C L Magee Biases

- Based upon **Practice** Experience
 - Legacy is more important than one usually realizes in the design of real systems
 - Standards and protocol design is the major way to influence the "design" of real world complex systems
- Based upon Materials Science Education and Research Experience
 - Physics as "model" discipline
 - Observations of reality are the gold standard
 - Mathematical models are essential for real progress
 - Materials Science Mantra as a Metaphor for what we are trying to do in Systems Architecture

More on CLM Biases

- Physicists (and copiers) Biases
 - The key to any Scientific Advance is to "explain the complex visible by some simple invisible" Jean Perrin
 - "Unless you can quantitatively measure it, you do not know what you are talking about" Lord Kelvin (Thompson)
 - Caveat (age of earth estimated from Temperature of earth)
- Came to Software/information technology later (1970's but mostly 1990's)
- Came to biology later (systematics of interest earlier but mostly 2000's)
- Strong interest in Economics even in UG education

The Materials Science Mantra

"processing">"structure" "structure">"properties"

A Metaphor for Architecture of Engineering Systems ?

THE METAPHOR EXPANDED I

- PROCESSING> STRUCTURE> PROPERTIES
- Structure ~ Architecture
- Where is Design?
- Where is Behavior?
- Structure determines/affects properties
 - Structure is a multi-dimensional term that includes many scales and concepts simultaneously (and thus is not a "simple invisible")
 - Properties include attributes that encompass dynamics, behavior and "ilities".
 - Relationships between Structure and Properties are plentiful and became strongest as material classes under detailed study increased

THE METAPHOR EXPANDED II

- Processing determines Structure
 - Different Processing Modes (casting, forging, crystal growth, e- beam deposition, etc.) have different *control parameters* (Temperature gradient, stresses, pressure, magnetic and electrical fields, composition, etc.) that affect/determine properties.
 - Design is thus modifying the processing modes and control parameters in to obtain the desired combination of properties. Understanding structure is the chief enabler of effective design
- Engineering Systems Analogies

THE METAPHOR EXPANDED III

• Structure Characterization

 Materials-Multiple Dimensional and very broadly construed: examples.....

 Engineering Systems Possibilities for Architecture Characterization.. much of the focus of this course in my metaphor

Learnings from Materials Science Experience

- Utility as Scientific framework has been easier to establish than as practice enabler
- Possible Lessons
 - Both Structure and Properties have to be viewed flexibly to make real progress
 - Quantitative Theories relating properties and structure are best evaluated while studying multiple systems
 - Details matter (observation and models)
 - "Concepts" emphasis and meaning changes (e.g., genes)