY: John Wiley & Sons, 1992. ISBN: 0471573299.

Berger, Lev I. Semiconductor Materials. Boca Raton: CRC Press, 1996. ISBN: 0849389127.

Madelung, Otfried. Physics of III-V Compounds. New York, NY: John Wiley & Sons, 1964. ISBN: 0471563161.

———. Semiconductors - Basic Data. 2nd rev. ed. Berlin: Springer, 1996. ISBN: 3540608834.

Swaminathan, V., and A. T. Macrander. Materials Aspects of GaAs and InP Based Structures. Englewood Cliffs, NJ: Prentice Hall, 1991. ISBN: 0133468267.

Madelung, O., H. Weiss, and M. Schultz, eds. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Volume 17, Subvolume A: Physics of Group IV Elements and III-V Compounds. Berlin: Springer, 1982.

———. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Volume 17, Subvolume B: Physics of II-VI and I-VII Compounds, Semi-Magnetic Semiconductors. Berlin: Springer, 1982.

———. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Volume 22, Subvolume A: Intrinsic Properties of Group IV Elements and III-V, II-VI, and IV Compounds. Berlin: Springer, 1987.

Journal Articles

Jelenski, A. “Gallium Nitride-New Material for Microwave and Optoelectronics.” Conference Proceedings of the IEEE: 12th International Conference on Microwaves and Radar. MIKON 1998 4 (1998): 147-58.

Ramos, L. E., L. K. Teles, L. M. R. Scolfaro, J. L. P. Castineira, A. L. Rosa, and J. R. Leite. “Structural, Electronic, and Effective-Mass Properties of Silicon and Zinc-Blende Group-III Nitride Semiconductor Compounds.” Physical Review B: Condensed Matter and Materials Physics 63, no. 16 (2001). 165210/1-1015.

Metal-Semiconductor Junctions Books

Books

Hess, K. “Diffusive Transport and Thermionic Emission: Appendix G.” In *Advanced Theory of Semiconductor Devices. * New York, NY: Prentice-Hall, 1988. ISBN: 0780334795.

Shur, M. S. Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall, 1990, chapter 2 and section 2.9. ISBN: 0136664962. [General Discussion]

Singh, J. Semiconductor Devices: An Introduction. New York, NY: McGraw-Hill, 1994, chapter 6, Section 6.2. ISBN: 0070576254. [General Discussion]

Smith, R. A. Semiconductors. Cambridge, UK: Cambridge Univeristy Press, 1961, section 8.12. ASIN: B0007J3LR8. [General Discussion]

Sze, S. M. Physics of Semiconductor Device. 2nd. ed. New York, NY: Wiley, 1981. Chapter 5. ISBN: 047109837X. [Very Complete Discussion]

———. Semiconductor Devices, Physics, and Technology. New York, NY: Wiley, 1985. Section 5.1. ISBN: 0471874248. [General Discussion]

Yang, E. S. “Thermionic Emission: Appendix A.” In Microelectronic Devices. New York, NY: McGraw-Hill, 1988. ISBN: 0070722382.

Heterojunctions

Books

See texts in General Bibliography.

Articles

Cook, P., E. Martinez, J. Tantillo, and F. L. Schuermeyer. “Band Edge Alignment in Heterstructures.” Applied Physics Letters 55, no. 18 (October 1989): 1877-1878.

Chua, S. J., W. J. Fan, S. J. Xu, and X. H. Zhang. “Band Offsets at the InAlGaAs/InAlAs (001) Heterostructures Lattice Matched to an InP Substrate.” Journal of Applied Physics 83, no. 11 (June 1998): 5852-5854.

Huijser, A., J. Van Laar, and T. L. Van Rooy. “Electronic Surface Properties of UHV-Cleaved III-V Compounds.” Surface Science 62 (1977): 472-486.

Morris, L. L., and R. H. Williams. “Measurement of Conduction Band Offsets throughSchottky Diode Transport Measurements.” Applied Physics Letters 63, no. 3 (January 1993): 291-293.

Epitaxy: CBE vs MBE

Garcia, J. Ch. “Potential Prospects of CBE Technology Compared to MBE as Production Tool for Microwave Devices.” Journal of Crystal Growth 188 (1998): 343-348.

Mismatched Epitaxy - Metamorphic Layers

Fitzgerald, E. A. “Dislocation in Strained-layer Epitaxy: Theory, Experiment, and Applications.” Materials Science Reports 7 (1991): 87-142. 
A good overview of the topic.

Chyi, Jen-Inn, Jia-Lin Shieh, Chia-Song Wu, Ray-Ming Lin. Jen-Wei Pan, Yi-Jen Chan, and Chun-Hong Lin. “Characteristics of In0.3Ga0.7As/In0.29Al0.71As Heterostructures Grown on GaAs using InAlAs Buffers.” Jpn J Appl Phys 33 (1994): L1574-L1576. 
An example of step grading.

Zaknoune, M., Y. Cordier, S. Bollaert, D. Ferre, D. Theron, and Y. Crosnier. “0.1µm High Performance Metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMT on GaAs Using Inverse Step InAlAs Buffer.” Electronics Lett 35 (1999): 1670-1671. 
An example of linear grading.

Group-III Nitrides

Mohammad, S. N., and H. Morkoc. “Progress and Prospects of Group-III Nitride Semiconductors.” Progress in Quantum Electronics 20 (1996): 361-525. 
A good overall review of the field.

Monemar, B., and G. Pozina. “Group III-nitride Based Hetero and Quantum Structures.” Progress in Quantum Electronics 24 (2000): 239-290. 
Another good review article on the wide bandgap nitrides.

Jelenski, A. “Gallium Nitride - New Material for Microwave and Optoelectronics.”

FETs

See last two items in HBT set.

Bollaert, S., Y. Cordier, M. Zaknoune, T. Parenty, H. Happy, and A. Cappy. “HEMT’s Capability for Millimeter-wave Applications.” Annals of Telecommunications 56 (2001): 15-26.

Van Hove, M., J. Finders, K. van der Zanden, W. De Raedt, M. Van Rossum, Y. Baeyens, D. Schreurs, and R. Menozzi. “Material and Process Related Limitations of InP HEMT Performance.” Materials Science and Engineering B B44 (1997): 311-315.

Parikh, P. A., P. M. Chavarkar, and U. K. Mishra. “GaAs MESFETs on a Truly Insulating Buffer Layer: Demonstration of the GaAs on Insulator Technology.” IEEE Elect Dev Lett. 18 (1997): 111-113.

Tzeng, S. Y., M. J. Cich, R. Zhao, H. Feick, and E. R. Weber. “Generation-recombination Low-frequency Noise Signatures in GaAs Metal-semiconductor Field Effect Transistors on Laterally Oxidized AlAs.” Appl Phys Lett 82 (2001): 1063-1065.

Quantum Structures

Leyronas, X. and M. Combescot. “Quantum Wells, Wires, and Dots with Finite Barrier: Analytical Expressions for Bound States.” Solid State Comm 119 (2001): 631-635.

Heterojunction Bipolar Transistors (HBTs)

Houston, P. A.. “High-frequency Heterojunction Bipolar Transistor Device Design and Technology.” Electronics and Communication Engineering Journal 12 (October 2000): 220-228.

Delage, S. L. “Heterojunction Bipolar Transistors for Millimeter Waves Applications: Trends and Achievements.” Annals of Telecommunications 56 (2001): 5-14.

Pedrotti, K., K. Runge, S. Beccue, R. Pierson, A. Price, D. Wu, R. Yu, P. Zampardi, and K. C. Wang. “High-speed HBT Technologies for Optical Communication.” In High-Speed Semiconductor Lasers for Communication. Edited by N. S. Kwong, and R. Nagarajan. Proceedings of SPIE 3018 (1997), SPIE, Bellingham, WA. pp. 198-209, TA1700.H54.

Hurkx, G. A. M. “The Relevance of fT and fmax for the Speed of a Bipolar CE Amplifier Stage.” IEEE Trans Electron Dev 44, no. 197. pp. 775-781.

Ashburn, P. “Materials and Technology Issues for SiGe Heterojunction Bipolar Transistors.” Materials Science in Semiconductor Processing 4 (2001): 521-527. 
A fairly current overview of Si HBTs.

Paul, D. J. “Silicon Germanium Heterostructures in Electronics: The Present and the Future.” Thin Solid Films 321 (1998): 172-180. 
FETs as well as HBTs. Older but still relevant.

Robertson, I. D., and S. Lucyszyn. RFIC and MMIC Design and Technology. UK: Institute of Electrical Engineers, Herts, 1988. 
Older reference but still relevant in general issues and even fabrication technology. Deals with FETs and HBTs.

Optoelectronics - General Texts

Coldren, L. A., and S. W. Corzine. Diode Lasers and Photonic Integrated Circuits. New York, NY: Wiley Interscience, 1995. ISBN: 0471118753.

Roencher, E., and B. Vorge. Optoelectronics. Cambridge, UK: Cambridge University Press, 2002. ISBN: 0521778131.

Chang, Shun Lien. Physics of Optoelectronic Devices. New York, NY: John Wiley, 1995. ISBN: 0471109398.

Bhattacharya, Pallab. Semiconductor Optoelectronic Devices. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1997. ISBN: 0134956567.

Optical Recombination Processes

Varshni, Y. P. “Band-to-Band Radiative Recombination in Groups IV, VI, and III-V Semiconductors(I).” Phys Stat Sol 19 (1967): 459-514. 
An extensive overview of optical processes in semiconductors, with emphasis on radiative recombination.

Beattle, A. R., P. T. Landsberg. “Auger Effect in Semiconductors.” Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences 249 (1959): 16-29. 
A classic treat is on Auger recombination.

Takeshima, Masumi. “Auger Recombination in InAs, GaSb, InP, and GaAs.” J Appl Phys 43 (1972): 4114-4119. 
Useful information (material parameters and theory) on Auger recombination in some important binary compounds.

Keevers, M. J., Green, M. A. “Efficiency Improvements of Silicon Solar Cells by the Impurity Photovoltaic Effect.” J Appl Phys 75 (1994): 4022-4031. 
An interesting proposal for using mid-gap levels to improve device performance (see also the next reference.)

Luque, A., A. Martf. “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels.” Physical Review Letters 78 (1997): 5014-5017.

Optical Dispersion Relationship Calculation For Semiconductors

Adachi, S. “Model Dielectric Constants of GaP, GaAs, SaSb, InP, InAs, InSb.” Physical Review B 35 (1987): 7454-7463.

———. “Optical Properties of In1-xGaxAsyP1-y Alloys.” Physical Review B 39 (1989): 12612-12621.

———. “Optical Dispersion Relations for GaP, GaAs, SaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y.J Appl Phys 66 (1989): 6030-6040.

Linnik, M., and A. Christou. “Calculations of Optical Properties for Quanternary III-V Semiconductor Alloys in the Transparent Region and Above (0.2 - 4.0 eV).” Physica B 318 (2002): 140-161.

Photonic Crystals

Forchel, A., M. Kamp, Reithmaier, et al. “Photonic Crystals for Optoelectronic Devices.” In Physics and Simulation of Optoelectronic Devices IX. Edited by Yasuhiko Arakawa, Peter Blood, and Marek Osinski. ISBN: 0819439614. Proceedings of the SPIE 4283 (2001): 406-414.

Krauss, T. F., and R. M. De La Rue. “Photonic Crystals in the Optical Regime - Past, Present, and Future.” Progress in Quantum Electronics 23 (1999): 51-59.

Yablonovitch, E. “Inhibited Spontaneous Emission in Solid-State Physics and Electronics.” Physical Review Lett 58 (1987): 2059-2062.

John, S. “Strong Localization of Photons in Certain Disordered Dielectric Superlattices.” Physical Review Lett 58 (1987): 2486-2489.

Meade, R. D., A. Devenyi, J. D. Joannopoulos, et al. “Novel Applications of Photonic Band Gap Materials: Low-loss Bends and High G Cavities.” J Appl Phys 75 (1994): 4753-4755.

Happ., T. D., M. Kamp, F. Klopf, J. P. Reithmaier, and A. Forchel. “Bent Laser Cavity Based on 2D Photonic Crystal Waveguide.” Electronics Letters 36 (2000): 324-325.

Mekis A., J. C. Chen, and I. Kurland, et al. “High Transmission through Sharp Bends in Photonic Crystal Waveguides.” Physical Review Lett 77 (1996): 3787-3790.

Cheng, C. C., and A. Scherer. “Lithographic Band Gap Tuning in Photonic Bandgap Crystals.” J Vac Sci Technol B 14 (1996): 4110-4114.

Smith, C. J. M., H. Benisty, S. Oliver, et al. “Low-Loss Channel Waveguides with two-dimensional Photonic Crystal Boundaries.” Appl Phys Let 77 (2000): 2813-2815.

Joannopolous, J. D., R. D. Meade, and J. N. Winn. Photonic Crystals: Molding theFlow of Light. Princeton, NJ: Princeton University Press, 1995.

LEDs - General Texts

Bergh, A. A. Light Emitting Diodes. Oxford, UK: Clarendon Press, 1976. ISBN: 0198593171.

Gillesen, K., and W. Schairer. Light Emitting Diodes: An Introduction. Upper Saddle River, NJ: Prentice-Hall, 1987, ISBN: 0135365333.

Schubert, E. F. Light Emitting Diodes. Cambidge, UK: Cambridge University Press, 2003. ISBN: 0521533511.

Resonant and Micro-cavity LEDs

Delbeke, D., et al. “High Efficiency Semiconductor Resonant-cavity Light-emitting diodes: A Review.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 189-206.

Royo, P., et al. “Analytical Calculation of the Extraction Efficiency of Micro-cavity light-emitting Diodes for Display and Fiber Coupling Applications.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 207-218.

Ryu, H., et al. “Enhancement of Light Extraction from Two-dimensional Photonic Crystal Slab Structures.” IEEE J. on Selected Topics on Quantum Electronics 8 (2002): 231-237.

Rattier, M., et al. “Toward Ultra high-efficiency Aluminum Oxide Microcavity light-emitting Diodes: Guided Mode Extraction by Photonic Crystals.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 238-247.

Nitride LEDs

Mukai, T. “Recent Progress in Group-III Nitride Light-emitting Diodes.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 264-270.

Han, J., and A. V. Nurmikko. “Advances in AlGaInN Blue and Ultraviolet Light Emitters.” IEEE J Selected Topics on Quantum Electronics 8 (2002): 289-297.

Orton, J. W., and C. T. Foxton. “Group III Nitride Semiconductors for Short Wavelength Light-emitting Devices.” Rev Prog Phys 61 (1998): 1-75.

White LEDs, Solid State Illumination

Steigerwald, D. A., et al. “Illumination with Solid State Lighting Technology.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 310-320.

Muthu, S., et al. “Red, Green, and Blue LEDs for White Light Illumination.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 333-338.

Phosphors

Ronda, C. R., T. Juestel, and H. Nikol. “Rare Earth Phosphors: Fundamentals and Applications.” Journal of Alloys and Compounds (1998): 275-277 and 669-76.

Organic LEDs

Patel, N. K., S. Cina, and J. H. Burroughes. “High-efficiency Organic Light-emitting Diodes.” IEEE J on Selected Topics on Quantum Electronics 8 (2002): 346-61.

Tessler, N. “Lasers Based on Semiconducting Organic Materials.” Advanced Materials 11, no. 5 (1999): 363-70.

Heeger, A. J. “Light Emission from Semiconducting Polymers: Light-emitting Diodes, Light-emitting Electrochemical Cells, Lasers and White Light for the Future.” Solid-State-Communications 107 (1998): 673-679.

Kalinowski, J. “Electroluminescence in Organics.” Journal of Physics D Applied Physics 32 (1999): R179-249.

Recombination in Silicon

Schroder, D. K. “Carrrier Lifetimes in Silicon.” IEEE Trans. on Electron Dev. 44 (1997): 160-170.

Crystal Growth

Moon, R. L. “MOVPE: Is There Any Other Technology for Optoelectronics.” Journal of Crystal Growth 170 (1997): 1-10.

Laser Diodes - General Texts

Coldren, L. A., and S. W. Corzine. Diode Lasers and Photonic Integrated Circuits. New York, NY: Wiley, 1995. ISBN: 0471118753. 
The best reference on lasers; the most up to date and comprehensive on in-plane lasers; more limited on VCSELs. For VCSELs see the references below.

Additional sources: See the references given with the laser structures shown on the slides from Lectures 21, 22, and 23.

VCSELs

Iga, K. “Vertical-Cavity Surface-Emitting Laser - Progress and Prospects.” IEICE Trans Electron E85-C, no. 1 (2002): 10-20. 
Iga is credited with inventing, or at least popularizing, the VCSEL.

Chang, C. H., L. Chrostowski, and C. J. Chang-Hasnain. “Parasitics and Design Considerations on Oxide-Implant VCSELs.” IEEE Photonics Technology Letters 13, no. 12 (2001): 1274-1276.

Gustavsson, J. S., J. A. Vukusic, J. Bengtsson, and A. Larsson. “A Comprehensive Model for Modal Dynamics of Vertical-Cavity Surface-Emitting Lasers.” IEEE J Quant Electr 38, no. 2 (2002): 203-212. 
A good reference on VCSEL small and large signal operation. Complements the material in Coldren and Corzine above.

SPIE Proceedings Vol. 4286, published in 2001 and Vol. 4649, published in 2002 have some good VCSEL articles, including: 
Note: SPIE holds annual conferences reviewing many topics in the general area of optoelectronics and publishes the proceedings. These proceedings are often good places to start a search for references.

Stevens, R., et al. “Quest for Very High-speed VCSELs: Pitfalls and Clues.” Vertical-Cavity Surface-Emitting Lasers V. Edited by Kent D. Choquette, and Chun Lei. Proceedings of SPIE 4286 (2001): 71-79.

Wasserbauer, J. G., et al. “High Speed VCSELs for Next-Generation Telecommunications Links.” Vertical-Cavity Surface-Emitting Lasers V. Edited by Kent D. Choquette, and Chun Leis. Proceedings of SPIE 4286 (2001): 80-95.

Grabherr, M., D. Wiedenmann, R. King, R. Jager, and B. Schneider. “Speed it Upto 10 Gb/s and Flip Chip it: VCSELs Today.” Vertical-Cavity Surface-Emitting Lasers VI. Edited by Chun Lei, and Sean P. Kilcoyne. Proceedings of SPIE 4649 (2002): 11-18.

Zhang, X., et al. “Advancements in the Design and Production of VCSELs at AXT.” Vertical-Cavity Surface-Emitting Lasers VI. Edited by Chun Lei, and Sean P. Kilcoyne. Proceedings of SPIE 4649 (2002): 111-120.

Eitel, S., et al. “Multimode VCSELs for High Bit-rate and Transparent Low-costfiber-optic Links.” Vertical-Cavity Surface-Emitting Lasers VI. Edited by Chun Lei, and Sean P. Kilcoyne. Proceedings of SPIE 4649 (2002): 183-190.

Unold, H. J., et al. “Single-mode VCSELs.” In Vertical-Cavity Surface-Emitting Lasers VI. Edited by Chun Lei, and Sean P. Kilcoyne. Proceedings of SPIE 4649 (2002): 218-229.

Course Info

As Taught In
Spring 2003
Level
Learning Resource Types
Lecture Notes
Projects with Examples
Problem Sets with Solutions