

Air Transportation System Architecture Analysis

Project Final Presentation

Advanced System Architecture

Spring 2006

May 9th, 2006

Presentation by: Philippe Bonnefoy Roland Weibel

Instructors: Chris Magee, Joel Moses and Daniel Whitney

1

Motivation

- Future demand is expected to increase significantly due to the introduction of new classes of aircraft, such as Very Light Jets and Unmanned Aerial Vehicles
- There are several constraints on system evolution driven by infrastructure, economics, safety, and technology
- The air transportation system is facing and will continue to face significant challenges in terms of meeting demand for mobility
- Current multi-agency effort to establish a roadmap for the "Next Generation of Air Transportation System"
- Future (evolved) architecture of the system require understanding of the structure of the current system
- Lack of integrated quantitative analysis of structure of the current system

Objective of the project

- Better understand the architecture of the current system through network analyzes
- Understand
 - the network characteristics of individual system layers
 - Influence of constraints, desired properties (i.e. safety, capacity, etc.) in explanation of network characteristics
 - comparison of network characteristics across different layers, through coupling of infrastructure or comparison of different network characteristics across layers

^{© 2006} Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology

Transport Layer Analysis

© 2006 Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology

Analysis of the Wide-Body/Narrow Body & Regional Jet Route Network

Degree Distribution Analysis

Coefficient of the degree distribution power law function: $\gamma = 1.49$

Hypotheses for the exponential cut-off:

- Nodal capacity constraints
- Connectivity limitations between core and secondary airports

7

Network Characteristics

Network	n	m	Density	Clustering coeff.	r	Centrality vs. connectivity
Scheduled transportation network	249	3389	0.052	0.64	-0.39	13/20 most central also part of the top 20 most connected

Analysis of the Light Jet Route Network

Degree Distribution Analysis

Degree distribution identified as resulting from **sub-linear preferential attachment**.

$$n_{k} = a.k^{-\gamma} \exp\left[-\mu\left(\frac{k^{1-\gamma}-2^{1-\gamma}}{1-\gamma}\right)\right]$$

with: $\gamma = 0.57$ $\mu = 0.16$ a = 0.13

Network Characteristics

Network	n	m	Density	Clustering coefficient	r
Light Jet Network (Unscheduled)	900	5384	0.005	0.12	0.0045

Underlying Processes and Attributes Influencing the Sub linear Attachment Dynamics

Hypotheses:

- Spatial Constraints
 - Aircraft range (number of airports reachable given aircraft range compatibilities)
- Nodal Capacity
 - Airport capacity
- Underlying demand drivers
 - Population distribution

- Modal competition
 - Focusing on the nodes
 - Scheduled transportation with the transition from on-demand traffic to scheduled traffic
 - Focusing on the arcs
 - Economics, passenger mode choice
 - Demand for long range on-demand flights (modal competition)

^{© 2006} Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology

Analysis of the Demand Layer

• Single Layer Analysis

Population/Airport Gravity Model

$$b_i = \sum_{ct \in C_i} p_{ct} \quad s.t. \quad C_i = \left\{ ct \ \left| d_{ct,i} = \min_j d_{ct,j} \right| \right\}$$

Cumulative Density Function p(>b)

based on 66,000 Census Track data

Distribution of population around airports does not follow a power law

Notations:

Size of population basin (b) [in millions]

Infrastructure Layer Analysis

Infrastructure layer analysis

- Problem
 - Airspace is a shared resource between various type of traffic (e.g. scheduled commercial, unscheduled commercial, general aviation, etc.)
 - What is the level of interaction between types of traffic at key points in the airspace
- Network analysis
 - Betweenness centrality
 - Connectivity
- Methodology
 - Shortest-path search through fully-connected airport network along ground-based Navigational Aids
 - For scheduled & unscheduled traffic data

Unweighted Betweenness Centrality -Unscheduled

Unweighted Betweenness Centrality -Scheduled

Degree vs. Betweenness for Navaid/Airport Networks

esi

Conclusions

- Distribution of Scheduled & Unscheduled Nodes
 - Scheduled: power law with exponential cut-off
 - Unscheduled: product of exponential and power law
 - Air transportation system is not scale free
- Several System Attributes That Impose Scale on System
 - Apparent in degree sequences investigated
 - Apparent in utilization of airports and navigational aids
 - Influences such as capacity, economics, and policy are acting to limit nodal connections and edge flows
- Several Implications for future growth of the Air Transportation System
 - Constraints important in future system evolution
 - Analysis forms basis for further understanding of constraints and growth dynamics

Questions & Comments

Thank you

21

asi

Infrastructure Layer Analysis

Navigation Infrastructure Analysis

Image removed for copyright reasons. Chart of jet routes.

- Nodes: FAA-Defined Navigational Aids of Different Types
 - VORs, Reporting Points, etc
- Links: Air Routes Between Nodes
 - Victor (low alt) & Jet Routes (high alt)

- Network Metrics
 - Clustering Coefficient (Watts method) Proxy for robustness of network
 - Correlation Coefficient
- Architecture Analyses
 - Shortest-Path Navigational vs. Direct Distance between Airports
 - Nodal Betweenness/Centrality

NavAid Network	n	m	C (Watts)	r
Jet Routes	1787	4444	0.1928	-0.0166
Victor Airways	2669	7635	0.2761	-0.0728

24

asi

Navigation Architecture Analysis

- End Nodes: Navaids corresponding to published airports
- Geodesic (shortest path by navigational distance) computed between top 1,000 airport pairs
 - Airports ranked based on 2004 FAA traffic data
 - A-Star search algorithm implemented to find shortest distance along network
- Results Dynamics Along Network
 - Navigational Distance Compared to Shortest Path Distance by Airport Ranking – Maximum "direct-to" efficiency
 - Betweenness centrality to be calculated for navigation nodes as measure of their utilization
 - Number of shortest-paths through nodes as a proportion to total shortest paths

