Harvard-MIT Division of Health Sciences and Technology HST.151: Principles of Pharmocology Instructor: Dr. David Standaert

Treatment of Parkinson's Disease and Movement Disorders

David G. Standaert, M.D., Ph.D. Massachusetts General Hospital Harvard Medical School

Movement Disorders

- Parkinson's Disease
- Tremor
- Chorea
- Ballism
- Dystonia
- Tic Disorders

Parkinson's disease

AN ESSAY

ON THE

SHAKING PALSY.

CHAPTER I. DEFINITION-HISTORY-ILLUSTRATIVE CASES.

SHAKING PALSY. (Paralysis Agitans.)

Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported ; with a propensity to bend the trunk forward, and to pass from a walking to a running pace : the senses and intellects being uninjured. Described by James Parkinson, 1817

Most common disorder of movement

Affects 3% of the population over the age of 65 years

About 500,000 patients in the US "Cardinal Features" of Parkinson's Disease

- Tremor
- Rigidity
- Bradykinesia
- Postural Instability

Normal

Parkinson's

Loss of dopamine neurons from the substantia nigra pars compacta
Leads to deficiency of dopamine in the caudate and putamen ("striatum").

Human basal ganglia

Caudate Putamen

Globus pallidus

Subthalamic nucleus

Substantia nigra

Dopamine Receptors

- Classical Pharmacology:
 - D1 stimulates cAMP formation
 - D2 inhibits cAMP formation
- Molecular Pharmacology:
 - Family of at least 5 receptor proteins
 - All have 7 transmembrane regions, typical of G-protein coupled receptors
 - d1 and d2 are abundant in striatum, correspond to classically identified sites
 - Others primarily extrastriatal, likely account for many of the side effects of dopaminergic drugs

Pharmacological Approaches to Treatment of Parkinson's Disease

- Symptomatic treatments
 - most are based on dopamine augmentation
- "Neuroprotective" treatments
 - none presently proven
 - most current studies are based on "oxidative stress hypothesis"

The "Oxidative Stress" hypothesis

Dopamine + O_2 + H_2O

 $DOPAC + NH_2 + H_2O_2$

- Proposes that dopamine cell death is caused by the reactive free radicals produced by the catabolism of dopamine
- suggests that treatments which reduce catabolism of dopamine should slow the progress of the disease

Levodopa therapy

- Also called L-DOPA, L-dihydroxyphenylalanine
- Works by replacing biosynthetic precursor:

THAADCtyrosine ➡ L-DOPA ➡ DA

- Usually given with carbidopa, an inhibitor of peripheral AADC - prevents nausea.
- Adverse effects: peripheral, central
- Most important limitation of treatment is the development of "complications of levodopa therapy" wearing off and dyskinesias

Levodopa Therapy of Parkinson's Disease

- 1950's: Arvid Carlsson discovers that dopamine is a neurotransmitter, reserpine replicates features of Parkinson's
- 1960: Deficiency of dopamine in postmortem PD described by Enringer and Hornykeiwicz
- 1961: Effect of levodopa in PD reported by Birkmayer and Hornykeiwicz
- 1967: Long term treatment of PD with levodopa described by Cotzias et al.
- 2000: Carlsson, Kandel and Greengard awarded Nobel prize

Motor complications of levodopa therapy

- Fluctuations: variations in mobility related to medication dose and interval.
- Wearing-off: loss of efficacy at the end of a dosing interval
- Dyskinesias: excessive, involuntary movements

Motor complications a patient's view

DMG 11/1/99

What causes fluctuations, wearing off, and dyskinesias?

- Not explained by simple DA receptor upregulation
- Loss of "buffering capacity" is an important factor
- Clinical and experimental data suggests that variations in plasma levodopa levels have an important "inductive" effect
- Role of NMDA glutamate receptors

Dopamine Agonists

- Act directly at postsynaptic DA receptors
- Longer half life less wearing off
- Older Agents:
 - bromocriptine d2 agonist, partial d1 antagonist
 - pergolide d1 and d2 agonist
- Newer Agents d2/d3 agonists
 - pramipexole (Mirapex[®])
 - ropinirole (Requip[®])

COMT Inhibitors

Entacapone, tolcapone

- Inhibitors of the enzyme catechol-O-methyl transferase
- Slow breakdown of levodopa and dopamine

Motor complications of levodopa: prevention?

 Hypothesis: "non-physiologic" replacement of dopamine by oral levodopa underlies the development of motor complications

Dopamine agonists: a "more physiologic" replacement ?

CALM-PD: Wearing Off or Dyskinesias

 Randomized trial comparing levodopa to pramipexole as initial treatment for PD

301 patients, followed for 2 years

Less wearing off and dyskinesias in patients treated with a dopamine agonist instead of levodopa/carbidopa

Dopamine agonists as initial therapy

- Initial treatment with pramipexole or ropinirole instead of levodopa reduces development of wearing off or dyskinesias.
- But this comes at a price:
 - Increased fatigue and somnolence
 - Increased hallucinations in the elderly
 - ? Reduced efficacy
 - Increased cost

Pallidotomy

 Surgical lesion of the globus pallidus
 Effect can be long-lasting (>3 years), but underlying disease continues to progress

Deep Brain Stimulation

- Recently FDAapproved
- Implanted into subthalamic nucleus, to control all symptoms of PD
- Require periodic adjustment, battery changes, carry risk of infection, surgical complications

Dopamine receptor antagonists

- Principal application is treatment of psychosis
- Also used as antiemetics
- **"Typical" antipsychotics**
 - Distinguished by potency at D2 receptors and degree of sedation
 - May cause movement disorders -
 - » Akathisia
 - » Dystonia
 - » Tardive Dyskinesia
 - » "Neuroleptic Malignant Syndrome"
- "Atypical" antipsychotics
 - clozapine d4 antagonist. Effective in refractory psychosis, but causes seizures, neutropenia
 - Resperidone, olanzapine, quetiapine

Dopamine receptor antagonists

- Principal application is treatment of psychosis
- Also used as antiemetics
- "Typical" antipsychotics
 - Distinguished by potency at D2 receptors and degree of sedation
 - May cause movement disorders -
 - » Akathisia
 - » Dystonia
 - » Tardive Dyskinesia
 - » "Neuroleptic Malignant Syndrome"
- "Atypical" antipsychotics
 - clozapine d4 antagonist. Effective in refractory psychosis, but causes seizures, neutropenia
 - Resperidone, olanzapine, quetiapine