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PROFESSOR: OK. So last time, we spent the hour and a half talking about classification
methods and their use of genomic technologies in direct and close to direct,
which we called indirect, applications of clinical medicine.

And we talked about three different types of class methods again, class
exploration, class prediction, and class discovery. And I think we finished with
a discussion about class prediction, which is a basic approach that's used to--
that starts with microarray data from a certain number of patients, builds a
certain model, and then tries to predict something. Everybody who was here
kind of remember that, vaguely at least?

And the basic steps of class prediction were, first, to choose a gene set, so
choose a number of genes that's representative of the data and that divides
the data into classes for which you're targeting your predictions to construct a
function, a prediction function, that will be a mathematical function that you'll
take a new sample with its expression data, and plug into the function, and
get out an answer, and then determine a rule to try and then use the rule to
classify one way or the other, and then, lastly, validation.

So I thought what we would do today is go through an example. So we went
through all this. So I'm not sure we need this anymore. I thought what we
would do today is go through an example. And the example is related to
breast cancer and the paper from Nature 2002 that we talked about. So the
issue of New England Journal of Medicine that was published today had a
number of articles related to use of these classification methods in AML, in
acute myelogenous leukemia.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, there's two different papers. There's an editorial and there's a
perspective written. Maybe we'll look at the perspective for a second. And the
perspective is called "Microarrays in clinical investigations." And so the
perspective is pretty bold in its views here.

And essentially, the last paragraph, the take home message-- so the take
home message is that our usual thinking about biomarker discovery in clinical
trials is about to change dramatically. In the future, clinical investigations will
consist of small trials with a high density of data, precise patient stratification
according to the expression profile, and highly tailored analysis of microarray
data.



So they are looking at the articles in this issue of gene expression and AML.
And they focus on identifying the relevant-- so looking through 7,000 genes or
I think one study used 133 arrays with 13,000, another with 25,000-- looking
at large number of genes and their expression in patients and identifying
smaller numbers that are very relevant to disease. And that's what's meant by
the term biomarkers here. And they're making a prediction that this is going
to change the way clinical trials are being done dramatically. This seems very
unlikely to me that this will--

AUDIENCE: I was really curious because when you reading the articles, at least glancingly,
they seem very bread and butter, just classification and some prediction. And
I was just curious how they [INAUDIBLE] the New England Journal of Medicine
is very reticent to take anything with [INAUDIBLE]. And so that sort of struck
me really.

PROFESSOR: Well, it's a learning process for everybody. There are things to learn from the
breast cancer work that was done. And we'll go over the Nature paper. And
that also was published in the New England Journal of Medicine as well. Let me
give you-- let's see. I had this one for you. And this one is important because
when you have [INAUDIBLE].

So let's-- I didn't have time to review the AML stuff that's accompanying the
editorials and perspective in today's issue. I think it would be nice to go
through that and look at the data directly instead of the claims in the editorial.
But let's do that for the breast cancer work that was done.

So this is the paper. You might want to have it just so you have it here,
because we're going to-- I thought rather than talking in the abstract as we did
last time, to really go through concretely the use of the prediction method
here, which is used quite similarly in one of these papers here.

So let's go through this Nature paper on gene expression profiling predicting
clinical outcome of breast cancer. So in this paper, essentially what these
authors did in the abstract, you can see that they used microarray analysis on
primary breast tumors of 117 young patients and applied supervised
classification to identify a gene expression signature strongly predictive of a
short interval to distant metastasis.

So again this is-- again, I often get tripped up by viewing things in terms of the
specific tool that was used. And really what they're doing is doing prediction
here. Some of our different pigeonholes that I try to put things in, class,
exploration, prediction, and discovery. This is prediction. Supervised
classification is one aspect of it. But there are other parts of this to doing
prediction.



But what they were interested in, essentially, is taking patients and making
good or bad predictions of prognosis of outcome based on their gene
expression. So they did a variety of things. But most of this paper is focused--
we look at, say, the second paragraph on the first page after the abstract.

An unsupervised hierarchical clustering algorithm allowed us to cluster the 98
tumors-- now we're down to 98 from 117, I'll come back to that-- on the basis
of their similarities measured over approximately 5,000 significant genes. And
that's figure 1A.

So here they have things sideways. They have the specimens as the rows and
the genes as the columns in that top diagram. And so this is hierarchical
clustering of this data set that consists of a big table. And the table again has
98 patient samples and 5,000 genes and expression levels that-- I might be
short on the paper.

Why don't you guys look on that for now, yeah. Yeah, this paper is up on the
site. OK, so this is the data set that they constructed.

AUDIENCE: I just have a question about figure 1A in particular. What's the utility of
something like this in the paper? I mean they're obviously they're not looking
at this-- like if I were to-- when they get their data and they see something like
this, they feed into a computer that does all this analysis. So what's the
purpose of showing us this rather than just kind of cutting to the chase of what
their actual results are.

Should this be standard for when you're doing these types of studies or
whatever?

PROFESSOR: I think they're pretty valuable diagrams because they do allow you-- this is the
black and white, so there's the color version-- they do allow you to see that
there are different patterns of expressions of genes and different subgroups.

AUDIENCE: I mean, I guess maybe these lower ones are blown up, so where [INAUDIBLE]
it may become more obvious. But I'm thinking just in terms of if I saw an SDS-
PAGE gel in the paper, it's just like, right there you can see the results. If I look
at something like this, it just looks like a bunch of pixels [INAUDIBLE]. I just I
guess.

PROFESSOR: So you're asking about the motivation?

AUDIENCE: Well, yeah, I mean so--

[INTERPOSING VOICES]

AUDIENCE: Yeah, so like the sub figures can be useful. I guess and maybe I can see how
you'd say, OK, this is the reason we expanded on it.



PROFESSOR: But even in the big figures, you can often see, and maybe I have a picture of
this on color that I can put up, I'm not sure if I do. But I should. But you can
see that there are different groups, even within color. [BEEPING] Sorry, I have
some patients.

AUDIENCE: I guess sort of as a newbie here, looking at my [INAUDIBLE] traditionally, you
see something like that-- when I'm seeing something like this, I just go, well,
gee, that looks pretty. And I have no idea what it means or whatever. And I
think that would be kind of intimidating for people to want to pick up a paper
like that. And they don't quite get the point of seeing something like.

- Well, there's two issues. That's an independent
issue. I think there's an issue that I find talking
about these things is, the same thing as looking at a
scattergram, why should you involve a-- look at a
scattergram rather than just the correlation
coefficient described in here. Just give me a look
right path to see, to actually see, by visual
inspection that it looks like this class is there.

And so when I look at this thing, I can actually convince myself but there's a
lot of crap. But there is also some big chunks of red.

AUDIENCE: So definitely the color picture helps a lot.

PROFESSOR: The other part of these pictures, which is helpful, are the dendrograms. OK, so
again we talked about the use of hierarchical clustering as a classification
method and that it does not really produce classes. OK, again, everything is
related to everything else. You don't have disjoint classes. It's just that the
degree of relationship is represented by the distance, literally the length of
this line, right here in the diagram, represents the relationship between these
two over here and say these two over here.

And so again everything every cluster is split. This is binary. So everything is
split into two. And so the adjacency is actually another issue too, about these,
is that you can spin any one of these clusters at any node without changing
the organization here. So sometimes you will see diagrams-- why don't I show
you one since we're getting to nitty gritty here.

AUDIENCE: When you have a paper and you see that figure, just apart from of the
obvious, like here's a really big red patch, [INAUDIBLE] that's-- you're also, if
someone is familiar with this, you're also gathering other information. By not
having data in hand, you can see, you can look at that figure and say, ah,
pattern, but here's another part of the figure that also gave me some more
information.



And me as the newbie, I'm just not seeing it because I'm not as familiar with
that.

PROFESSOR: And I don't have a password here. I can't do this.

AUDIENCE: Is that a fair assessment?

PROFESSOR: That's a fair assessment, OK. What I was going to show you is that there's
been, in my area, last week there was a publication-- it's the second one this
group has done-- where they put one of these diagrams up here. And they're
showing that three patients with one condition, they all cluster together and
separate from another seven.

But they don't put the dendrogram on that. All they show is adjacency of
rows. And they don't show exactly how they're organized or connected. So
you see three that are here and then another seven that are here. But it's
possible that this one over here is actually part of a group of four over here.

And so that's another value to these diagrams, is when people claim classes to
look and see. When you look at this one, it's not overwhelming, actually. And
this is where they drew the line. And they took this as one class. But this is
really-- I mean every one of these is just subdivided here, instead of one fairly
large class. So there is helpful information for seeing those diagrams.

AUDIENCE: So the leftmost is the two classes in [INAUDIBLE] 117--

PROFESSOR: That's correct. They said they are two classes. So this is one branch here. And
this is the other branch here. OK. OK, yeah, well, let's get into the nitty gritty,
at least so we have one example that we've understood fairly well what's
happening.

OK, so this is an example. So this is just hierarchical clustering. What would
you call this if I made you pigeonhole it into class exploration, class prediction,
or class discovery? These are 98 patients with breast cancer. These are both
lymph node positive and lymph node negative. They're pretty much all of their
samples except for a group that they've left off for other purposes.

This would be an example of class exploration. So they're starting by looking
at their data. And they're just saying, well, does it look like the expression
profiles differ among patients and allow us to find different subgroups,
different profiles?



And we talked about one step that was important to do before this. And that
was the stuff about signatures and their reproducibility and their distinctness.
They don't provide any data here in that regard. They say that they did every
tumor sample twice, that they did two independent array profiles on each one.
But they don't say anything about what they did with that data. They don't
provide any correlation coefficients, for example, to say that when you do the
same experiment twice on a given tissue, you get out the same pattern of
genes.

But accepting that, this first step is exploration. And here there is an attempt
to correlate these groups with different clinical features. So first, they do
hierarchical clustering of the entire data set. And they look and see broad
patterns. Maybe there is a group over here that's more red for these genes
and greens for these. And so maybe there is some structure here.

So the next step they do is to, for each one of these patients, they look at
binary outcomes, and say if this patient here had a mutation in the BRCA1
gene, they'll color it in black. And this patient here did not have a mutation.

So for each one of these 98 patients, they're now looking at one, two, three,
four, five, six different phenotypic markers and coloring it in this way so that
we can then look and say, is there any relationship between these phenotypic
variables and these two classes which were defined by the dendrogram?

Again to pigeonhole it into one of the three class methods, what are they
doing here? What's that? Class exploration, class discovery-- they're doing
class discovery here. So they looked at their data. They explored it. They
wondered that there might be classes. And they're now asking is there
something significant phenotypically, something meaningful clinically, that
relates to these two classes? Or is it just an artifact of doing clustering, which
will always reduce things into classes?

Depending on where you cut this tree, you can have two classes here, or this
one here that looks like there's a large class, which goes from here down to
here. You can make up classes at any different level here, because
fundamentally there really are no classes with a dendrogram.

But they're now saying, well, what phenotypic variables might correlate with
this split right here? This is still discovery. Yeah, I would call this class
discovery, that they found two classes. And now that to establish them as
truly classes that have some meaning, some clinical meaning, they want to
say what clinical variables might this relate to here?



And so looking at the things here, there are few things which are fairly
striking, I guess. The presence of estrogen receptors on the tumor cells here is
pretty good. Most of these patients are ER positive. Most of these patients
here are-- actually, I can't remember which is black and which is white, which
is positive and which is negative for their classes here.

Metastases-- so the presence of-- and I think this is distance metastases at
five years-- not really too much difference. Maybe I think white is present. So
maybe more of these. What's that? White is positive. So there may be more
consistently, certainly a larger percentage of this group, had distant
metastases at five years.

So once they do this and believe that they do have classes here, they then
move to the next step and say we're going to build a predictive model. And
this is the one that they focus on, is whether there's metastases or not. So
they're saying in this data, there seems to be some way to classify the data
that has some distinctions in terms of predicting outcome. And we're going to
take it a step further here and actually go through the trouble of building a
model to predict this.

AUDIENCE: So they want to use the metastases as the principal predictor for or
[INAUDIBLE]. Why, maybe this is just another ignorant question.

PROFESSOR: No, there's no ignorant questions here.

AUDIENCE: Why did they choose that as like estrogen receptor?

PROFESSOR: Well, yeah, because people already know about the estrogen receptor and
BRCA1 mutations. OK. So and metastasis is the-- it's fundamentally the
important thing. It's the important clinical endpoint. If we can make better
predictions based on gene expression profiles of tumor when we do an initial
biopsy on the breast cancer, can we use that to then decide how to treat
people?

People have a good prognosis don't need the same treatment as people with a
bad prognosis, maybe. It doesn't actually-- there's no treatment intervention--
not a treatment study here. It's not saying that we can intervene and alter
prognosis through treatment. It's strictly predictive of prognosis at this point.
OK?

OK, so let's go back to the paper. And so the next thing they do after this class
exploration, this sort of partial class discovery, I mean they don't carry it
further and say that we really have discovered a new class here, because they
really haven't. I mean what the prognosis is really correlating with is the
estrogen receptor status here, which is a well-known fact.



So patients who are estrogen receptor positive have a better outcome, I think,
in breast cancer. So I'm not sure about the black being positive or negative.
The black is negative, OK. Yeah, that's right. So patients who are estrogen
receptor positive have a better outcome. The estrogen receptor negative
patients, by and large, have a bad outcome.

So there's actually nothing new. There's no important class discovery that
took place in this paper. So what they next do is change the data set. Let's
shut this off. It's not shut down. So the next step that they do in this paper,
and that's on this page 532. Bottom of the first page, sorry, bottom of page
530-- is they focus now on a subgroup of these samples on the 78 patients
with sporadic lymph node negative disease.

So these are all patients who, at the time of the diagnosis of their breast
cancer, had lymph node biopsies which were negative, and did not show any
spread to the lymph nodes. And so they then focused the rest of the paper on
this select group of patients, lymph node negative, and also sporadic, which
means none of these had mutations, the BRCA1 or even BRCA2 mutations.
They were not genetic breast cancers, patients who are genetic.

And so in that 78 group, 44 patients were free of disease after five years, and
34 patients developed metastasis. So we're down to 78 patients. And 44 had
good prognosis, or turned out to have good outcome. And 34 had poor
outcomes.

So what they then say on the next page, 532, is to identify reliably good and
poor prognostic tumors, we used a powerful three-step supervised
classification method similar to those used previously. In brief, approximately
5,000 genes were selected from the 25,000 genes on the microarray.

OK, so let's get into how they build the model here. So they're going to use
this data. So they're going to use 78 instead of 98. And they do have 5,000
genes. So the microarray has actually measured 25,000 genes. So they had
this data set to start with.

And the first thing they did is use basic, but still fairly ad hoc, procedures to
get rid of genes that had very little meaning, so genes that just didn't vary, a
gene that had a low expression level for every single one of these. And they
removed such genes and ended up with 5,000 after that point.

AUDIENCE: So was 5,000 predetermined, or was that--



PROFESSOR: They-- let's see how they ended up with five. They said significantly regulated
and more than three tumors out of 78. So this is an area which remains
completely ad hoc and different in virtually every paper. We call it the initial
filtering of meaningless genes. And they decided that-- I believe that they did
T-tests for significance and required there was some significance in at least
three out of 78 at some particular significant level, and ended up with 5,000
genes.

There's many ways people do this. Some people will say I'll look at the
standard deviation of these gene vectors. And if the standard deviation is less
than some cutoff, I'll assume those genes are not varying enough in this data
set and get rid of those.

So now they want to build their predictor. And so we talked about those three
steps. And the first step is choosing a discriminative gene set. So they're
going to whittle the 5,000 genes down into small numbers, which they're
going to make put in their black box to make their model. And they do this by
correlation with ideal outcome. I think we talked about that method before.

So first they'll arrange the data set so that all of the good prognosis are up
here. OK, and then T+ 45 through 78 are the poor prognosis. And then they'll
make up an ideal vector, i, and put let's say 1's here and then 0's here.

And then for each of these 5,000 genes, they'll calculate a correlation
coefficient to this ideal vector. So r for gene one correlated with ideal vector i
was some number, 0.6. And r for gene two correlated with vector i is some
other number, negative 0.45, let's say. And do this for the 5,000 genes.
Everyone follow?

So the first thing they do is they get this down to 231 genes by using a cutoff
of 0.3 negative or positive. So anything that was between an r between 0.3
and negative 0.3 is gotten rid of here. So they get rid of this one here. This
they would keep. This one they would keep, and so forth.

And so that left them with 231 genes, which we'll renumber and call these
genes now. Yes--

AUDIENCE: Question related to the coefficient for [INAUDIBLE] normalizing their variables
in [INAUDIBLE] gene expression so as to be in the same order of the outcome
variables, presumably binary. What kind of transformation goes on?



PROFESSOR: Well, there's two issues here. One is normalizing the data set. So they used
cDNA arrays. So their normalization was built in because they used a
reference. So a cDNA array is an experiment you have two samples applied
each time. And their reference consisted of a little bit of RNA from each one
of, I think, the larger set. I don't if it's the 78 or the 98 or 117 samples. So that
was the normalization.

To do this, they just organize it that way. Just move these up here and move
these down here.

AUDIENCE: I guess my question was, I'm just trying to figure out the [INAUDIBLE] do you
actually quantify for-- in the correlation coefficient, you're looking at direction.
But does the amount of expression or difference in expression between
positive and negative side matter In terms of your correlation?

PROFESSOR: No, that won't matter. Again, you could-- again, Pearson correlation
coefficients, at least, are invariant to linear transformations. So you could take
every piece here and multiply by 15 and add 7, and it won't change its
correlation coefficient.

OK, so now they were left with 231 genes. And all of these genes have some
threshold of high correlation, either positive or negative to this ideal outcome
here. So gene one had a certain set of expression values in this group. And it
was different than in this group, because it correlates, has a high correlation
coefficient to that factor. Everyone follow? OK.

OK, so now they do-- some people would stop here and say this is my
discriminative gene set. And the next thing I'm going to do is build my
prediction function. And then I'm going to make my rule. And then I'm going to
validate.

But they decide to further optimize this discriminative gene set. So this is a
little complex. But what they do-- not that complex. So they take the 231
genes that they have here. And they rank order them by largest magnitude of
their correlation coefficients.

So gene 16 had a correlation coefficient of 0.9. And G 12 had a correlation
coefficient of negative 0.85. And they rank these going down to G 231, which
just made it with a correlation coefficient of 0.31, into this group.

So now they're even looking deeper into this data structure. And they're
looking for the very best genes that correlate with this outcome.

An example of such a gene might be gene 16, which had expression levels
that were 1,000 for these samples, and was 5 for all of these samples. It was a
perfect classifier, that one gene.



So now they're going to really build a discriminative gene set through the
following procedure. They're going to take the top five from this list and call
that our discriminative gene set consisting of only five genes. OK, then they're
going to go through this, build a prediction function, make a rule, and validate
using leave one out cross validation here.

Then they will add five more genes to this discriminative gene set. So they'll
go down five more in this group and now have a discriminative gene set of 10
genes. They'll take that, build a prediction function, make a rule, and validate
again. Now that they've done a second validation, they have a second
accuracy number to look at.

And they'll say did my accuracy get better or not? So the first time they did
this with the top five genes, they found an accuracy in terms of prediction of, I
don't know what it was. But we'll make up a number. Let's say 60%
predictions were correct after they built their model.

So then they did this with another of the larger gene set, including the next
five best genes. And they found they had a prediction function of 70, that got
them up to 70%. And they kept on going until their accuracy was the best it
could possibly be and wasn't getting any better with the addition of more
genes from the bottom of this list. There they stopped at 70 genes.

So they constructed their discriminative gene set right here as a set of 70
genes based on this optimization of trying first the top five, building the
model, testing the model, and looking at its accuracy, and improving the
accuracy until it was as best as it could be. Yes--

AUDIENCE: Why five and not one?

PROFESSOR: One would have taken them five times as long to get there.

AUDIENCE: That's true but [INAUDIBLE] one is more relevant.

PROFESSOR: Well, that's actually the point that people are trying to make in this field. That
one is not relevant, in that the biomarkers that we're now looking for are
groups of genes.

AUDIENCE: I mean in the sense of implementing, I don't mean--

PROFESSOR: This can be implemented clinically. Once you set up to make an inkjet-
synthesized or even robotically spotted array, you can do it for a few dollars.
You can spot arrays for a few dollars, basically. This is not actually expensive.

AUDIENCE: So basically they're going to find the minimal amount of these genes, and we
give them the maximum amount of predictive value [INAUDIBLE].



PROFESSOR: Correct, a predictive accuracy in terms of going for this one prediction of good
versus bad outcome.

AUDIENCE: Is there any value-- so at each step before they got to the extra revision that
you mentioned, [INAUDIBLE] close where most people would stop. Is there any
value in there going outside of their 231 back into the 5,000. And just
randomly--

PROFESSOR: I don't know how far up they went. I don't if they went past 231. I doubt it,
that they then looked back at other genes.

AUDIENCE: [INAUDIBLE] and they never [INAUDIBLE] at 231 genes, then they said OK,
well, from there we've got certain candidates, which I think is quite fair. Once
they've got their 70, is there any value in going back out to the larger data
and seeing if we can call a few more things that maybe--

PROFESSOR: Maybe, but the main critical point of this approach is that this is overfitting,
this is very, very serious overfitting of data. I don't think this is what you want
to do. But people are still doing it. And I mean, it's fairly reasonable to make
this gene set here and stop there.

But to do a procedure that you then optimize this set, you stop with the 231.
To then take that and to do repetitive cross validation on the very data that
you're using to build the model, and to do it to select the genes, even in that
way, is very serious overfitting of a data set.

And I put up that fictitious graph yesterday about the points and overfitting it
with the best possible curve. But it may not be the right one to make a
prediction of a new point here because of how overfitting it is. So it works
perfectly for the data set.

And I think I brought up some of the pitfalls in terms of validation that's been
done with microarray data. I think I passed out a copy of that paper mostly.

AUDIENCE: Can't be overcome by cutting the data set in half and doing exactly what you
just described, the method that you just described, and then taking that--
[INAUDIBLE] and then taking that other half a [INAUDIBLE] because you did
describe--

PROFESSOR: You can build-- right, that's the right way to do it. So that's the training set
and then the validation set. I mean even the real right way to do it is to make
up any model you want and then prospectively test it on the next 100
patients.



AUDIENCE: [INAUDIBLE] is that typically, the real performance is particularly in 2004, you
have so few patients that you loathe to get away from many of your test set,
because you might not have enough signal in your training set that you could
[INAUDIBLE] for people. Otherwise, [INAUDIBLE]. That's why it's so amazing
that [INAUDIBLE] can [? write ?] a paper besides a third of patients
[INAUDIBLE].

PROFESSOR: Yeah, when these chips first came out, they were $2,000 a piece. Yeah,
they're very-- they're even more than that, but--

AUDIENCE: Even more [INAUDIBLE]

PROFESSOR: So these were very costly experiments to do back then. So this is their
discriminative gene set. OK, now they have to choose a predictive function. So
the predictive function, again, is if one was to give this model a new clinical
specimen, how do we then make a prediction on the new clinical specimen?

And so they used a fairly simple predictive function here, which is correlation
coefficient to this ideal outcome. So if I gave you a patient tissue sample. And
you did one of these microarray experiments and measured 25,000 different
genes on it, then either you would use that in this model by pulling out the
numbers from the 70 genes that were relevant-- that were part of the
discriminative gene set. And then taking that number of 70 genes and-- let's
see, sorry, I'm goofing up here. So-- improved--

The classifier predicted correctly the outcome. I'm sorry, I thought I
understood their predictive function in this paper. Let's take a peek at it. The
predictive function is a threshold rule. And that's evident like on figure 2.

I believe they took an average number. So they took the average. So bad
profile-- they took these profiles here and just average. So there's 34 in this
bad group, bad prognosis group. And they took the 34 numbers here and
averaged them together to get one number here. And then they did that for
their other genes. So we're down to 70 genes right now.

And so they have this ideal bad profile. And then pretty sure this is what they
did. And they did the same thing for the good here. And they have their good
profile, which is just an arithmetic mean of the expression levels.

And now when the model is presented with a new row vector there of
expression data for 70 genes for patients, and we'll call that new patient
patient n, then they will calculate the correlation coefficient of patient n to
maybe just the good vector. I guess you can't do it.



Well, so I'm sorry I'm forgetting the details here a little bit. And I'm having
trouble finding them right off here. But I'm pretty sure this is what they did.
But so then which one did they correlate it with? The good one? Uh-huh. OK,
yeah, which brings up another point, why not do it to the bad profile and
correlate to that as a means of your algorithm?

That might give you a very different answer. I'm not quite sure. But in any
event-- so, OK, it seems like there is this choice here that they look at its
correlation coefficient to the average good profile and got a number. So this
will give you r, we'll give you a number, 0.4. And that's their prediction
function.

And then the last step in this model building is to make up a rule and say if
there's-- and they used a threshold rule and a non-ambiguous classifier. So if
it's above the threshold, it's in one group. If it's below the threshold, it's in
another group. And they actually explored a couple of different possibilities
for the threshold.

And we talked about that Tuesday that this rule and varying the threshold is
the classic trade off of sensitivity versus specificity here of a test. And they
talk about that in this paper and show-- so on this diagram here, so how to
divide the blacks and the whites to best advantage is the question here, the
good versus the bad prognosis. And do we cut it here and get all of the whites
with just a couple of blacks or do we cut a little bit more and get more whites?
But we're trading off sensitivity and specificity here. And that's the and that's
the rule that they use.

So that's the model that they use. And then they actually do a couple-- in this
paper, they do a couple of things for validation of it, for this step right here.
And they do pick out a new test, a new validation set of 19 samples that they
did not use to build the model here. And it's small. They don't say exactly how
they constructed that group of 19.

But they do use a separate group of 19 to then test this on. And when they do
that-- so that's I guess page 534, the third paragraph-- to validate the
prognosis classifier and additional independent set of primary tumors from 19
young lymph node negative patients were selected. There were seven
patients who had the good outcome, 12 who had the bad. And it resulted in
two out of 19 incorrect classifications.

I think both-- so that's how they got an accuracy number out of that, two of 19
as the accuracy. One of the important issues that you get into when you do
something like that is the accuracy may not be the same for the good versus
the bad patients.



So you might have a classifier that predicts all of the good outcomes correctly,
but is terrible at predicting the bad ones. Half the bad ones it says are good
outcomes. And that's not very helpful to you. And so I think the data is in here.
And I think it's mentioned in the pitfall article that I handed out. That teases
that out a little bit more as to the importance of saying whether the predictor
is working equally well on the good and the bad cases that are presented to it.

So I think that's essentially this paper. There was a follow up for this, which
was in the New England Journal. It's on the website, which is even more
focused on prediction as survival, gene expression signature as a predictor of
survival in breast cancer.

They used a larger data set here. But they use the same model here. They did
validation on the data set. But they didn't do the full validation procedure. So
we talked about that, how a lot of validation is done through leave one out. So
leave one sample out, build the model, and then test that sample. And then do
it for each of the samples 78 times or 200 times, whatever. And see how
accurate your predictions are each time.

But it's important when you do that to go back and rebuild the choice of the
discriminative gene set each time. And this actually is in the New England
Journal of Medicine. They do actually report both. They're aware of the need to
do this. And the numbers I think were 24% versus 41% or something, 27%.

So when they do the error-- when they do the validation based on not doing
this step, here we're choosing the gene set, there was a 27% error rate there.
But when they did it repeating this gene step, there was a 41% error rate,
which is getting close to chance, flipping a coin.

But in any event, so really on the basis of this, the Netherlands Cancer
Institute that did this said that they were going to start using this 70 gene set
to make clinical decisions. They're going to take new patients with breast
cancer. Do a microarray experiment. Measure the 70 genes. Use this model,
and make a prediction about good or bad outcome, and tailor their treatment
according to that. Yes--

AUDIENCE: I actually had a question related to this and more [INAUDIBLE]. So the lab puts
out a study like this, says here's 70 genes that we think are good indicator of
[INAUDIBLE] [? By the logic, ?] I want to validate these results, right? Now in
gathering and collecting this data, like this ridiculous study, they're looking at
patients over five years.



You do a microarray analysis on a patient and they pop up positive or
whatever for this indicator, now you've got people making clinical decisions on
this. And it seems like the validation method is an [INAUDIBLE] withheld data.
They need to have a bad prognosis or a bad outcome in order to say that
these candidates-- for the patient-- if these 70 genes actually do have a
negative effect, or indicate [INAUDIBLE] that effect has to be there.

So how does that how does a clinician or a clinical researcher, who kind of
sees patients and does this, how do they balance that? I mean what would
your suggestion or advice be? Does that makes any sense at all?

PROFESSOR: Well you're talking about how do you do research on patients this area?

[INTERPOSING VOICES]

AUDIENCE: [INAUDIBLE] how you [INAUDIBLE] patients clinically?

AUDIENCE: Well, [INAUDIBLE] so we have this result, people need to validate it. In the
process of validating, they're going to find people who have this particular
pattern, right? And they need to follow those people over a certain time
course. And in order to validate their own [INAUDIBLE] essentially, if none of
the people who have these 70 genes, or expression profiles or whatever,
develop breast cancer, then the model's kind of [INAUDIBLE] back to the
drawing board.

So essentially, and I hate to say it this way--

PROFESSOR: No, say what you're thinking.

AUDIENCE: They need these people, in order to validate the model, they need them to
progress right to disease state. And yet at the same time, they're, as
clinicians, so putting aside the researcher part, as clinicians, they need to
treat these patients. And if there's a strong indication from prior studies that
the chances are you're going to get breast cancer and it's going to
metastasize. And it's going to get really bad for you. They can't just not treat
these people aggressively. Or that treatment is going to affect that outcome.

PROFESSOR: Well, people-- yeah, yeah, so I don't think anybody's doing--

AUDIENCE: You think about the Tuskegee-like experiments.

PROFESSOR: Yes, so nobody's denying treatment or withholding best known treatments to
patients.

AUDIENCE: So how do you calculate that into the validation of the model? That if you get--
you can't-- because you can't say, well, they didn't have metastasis because
of my treatment.



PROFESSOR: There are a few issues. And you actually-- so in this New England Journal of
Medicine paper-- here, I did not pass that one out. It's on the website. What
they did is they used this model in a larger group of patients and they then
compared predictions of this model to best clinical predictors.

So for example, there's other predictive scales. And they used one called the
St. Gallen scale, which predicts outcome in breast cancer. And they said how
does our model compare to the St. Gallen scale. If we take all of these patients
and we see what their St. Gallen number was and how they did. And we take
our predictions and how they did, which is better?

And they concluded that their method was better than the St. Gallen method
of making predictions. And that was really one of the principal-- the principal
justification for saying we have a better method to make predictions about
how patients are going to do. And we're going to start using this in the
Netherlands at the Cancer Institute to make our decisions, rather than St.
Gallen.

And what you point out is actually a big flaw in research that does this,
because patients had their St. Gallen scale determined when they were
diagnosed. And depending on what their clinicians thought, treated them
accordingly, in order to achieve best outcome. So if they were in a poor
outcome group to begin with, based on St. Gallen criteria, they got treated
more aggressively to try and make their outcome better.

So actually, the goal of the clinician is for the St. Gallen scale not to be right on
this group of patients. The interventions that took place on these patients,
because it was not a perspective controlled study, the interventions that took
place were specifically designed to mitigate the poor prognosis that the St.
Gallen criteria indicated on these patients.

And so it may not be a surprise that the St. Gallen predictor was not all that
accurate later on, because people were intervening actively with the results of
that predictor to change outcome. And that wasn't happening with gene
expression profiles. Nobody looked at the gene expression profile of these
patients 10 years ago and then decided how they were going to treat them
over the next five years to make their disease better.

AUDIENCE: So is it just that because for right now the turnaround on the analysis of the
gene expression profiles is long enough that the St. Gallen approach of
aggressive treatment or whatever, that turnaround is long enough that you'll
have your answer and your validation before clinical decision start getting
made, repeat experiments are done to cross validate--



PROFESSOR: They'll never be a-- I mean to get a new drug approved in this country for
labeling requires that you take a group of patients with a disease, and you
treat some of them with the drug and some of them with a placebo, and you
see which works.

To ever really know whether prediction models are going to work accurately,
one needs to do the same thing, to take patients prospectively to apply
prediction models to them ahead of time, and to see what happens with them,
without an intervention that's based on the results of the prediction.

That's why I find a paper like this perspective here kind of scary. The
microarrays in clinical investigations from today's journal, where the authors
envision that in the future clinical investigations will consist of small trials with
a high density of data, precise patient stratification according to expression
profile, and highly tailored analysis of microarray data, otherwise known as
massive overfitting of tons of expression data in a small number of patients
here.

And that's never going to tell you whether your predictions are correct. And if
you're going to make decisions about treatment or predictions based on that,
you won't be accurate. I don't believe that there'll be sufficient accuracy from
small. I don't think that trials need to get smaller. And trials can be made
smaller because we now have microarray data. In fact, trials need to be
probably larger, because you have that much more undetermined data set.

AUDIENCE: If you're [INAUDIBLE] the reproducibility [INAUDIBLE]

PROFESSOR: Well, so the Netherlands Cancer Institute, they patented their set of genes as
a predictor of breast cancer. So, hoping-- right, well, hoping that they'll have
the patent. And if they show that their stuff works, then people will come to
them and they'll start wholesaling their type of arrays and their approach.

Do you know that-- I haven't seen anything, Zack. I mean there was an article
that they were going to start doing this in the summer of 2003. And it was in
Nature. We're going to start doing this. And silence. Did they come to their
senses?

AUDIENCE: That's what I'm thinking must have happened. I think that probably somebody
who actually knew this [INAUDIBLE] say, do you want to screw our patients
over by doing this? I don't know that for a fact.

PROFESSOR: Right.

AUDIENCE: Yeah, what's an article [INAUDIBLE]

AUDIENCE: Oh, yeah.



AUDIENCE: I can't remember how many marketing [INAUDIBLE]

[INTERPOSING VOICES]

AUDIENCE: There's two issues here. One is whether FDA approves these gene chips in
general. We'll get back to that in a second. Narrowly, whether you use a
[INAUDIBLE] formula to prescribe these kind of [INAUDIBLE] on any platform.
And I think as a responsible clinician, most of us would not right now
necessarily stratify our patients based on the prognosis alone. You agree with
that?

PROFESSOR: Yes.

AUDIENCE: It's been done kind of for cancer. And some oncology trials, it's kind of scary
to me that have been done. [INAUDIBLE] been conducted. The way cancer is
done in this country is within impactive centers and cooperative oncology
groups where large numbers of individuals are treated in protocols. And those
are now being stratified by [INAUDIBLE] for some studies.

I can't say that I fully agree with that. [INAUDIBLE] actually using the
measurement [? technology. ?] Roche Diagnostics made the headlines about
two months ago when they tried to get a chip, not for expression, but for
genotyping mutations in the P450 of the proteins that clear idea of toxic
chemicals out of our body in the liver.

They tried [INAUDIBLE] it's very important for [? promo ?] genomics because
it'll tell you how fast growth appeared. Roche tried to get it simply through a
waiver that essentially said this is just a method of measurement. We don't
really have to get specific FDA approval. The FDA said no, no, no, hold it. Let's
go through the formal approval process.

So what Cecily is talking about is that it announced that another [INAUDIBLE]
will see if they can repeat it the same way. And this is-- It's actually an act of
valor. As some of you are involved [? in HSP ?] should know that HSP is
actually very much involved in help the FDA figure out exactly how to look at
this, because [INAUDIBLE] the FDA has only now developed the minimum
standards of data submission from the pharmaceutical companies on the
microarray data. They have no guidelines whatsoever on the standard
identification patients.

So I think there's going to be several hops, skips, and jumps to get these kind
of measurements translated from research descriptions to clinical measures.



It's still going to be used, by the way, to give you a-- it still can be used in a
Medical Center without FDA approval as long as they're not sold. So for
instance [INAUDIBLE] the genetics and genomics has contracted with
Affymetrics for a sequencing chip for genes involved in hearing loss and
cardiomyopathy. But [INAUDIBLE] is not selling this for general use. It's been
used internally by its clinicians.

So it's a very tricky process that that's been where regulation-- it's genomics
in fact [INAUDIBLE] will be giving a lecture about that [? later on. ?]

PROFESSOR: Is Margulies giving that lecture?

AUDIENCE: Yes.

PROFESSOR: OK, that's all for today.


