ESD. 33 Systems Engineering

Assignment 6 Design of Experiments

Due Date: 13 July, 8:30AM EST
Deliverable: Team written report (about five pages)
Time allotment: You should expect to spend 5 hours all together on this homework.
Grading: 5\% of your final course grade. Every team member earns the same grade.

Assignment:

Self select into teams of 2 to 5 people. In this case, I think it is best to have a heterogeneous team.

1) Short answer questions
a. Stephan Thomke lists three properties of a good prototype. List and briefly describe these properties.
b. Give an example (from the team's personal experience) of effective use of a prototype in the early stages of the systems engineering process.
c. In hospital (A), 45 babies are born each day (on average) and in the smaller hospital (B) about 15 babies are born each day (on average). For a period of a year, each hospital recorded the days on which more than 60% of the babies were boys. Which of the following statements is true? Why?
2) Hospital A probably recorded more days with $>60 \%$ boys
3) Hospital B probably recorded more days with $>60 \%$ boys
4) Hospital A and B are probably about the same
d. In George Box's paper "Statistics as a catalyst to Learning by the Scientific Method: Part I" he describes the use of a resolution IV design as a screening experiment. What is a screening experiment? What role does it play in designing a system? What is the rationale for using a Resolution IV experiment for this purpose?
e. In George Box's paper "Statistics as a catalyst to Learning by the Scientific Method: Part I" he describes the use of a central composite design. What is the purpose of a central composite design (CCD)? How does the arrangement of sample points in the CCD make sense in light of its purpose?
5) The two sub-problems below concern regression
a. The data below come from an experiment on a prosthesis in which cable tension was varied systematically and grip force was measured. Perform linear regression on this data. What is the equation relating the two variables? What is the R squared value? What does it mean? What is the F ratio? What does it mean? What is the p-value for the slope of the regression line? What conclusion do you draw? Plot the residuals.

CableTension (lbs)	Prosthetic Grip Force (lbs)	continued	
		6	0.955940527
		24	4.515994905
12	2.010771454	24	4.812666104
12	3.098565848	24	5.471935433
12	2.406333052	24	5.175264235
12	2.274479186	24	5.274154634
12	2.406333052	9	2.637077317
21	3.988579442	9	2.076698387
21	4.252287174	9	1.549282924
21	3.988579442	9	1.450392524
21	4.515994905	9	1.58224639
21	4.450067973	18	4.186360241
15	4.186360241	18	3.560054378
15	2.670040784	18	4.153396774
15	3.131529314	18	3.82376211
15	2.966711982	18	3.856725576
15	3.329310113	3	1.186684793
27	5.504898899	3	0.494451997
27	6.296022095	3	0.527415463
27	6.098241296	3	0.824086662
27	6.361949027	3	0.725196262
27	6.658620226	30	5.669716232
6	2.14262532	30	6.790474091
6	0.955940527	30	6.856401024
6	0.988903994	30	5.933423963
6	1.153721326	30	6.856401024

b. The data below come from an experiment in which the wrap angle over a capstan is varied and the ratio of tension to weight is measured. Perform linear regression on this data. What is the equation relating the two variables? What is the R squared value? What does it mean? Plot the residuals. How do your conclusions differ from those in sub-problem (a)? What do you suggest doing to further analyze this data?

3) The template "paper_airplane.pdf" contains a template for a paper airplane. It has four variables that can be changed independently between three different levels each. The template also has a nine run orthogonal array printed on its side (Taguchi's L9 or Plackett Burman $\mathrm{P}^{-} \mathrm{B}_{3,9}$). Carry out the experiment described. Preferably, your team should perform at least one true replicate with a different thrower. Preferably, your team should randomize the throw order of the 9 treatment conditions. You may need to mark off distances on the floor with tape or a tape measure.
a) List the data along with any pertinent notes concerning the conduct of the experiment.
b) Create plots indicating the main effects of the factors.
c) Compute confidence intervals on the main effects.
d) Select the values of the variables that give the longest flight. Manufacture that plane and fly it at least three times. How does its flight compare to the predicted flight distance based on an additive model?
e) Select at least one two factor interaction of interest and use a full factorial design 2^{2} to study it.

