ESD. 36 System Project Management

Lecture 12

Strategic Project Management

Instructor(s)
Dr. James Lyneis

October 18, 2012

Today's Agenda

- Strategic Project Management
- Example 1: Project Preparation
- Example 2: Project Planning
- Example 3: Project Execution

System Project Management ESD. 36 Framework

What is corporate strategy as it applies to projects and the project portfolio, versus "strategy" as it applies to an individual project ?

Corporate Strategy for the Project

- Determining the fit of the project to business objectives (the "mission" - doing the right job)
- features / scope of end product
- schedule milestones (time to market)
- delivered quality (defects)
- resources \& budget (development cost)

And the mix/timing of "projects" necessary to achieve corporate strategy

Operationally, "projects" implement corporate strategy.

Strategic Project Management

- Understanding how project "design" decisions affect project performance ...
- Scope/schedule/ ... (i.e., mission feasibility)
- Organization, process, ...
- Buffers, phase overlap, ...
- Staffing strategies, schedule slip, ...
- ... and how they affect other current projects (portfolio issues), and future projects.
- Learning from past projects.

Operationally, "day-to-day project decísions" implement project strategy.

Example: Strategic/Tactical vs Operational Staffing Decisions

Strategic/Tactical

- Hire experienced staff rather than inexperienced
- Start with all of staff you need or gradually build
- How much training for inexperienced staff

Operational

- Who specifically and with what experience
- How many, and/or at what ramp up
- When, what programs, etc.

System Project Management ESD. 36 Framework

Project Preparation

Doing the Right Job

Strategic
Enterpris chosen wha or system tc Management

Project Planning

DISCUSSION?

What is SD useful for?

- Conceptualization of project dynamics and the issues/tradeoffs involved in strategic management of projects
- Quantification of above ...
- Heuristics
- Specific forecasts and decision guidance
- Project-to-project learning

SD Qualitative Insights -1

1. A feasible plan is essential, including:

- Estimates of rework, undiscovered rework, and delays in discovering that rework
- Estimates of productivity loss dealing with rework
- Adequate buffers and reserves for rework
- [Rework increases with project uncertainty and complexity]

SD Qualitative Insights - 2

2. A feasible plan recognizes the "iron triangle"; there will be multiple "feasible" plans depending on priorities.
3. Tradeoffs in the plan can often be improved by changes in project structure and organization to reduce rework and delays in discovering rework.

SD Qualitative Insights - 3

4. Attempts to achieve an infeasible plan via project control actions lead to "vicious circle" side effects which increase project cost and duration.
■ On complex projects, these costs usually exceed the "direct" costs of infeasibility
5. Project "changes," and risks which materialize, are fundamentally the same as an infeasible plan. (Lecture 13)

SD Qualitative Insights - 4

6. Project managers need buffers and/or flexibility (e.g., slip schedule, cut scope, ship with "bugs") to respond to changes and uncertainties. These have costs that need to be evaluated; the importance of different tradeoffs differs by project. (Lecture 13)
7. The costs of project control can be minimized by understanding the sources of the vicious circles. The timing, magnitude, and duration of different controls affects performance.

SD Perspective: Typical project dynamics result in schedule \&/or budget overrun ...

How Does It Get Started?

"simple") projects

Example Project

- Scope = 1000 Tasks
- Scheduled Completion Date = 30 (Month)
- Staff = 40 (Implied budget of 1200 person- months, including 200 tasks estimated rework)
- Normal Quality $=0.85$
- Productivity = 1 task/month/person

Note: Infeasible Plan

Project Behavior

Cost $=1570$

 person-months, Finish 39.25
Staff \& Progress

Today's Agenda

- Strategic Project Management
- Example 1: Project Preparation Developing a Consistent Plan
- Example 2: Project Planning
- Example 3: Project Execution

A Consistent (Feasible) Project Avoids the Dynamics

"SD Class 3" Model With:

- Scope = 1000 (tasks)
- Scheduled Completion Date = 35 (month) [versus 30 in Class 3 model]
- Delivered Quality > 99\%
- Normal Fraction Correct $=0.85$
- Staff $=50$ (people) [Versus 40 staff ; Implying a budget of 1750 person-months, versus 1200 person-months]
- Estimated Rework = 750 tasks [versus 200]

A Consistent Project Avoids the Dynamics

Plan fully accounts for rework tasks, Schedule and staffing plan reflect rework cycle

Normal design evolution accounted for in plan

Productivity : SD4 Feasible Plan1
"Effect of Intensity/Hours on Productivity" : SD4 Feasible Plan

Fraction Correct and Complete : SD4 Feasible Plan1
Effect of Experience on Fraction Correct : SD4 Feasible Plan1
Effect of Undiscovered Rework on Fraction Correct : SD4 Feasible Pla
"Effect of Intensity/Hours on Fraction Correct" : SD4 Feasible Plan1

Infeasible projects initiate the dynamics when management responds ...

Staff for Output: SD4 Infeasible Plan Control
Staff for Output : SD4 Infeasible Plan No Control
Staff for Output : SD4 Feasible Plan1
\qquad
\qquad
\qquad

What do we expect?

Trying to achieve infeasible plan ...

Effect of Experience on Fraction Correct

Effect of Experience on Fraction Correct : SD4 Infeasible Plan Control
Effect of Experience on Fraction Correct : SD4 Infeasible Plan No Control
Effect of Experience on Fraction Correct : SD4 Feasible Plan1 \qquad

Which snowballs via "errors on errors" feedback ...

Effect of Undiscovered Rework on Fraction Correct

Effect of Undiscovered Rework on Fraction Correct : SD4 Infeasible Plan Control
Effect of Undiscovered Rework on Fraction Correct : SD4 Infeasible Plan No Control
Effect of Undiscovered Rework on Fraction Correct : SD4 Feasible Plan1

With end result worse (schedule/cost) than if project budgeted higher at start!

Test

Infeasible Plan Targets
Infeasible, No Control Infeasible, with control)
Feasible Plan $1 \quad 33.75$
Feasible Plan $2 \quad 30.125$

Finish

30
39.25
36.25

Cost(person-mos)
1200
1570
2148

1615
1650

Best choice depends on corporate strategy.

Note: Feasible Plan 1 (Initial Staff 50, Schedule 35, Budget 1750);
Feasible Plan 2 (Initial Staff 60, Schedule 30, Budget 1800)

The "Iron Triangle"

Scope

There are alternative feasible plans that reflect project priorities

Schedule

Survey Question 1

Does your organization plan for rework in establishing project budgets and baselines?

1. Yes, we explicitly try to estimate the expected amount of rework
2. Yes, but only by adding a "management reserve"
3. No

Survey Question

Do you feel that on the typical project in your organization, budget and schedule are ...

1. More than is needed
2. Tight, but manageable
3. Insufficient enough that the vicious circles are significant

Why Won't We Develop a Realistic Plan?

Then why add resources when situation realized?

Getting a Feasible Plan

- Use a model
- Use data from prior projects (learning!), and calibration, to estimate:
- Normal Productivity
- Normal Fraction Correct and Complete
- Time to Discover Rework
- Total rework and undiscovered rework profile
- Strength of effects ...
- Include buffers and have a sound project control plan (see example 3)

SD Qualitative Insights Review

1. A feasible plan is essential, including:

- Estimates of rework, undiscovered rework, and delays in discovering that rework
- Estimates of productivity loss dealing with rework
- Adequate buffers and reserves for rework
- [Rework increases with project uncertainty and complexity]

2. A feasible plan recognizes the "iron triangle"; there will be multiple "feasible" plans depending on priorities.
3. Attempts to achieve an infeasible plan via project control actions lead to "vicious circle" side effects which increase project cost and duration.

SD Qualitative Insights - 2

2. A feasible plan recognizes the "iron triangle"; there will be multiple "feasible" plans depending on priorities.
3. Tradeoffs in the plan can often be improved by changes in project structure and organization to reduce rework and delays in discovering rework.

Today's Agenda

- Strategic Project Management
- Example 1: Project Preparation
- Example 2: Project Planning Deciding on the Process Model
- Example 3: Project Execution

What Increases Cost \& Schedule?

Uncertainty that reduces fraction complete and correct.

- Technical complexity
- Uncertainty about customer requirements

Strategic Project Planning

What changes in process, organization, etc. might help deal with technical or customer uncertainties?

- Increase planned design iterations?
- Autonomous (dedicated) integrated product team vs. functional?
- Waterfall vs. d/b/t iterative vs. spiral vs. ...?
- More phase overlap and concurrency?

How do we assess what process model is right for out project?

How do we assess what process model is right for our project?

Determining Impact on Dynamics:

1. Model project with current processes, policies, ...
2. Specify direct impacts of alternatives on --

- Scope (added tasks)
- Productivity
- Fraction correct and complete
- Rework discovery
- Strength of productivity and FCC effects
[Secondary impacts assessed via simulation]

3. Simulate and compare performance
4. Test sensitivity to uncertain assumptions

Example: Three-Phase Model (from Lecture 7)

Assumptions:

Scope $=100$ Tasks
Scope = 1000 tasks
Scope = 1000 tasks
Staff = 6
Staff = $\mathbf{2 5}$
Staff $=\mathbf{4 0}$
Productivity $=2$ tasks/month/person Duration = 8.33 months (no rework) NFCC $=0.75$

Productivity = 4 tasks/month/person Duration = 10 months (no rework) NFCC=0.7

NFCC= 0.95

Rework Discovery Assumptions (similar to CityCar HW\#3)

- 60% of rework discoverable in design
- One design planned iteration \& limited design review
- \rightarrow Fraction of Rework Discovered in First Iteration $=$ 30\%
- Fraction of Rework Discovered in Later Design Iterations = 70\% two iterations, 95\% three iterations (note: derivable via DSM and signal flow graph simulation?)
- Tasks repeated per iteration $=25 \%$
- Build starts when design is 70% reported complete

Simulation results for current processes ...

Can we improve performance by shifting more rework discovery to design?

Design "done"

Discovery by design

Discovery by build

Sources of Rework - Categories (from Lecture 7)

1. Classical "Quality" or design misexecution from people or technical coupling. Discoverable by further design work such as iteration, review.
2. Technical complexity/novelty; customer uncertainty. Discoverable by build/test work, including d/b/t iterations.
3. Knock-on Rework Work done "correctly" but ultimately needing rework. Discoverable by both.

Example:
 Planned Design Iterations

1. Add iteration

Increasing design iterations ...

... increases design original work, but reduces downstream rework.

Design Cumulative Original Work Done : Three P Four S V5 BNFCC 0pt95 Sens 0pt75 Middle One Three New Design Cumulative Original Work Done: Three P Four S V5 BNFCC Opt95 Sens Ott75 Mida On ler New5

Design Staff : Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Three New5 Design Staff : Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Iter New5

... pushes more rework discovery into design

Fraction of Design Rework Discovered Over Time

Three iterations discovers all the "discoverable" rework

Fraction Rework Discovered by Design as Fraction of Max

Fraction Rework Discovered by Design as Fraction of Max : Three P Four S V5 BNFCC 0pt95 Sens 0pt75 Middle One Three New5 Fraction Rework Discovered by Design as Fraction of Max : Three P Four S V5 BNFCC 0pt95 Sens 0pt75 Middle One Two New5 Fraction Rework Discovered by Design as Fraction of Max : Three P Four S V5 BNFCC Opt95 Sens 0pt75 Middle One Iter New5

Derivable via DSM and signal flow graph simulation?

Increasing rework discovered in design reduces rework left for build ...

Fraction Rework Discovered By Build : Three P Four S V5 BNFCC 0pt95 Sens Opt75 Middle One Three New5 Fraction Rework Discovered By Build : Three P Four S V5 BNFCC Opt95 Sens 0pt75 Middle One Two New5 Fraction Rework Discovered By Build : Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Iter New5

Improving build "quality" and reducing build rework

"Build/Test Fraction Correct and Complete" : Three P Four S V5 BNFCC Opt95 Sens 0pt75 Middle One Three New5 "Build/Test Fraction Correct and Complete" : Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Two New5 "Build/Test Fraction Correct and Complete" : Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Iter New5

Cumulative Build Rework: Three P Four S V5 BNFCC Opt95 Sens 0pt75 Middle One Three New5
Cumulative Build Rework: Three P Four S V5 BNFCC 0pt95 Sens Opt75 Middle One Two New5 Cumulative Build Rework: Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Iter New5

With the "Base Case" Assumptions ...

"Middle" Project	"New5 Results"					
	Cum		Design	Build	Total	
Test	Build Rework		Effort	Effort	Effort	Finish
One teration	425.16		404.4	1432	1903	51.6875
Two terations	369.38	-13.1%	444.45	1376	1887	52.875
Three Iterations, Start 70\%	311.86	-26.6%	516	1321	1904	54.8125

What assumptions impact this tradeoff?

Assumptions

- Fraction of design tasks that need to be repeated per iteration
- Relative cost of build/test versus design
- When build starts (overlap with design)

The benefits of design iteration increase the higher build cost

Cumulative Effort (Person-Months)

		Build Cost Mutipier						
	0.5	1	1.25	1.5	1.75	2	3	
One lteration	1187	1903	2261	2619	2977	3335	4767	
Two terations	1199" 1.01%	1887 ${ }^{\prime \prime} 0.84 \%$	2231'-1.33\%	2575' 1.68%	2919" -1.95\%	3263"-2.16\%	4639	-2.69\%
Three terations	1243.5' 4.76%	1904* 0.05%	$2234^{\prime \prime}-1.18 \%$	2565' -2.08\%	2895' - -2.76\%	$3225{ }^{\prime \prime}-3.30 \%$	4546	-4.64\%

Build is starting before design rework is fully discovered

One Iteration

Three Iterations

Effect of Design Undiscovered
Rework on Fraction Correct
Build FCC from Design
Build FCC from Design

 "Build/Test Startup" : Three P Four S V5 BNFCC Opt95 Sens Opt75 Middle One Iter New5

Iterations 2 \& 3 occurring months 18-24

Delaying build with one iteration will have less benefit because build needed to discover rework.

Benefits of delaying build start

"Middle" Project	"New5 Results"						
	Cum		Design	Build	Total		
Test	Build Rework		Effort	Effort	Effort		Finish
One Iteration	425.16		404.4	1432	1903		51.6875
Two Iterations	369.38	-13.1\%	444.45	1376	1887	-0.84\%	52.875
Three Iterations, Start 70\%	311.86	-26.6\%	516	1321	1904	0.05\%	54.8125
Three Iterations, Start 60\%	337.67	-20.6\%	516	1353	1935	1.68\%	53.5
Three Iterations, Start 70\%	311.86	-26.6\%	516	1321	1904	0.05\%	54.8125
Three Iterations, Start 80\%	285.49	-32.9\%	516	1291	1874	1.520	55.4375
Three Iterations, Start 90\%	271.99	-36.0\%	516	1275	1857	-2.42\%	56
Two Iteration, Start 60\%	386.26	-9.1\%	444.45	1396	1907	0.21\%	51.125
Two Iteration, Start 70\%	369.4	-13.1\%	444.45	1376	1887	-0.84\%	52.875
Two Iteration, Start 80\%	359	-15.6\%	444.45	1364	1875	-1.47\%	53.4375
Two Iteration, Start 90\%	348.72	-18.0\%	444.45	1353	1864	-2.05\%	54.0625

Three iterations, start at 90\% "optimal" cost, but finish is later.

Other Factors Affection Desirability of More Planned Iterations

- Normal amount of rework
- Amount of rework discoverable in design (vs in build/test)
- Additional rework discovered per iteration

Developing Heuristics by Project Type

Parameter
Normal FCC
"Mature"
0.8

"Novel"	"Repeat"
0.6	0.7

(examples)
$0.3 \quad 0.6$

Frac Discoverable in Design
$\frac{\text { "Repeat" }}{0.7}$
0.9
Frac Discoverable

First Iteration
Frac Discoverable Later Iterations
Tasks Repeated
\# Iterations
Build Start

Depends on product \& organization: analyze projects, use DSM \& signal flow graph simulation to estimate.

$$
\begin{array}{lll}
1 & 3 & 2
\end{array}
$$

When planned iterations done.

Summary

1. Under almost all situations, two design iterations are most cost effective. The benefits of multiple iterations increases the more design rework that can be discovered by design. Hence, multiple iterations makes more sense for "Repeat" and "Middle" projects than for "Novel" projects.
2. The start of build should be delayed until the design effort has executed all of the planned iterations.
3. The benefits of additional design iteration increases the higher build/test costs are relative to design costs.

Revised Network/Gantt showing planned design iterations

Added design iteration tasks ...

SD Qualitative Insights - 2

3. Tradeoffs in the plan can often be improved by changes in project structure and organization to reduce rework and delays in discovering rework.

- See textbook Chapter SD4 for other examples.

Today's Agenda

- Strategic Project Management
- Example 1: Project Preparation
- Example 2: Project Planning
- Example 3: Project Execution Deciding on Project Controls

SD Qualitative Insights - 4

6. Project managers need buffers and/or flexibility (e.g., slip schedule, cut scope, ship with "bugs") to respond to changes and uncertainties. These have costs that need to be evaluated; the importance of different tradeoffs differs by project. (Lecture 13)
7. The costs of project control can be minimized by understanding the sources of the vicious circles. The timing, magnitude, and duration of different controls affects performance.

Strategic Control Issues

- Incorporating rework estimates in planning and progress monitoring (see Chapter SD4.4).
- How much to rely on "work intensity" vs. overtime vs. adding staff?
- Should you slip the schedule? Early or late?
- Should you pay extra for experience when adding staff?
- How much training (delay in adding staff, but higher productivity and quality)?
A Strategic View - Deciding in advance the best way to handle problems if they arise

Project Resource Control

- You've misplanned, either because you don't include rework estimates or because this particular project has unusually high levels
- Or
- Scope growth occurred on the project
- Other risks/problems materialized

What do you do?
(note - these are "permanent" impacts, not temporary delays on isolated parts)

Project Control

 "So the best thing to do is to do nothing, right?"

No - the costs of project control can be minimized by understanding the sources of the vicious circles. The timing, magnitude, and duration of different controls affects performance.

What do you do? 2012

What You Do at $\mathbf{3 0 \%}$						
	First	Second	Third	Fourth	Fifth	Sixth
Add People	10.6%	52.2%	17.1%	11.6%	14.3%	25.0%
Longer Hours	31.9%	23.9%	26.8%	16.3%	7.1%	0.0%
Intensity	25.5%	13.0%	19.5%	23.3%	21.4%	0.0%
Slip	17.0%	8.7%	19.5%	23.3%	26.2%	25.0%
Cut Scope	14.9%	2.2%	17.1%	25.6%	31.0%	50.0%
Other	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

What You Do at 65\%						
	First	Second	Third	Fourth	Fifth	Sixth
Add People	16.7%	50.0%	31.1%	9.5%	8.9%	25.0%
Longer Hours	35.4%	29.2%	17.8%	9.5%	13.3%	0.0%
Intensity	16.7%	8.3%	26.7%	21.4%	22.2%	0.0%
Slip	8.3%	10.4%	15.6%	38.1%	24.4%	50.0%
Cut Scope	22.9%	2.1%	8.9%	21.4%	31.1%	25.0%
Other	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

$\%$ Specifying $1^{\text {st }}$ or $2^{\text {nd }}$ Choice

2011

What You Do?		
	At 30\%	At 65\%
Add People	40.8%	34.7%
Longer Hours	24.3%	23.5%
Intensity	21.4%	19.4%
Slip	5.8%	11.2%
Cut Scope	7.8%	11.2%
Other	0.0%	0.0%
Total	100.0%	100.0%

2012

What You Do?		
	At 30\%	At 65\%
Add People	31.2%	33.3%
Longer Hours	28.0%	32.3%
Intensity	19.4%	12.5%
Slip	12.9%	9.4%
Cut Scope	8.6%	12.5%
Other	0.0%	0.0%

Brooks' Law

- "Adding manpower to a late software project makes it later." Brooks, Frederick P. Jr. The Mythical ManMonth. Reading, MA, Addison Wesley, 1995.

Homework 5 Analysis: Under what conditions is this true.

Qualitative model representation

Project Control

1. Project control is driven by estimates of how much effort is left ...
Estimated Effort
Remaining

(Tasks)
2. Estimates are based on work to do and

Average Productivity (Tasks/Month/Person)
productivity (undiscovered rework?)

Project Control -- Staffing

Project Control - Schedule

When Can I finish with the current staff?

Indicated Completion Date = Time + (Estimated Effort Remaining/Staff)

Project Control

Based on Staff Required and Indicated Completion Date, three options:
 1. Add Staff

2. Explicitly Slip Schedule
3. Exert "Schedule Pressure" (Work Intensity and Extra Hours)

Actions Determined By ...

\square

Testing Brook's Law?

 sensitivity to?

Options

- Add Staff

- Work OT
- Increase "intensity"
- Slip Schedule
- Some Combination

Discussion - Resource Controls

- Relative impact on fraction correct (and productivity)
- Relative delays
- Can work intensity be sustained?
- Limits - greater for OT than WI?

Step Change in Overtime - Impact on ...

Equivalent Staff

FCC/PDY

Net Output

Step Change in Staff- Impact on ...

Equivalent Staff

FCC/PDY

Net Output

Change in Work Intensity - Impact on ...

Equivalent Staff

FCC/PDY

Net Output

Project Control - Discussion Points

What should you do when a project gets

 behind schedule?- When in the project should you use overtime (and/or for how long)?
- When do you?
- When in the project should you hire?
- When do you?
- Does it ever pay to work more "intensely" (cut corners, etc.)?
- Do you?
- When should you use buffers \& slack? Slip Schedule? (as soon as recognized, or try to make up schedule?)

Lessons -- Control

7. The costs of project control can be minimized by understanding the sources of the vicious circles. The timing, magnitude, and duration of different controls affects performance.

- Lowest direct cost strategy - slip schedule
- If need to meet schedule, lowest cost strategy depends on ...
- When during project problem recognized
- Limits of different resources
- Size and timing of secondary impacts of control
- May not always be able to achieve the schedule by adding more resources, but it will always cost you more.

Next SD Class:

Case Examples of ...

- Change management \& disputes
- Risk management
- Project-to-Project Learning

Multi-project dynamics

Step Change in Overtime - Impact on ...

Equivalent Staff

FCC/PDY

Net Output

Step Change in Staff- Impact on ...

Equivalent Staff

FCC/PDY

Net Output

Change in Work Intensity - Impact on ...

Equivalent Staff

FCC/PDY

Net Output

MIT OpenCourseWare
http://ocw.mit.edu

ESD. 6\ MAP 3 LPMAFVD DODHP HQN

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

