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MARCO

RAMONI:

What I'm going to talk about after this little introduction about microarrays is how to analyze this BLAST data.
And the principle that I try to present to you is that there is no such a thing as putting your data into a freaking
machine and expecting to get an answer. The type of analysis you make is always related to the question you're
asking.

This has to be a completely stupid point. But the tragedy of a lot of this field is that it's not. And a lot of people
usually try to answer the same question using different methods and different questions using the same
methods, which is even more disturbing. What I'm trying to tell you today is what kind of problems you can
tackle with this kind of data and what kind of analysis you need to answer every different question.

It's going to be very basic. I will introduce some kind of advanced notions at the end. But most of the rest is very
basic and is what is routinely done by people in papers, in genome centers, and things like this. And this is
important for you. Because at the very end, I will tell you the bad news. You have an assignment. And you have
to use a couple of programs that are describing this thing.

So what I'm going to do is start from the microarrays, tell you what you do with supervised classification and
differentiable analysis, argue the prediction and validate your results. How do you do unsupervised analysis using
basically clustering for different type of methods and different types of experiments? And then, at the end, I'm
going to talk to you about base networks, which are those things that a few of you know are my passion.

This is exactly the same slide I had last week, two weeks ago. This is central to molecular biology. I will not
recapitulate it here, except to say that DNA gets copied in RNA. RNA gets copied in proteins. Proteins do all the
job. So last week, we talked about DNA. Today, we are talking about RNA, OK?

So all your cells in your body come from the same cell. And they all have the same DNA code. What makes a
neuron different from a fingernail is that the proteins that are made of this are different. So the same code will
express different type of RNA, which in turn will be turned into different proteins. And these will give different
cells their different in nature.

The idea of studying this is called functional genomics. What we talked about last week was structural genomics.
We were looking at the structure of the DNA. Now we're looking at the action of this DNA. And we're looking at
the function that each different cell performs while it exists. The aim of the game is elucidate functions and
interactions among genes.

Now functional genomics is a very old thing. I mean, you don't need computer scientists to do functional
genomics. Functional genomics means try to understand what is expressed in a particular cell. And you can do it
by hand. You can do it one gene in the time. And people have been doing one gene at a time forever.

What is changed in modern functional genomics is the introduction of microarrays, which are these platforms
that allows us to look at the whole transcripts, all the RNA, every gene in a cell and see what is expressed and
what is not. This is what is changed. And this is why you need, at this point, computer scientists. But there is a
little different change in this. There is an intellectual change in this, a very dramatic intellectual change in this.



If I have to pick up one gene to see if this gene is expressed in a cell, I have to go in and read papers and, at
some point, decide how to allocate my next two weeks or two years to see the expression of this particular gene.
Sometimes I need money. So I need to put in writing-- to somebody else that hopefully will give me money-- why
this darn gene is important, right?

Now with microarrays, they don't need to do that. With microarrays, I use one microarray. And for a tissue, what
they observe are 40,000 genes. I don't need to justify which gene I'm interested in. I look at all of them. And this
is a very interesting consequence. One-- one is cool. One, I can look everything in action. I can try to be surprised
by my results. But the other thing is that I get very different type of information.

That is, suppose I have been spending two years seeing if a particular gene is expressed in a particular cell. And
what you get at the end are two pictures-- one of this gene in a normal cell and the other in the cell you're
interested in-- and see if there is some kind of change. And on one side you see a ball this size. And on the other
side you see a ball this size. You take pictures and you send in your paper, right? This is what people do.

And probably, you are going to make in your-- after you spend two years-- maybe even if the ball is not really that
big, you are going to make a very long argument that this ball is really, really big. And there is some particular
reason why you shouldn't take this ball as small as it is, right? Now when you have microarrays, you're
measuring all the genes. So even if the ball is not that small, maybe there are lot of other balls that are much
bigger.

So at that point, it's kind of difficult to say, you know, my gene is kind of interesting. Because it ends up that your
gene is expressed as another 20,000 genes, right? So you get another piece of information by looking at the
entire genome. You also get what are the most dramatic changes. What are the most dramatic things that
happen in that particular cell?

And this is kind of interesting because you produce a new intellectual style. The new intellectual style is not
hypothesis-driven and has been a disaster for the biomedical research culture-- for us, basically-- and still is a big
problem when you submit grants. When you submit grants, the way you write the grants is to say, this is my
hypothesis. This is why I think this is true. This is why I think this is important and interesting. This is what other
people have seen-- and myself, I have seen-- to support this hypothesis. And this is what I plan to do.

Now here, the hypothesis-- what the hell is the hypothesis? I don't know. I have a very vague scheme. And I can
say, well, you know, my hypothesis is that the genes expressed in prostate cancer are different from the genes
not expressed in the normal tissue. Gee, what a hypothesis. I mean, you don't need to go to grad school to come
up with an hypothesis like this, right?

But then the intellectual styles is completely different. So we are heading into something that has some simple
statistics and some simple technology but has a much broader impact on the way people think about biology.
One of my dearest quotations is from a physicists of the 19th century that used to say that, "there are two types
of science, physics and STEM collection."

What this mean is that physics provides mathematical, quantitative models of phenomena. STEM collections is
going around and measure animals, and put them in your collection, your album, and show them to friends, and
maybe arrange them in some way. What this thing is doing to the intellectual landscape of modern biology is,
hopefully, to turn STEM collection into highly quantitative science.



The characters that are behind all these things are microarray technology-- microarrays. They are able to
measure the expression of thousands of genes at the same time. And now we have microarrays that are able-- on
a little piece of plastic this size-- they are able to measure the expression of 55,000 transcripts, which includes all
the estimated 35,000, 40,000 genes in the human genome.

Technically, a microarray is-- although it is called an array, it's actually a vector. So for each cell in my array, I
have a label that tells me the name of the gene there. And then I have the value of expression for that particular
cell. So at the end, when they put them together, they become a vector that associates to each gene-- its
particular value of expression in a particular cell or a tissue.

Therefore, the arrays-- because, of course, putting down a vector of 25,000 genes, of 25,000 little cells, is less
convenient from a geometrical point of view than putting down a square thing. It takes less space. They are
called arrays but that can be kind of misleading. And there are two types of arrays that are currently used more
frequently. One are called cDNA and the other are called oligonucleotide microarrays. I'm going to tell you in a
second what they are.

How does these things work? It works by reversing the natural phenomenon of transcription, right? So the idea is
that I have special glue in each cell that is shaped exactly as the transcript that they want to measure. Then, I
will have my tissues that go on this microarray. And by some diverse method, they will hybridize. They will
attach to the cells that are specific to them. And then, I wash them away.

And what they have to do at the end is simply to measure how many of this RNA or how much of this RNA is left
of a particular cell. How do I do it practically? It works like this. I get a bunch of tissues. Let's say I have only one
tissue, for the time being. I'm producing one, single microarray, right? I get my tissues. I extract the RNA. And I
tag this RNA with pieces of transcribed RNA with some fluorescent dye.

Then, I put them in the dishwasher, [INAUDIBLE] station, which is microarray washer actually. And I hybridize it. I
put it there. And then I scan it. So what happened is that-- you remember, this RNA is left attached to this
particular cells. And because I have tagged it-- it's tagged with a fluorescent dye-- I would have more intensity in
those places in which a lot of things are attached.

So once I wash it, I can actually use a scanner, like the one for your picture at home, exactly a scanner. And that
scanner will come up with a picture that looks like this one, in which each ball represents how much RNA is left in
that particular spot. Because I have created or somebody else I pay has created that particular spot, knows
exactly what is the transcript that is there. And they can tell you that the third spot from the left is gene
[INAUDIBLE] [? alfalfa. ?]

I can go measure the intensity of this gene and then turn everything into a database. I know for each probe what
it represents. And for each microarray, I can measure how much of that is estimated in my sample. Question?
This is how it looks like. This is cDNA microarrays. cDNA microarray-- I lied a little. You can't use scanners for this.
You use some kind of laser stuff to read these points.

But the idea is that in this microarrays, you copy the entire transcript of a gene. So I know how a particular gene-
- what is the sequence that is transcribed for a particular gene. I make 1,000 clones or a million clones of this.
And I put them in one spot. Now this microarray has two channels that I can read using laser scanning, OK?



So I will have two samples. And I dye one in red and one in green. And I put them on this microarray. And they
will compete competitively-- hybridize to this one. So if both things are highly expressed, what I will see is
something that is yellow. If none of them is expressed, it would be some kind of black-grayish thing. And if the
green is more expressed than the red-- will be greenish. And if the red is more expressed than the green, it
would be reddish. And you can see here-- you see a lot of yellow balls, few green balls, and few red, and a lot of
black. What's that?

AUDIENCE: Just a basic question. What kind of different information will you get from the [? array ?] as opposed to
[INAUDIBLE] intensity. Do you get any different--

MARCO

RAMONI:

No, this was just because it was the original-- the original one were made this way. To use a scanner-- which I
guess what you're going to-- to use a scanner, you need to use silicon technology. And these are glass slides. So
to build this kind of things is much easier. You can build these things at home. You can buy a robot that will spot
the stains for you.

The oligonucleotide microarrays-- I'll show you in second-- use another type of technology that requires really a
production line. So it's not something you can do. So these things actually offer you flexibility. If you're interested
in 1,000 genes rather than 40,000, you can do it. The other thing is that it costs much less.

The problem is that because you copy the entire transcript, when you take your RNA out of a cell, you crash it.
Then you dye it. Now what happened is that there may be a lot of crap floating around that is really not related to
your gene. There may be very, very small fragments that are going hybridized to some random sequence in your
clones, just because they are very small to hybridized there.

But still, they will bring fluorescent dye to that particular spot. So the precision of this measurement is not really
as great as it could be. You get a lot of random hybridization. There are tricks you can play for this. So if you want
to make a comparative experiment, you can put one condition in one and one condition in the other channel. But
you can use some kind of RNA soup that is not supposed hybridized to anything and put it on one channel.

So if you get a lot of random hybridization on one side, this will pick it up and makes your point, your spot,
yellow. In this case, you will treat yellow and black exactly in the same way. It's not like, no, I'm undecided. Both
are up. You will say, well, this is up, but it's up because of some possible random hybridization. The resolution is
to use a computational methods.

And these microarrays produced by Affymetrix are like Microsoft Office. It's something that everybody uses. They
are far more expensive than they should be. And everybody hates Affymetrix. But still, you can't live without
Microsoft. You can't live without Affymetrix.

AUDIENCE: Was the last slide a cDNA array?

MARCO

RAMONI:

Yes, it was. So cDNA means that you put the entire transcript. And usually you have this two-channel dye.
[INAUDIBLE] is a great expert in cDNA microarrays, which actually comes from one of the very first departments
that made cDNA microarrays. And is [? Formica, right? ?] So oligonucleotide microarrays follow this idea. OK, I
have my entire transcript. And my problem is this random hybridization. What can I do?



Well, because I have the human genome-- the entire draft of the human genome-- I can take this gene and find
out if there is a sequence, a small sequence in this gene, that is unique to this particular gene, right? So in this
case, even if the sequence is small, if the broken part of RNA in my sample is small, it will not hybridize there
because this sequence is too small and too specific.

So the idea here for oligonucleotide microarrays is to say, I'm going to take my transcript-- the entire transcript,
the subsequence of the transcript-- and I'm going to sample it 20 times, between 16 and 20 times, and find out
these 25 small sequences that are specific to that thing. And, for good measure, I will create another sequence, a
sequence that is exactly to this very specific sequence, except that I have the base in the middle that is flipped.

And then we check that the sequence with that base in the middle is not specific to any other gene. So I had a
positive control and a negative control. And this way, what I'm going to do is to have a very specific
measurement and a very specific measurements of random hybridization. Then, once I have these 20
measurements, I will find some statistics to put them together. It's not easy because these measurements are
not independent measurements. But it doesn't matter.

I will put these things together somehow. And the measure I get at the end is going to be pretty accurate, right?
This is why they cost a lot of money. This is why a lot of computational work goes into it, because you have to
search for all these sequences. And this is why sometimes these microarrays get completely screwed up.

There was a famous case a couple of years back in which they created a new mouse microarray. And somebody--
I don't remember where-- reanalyzed the sequences of their microarray-- that new edition of the mouse
microarray-- and found out about 25% of those were screwed up. They were not specific. They were not following
the standard design. Hello? OK, so this is how they look like.

This is the scan microarray. This is Affymetrix microarray. This is how it scanned. The little spots here on the
longer transcripts but are these probes that are sampling for one particular, specific sequence. And they are
scatter in the microarray so that if something bad happened to a corner, it would not affect something else.
Otherwise, you could have biases in the entire microarray. There were one next to each other. Your whole
microarray will be screwed up.

And that's how, in theory, one probe should look like when it's hybridized. Up there, all these transcripts are more
or less hybridized. And down there, the random hybridization is not really hybridized. But the resulting
hybridization will be the difference between the real hybridization and the random hybridization for each probe,
for each probe pair, the negative and the positive, and then a global measure to put them together, which I will
not bother you with.

So what's the problem? The problem is that this stuff costs $1,000 a pop. $1,000 a pop is a lot of money. And you
remember what I was talking about-- the hypothesis-driven thing. When people draw balls for a single
microarray, usually they do it twice, at most, three times. But if you're measuring 40,000 genes at the same
time-- well, measuring twice is going to be a little problem, also, because you don't have any hypothesis to
prove, right?



So this is where the major cultural clash comes in. That when people analyze data, even in medical domains,
database looks like this. There are some variables and a lot of cases. The microarrays data set usually look like
this. You have a lot of variables, thousands of variables, and very little measurements. And it's kind of funny to
see these people that work on the genetics and define from a genomic side.

So when they design a genetic experiment for SNPs, they collect 5,000 patients, 2000 patients, 3,000 patients
because that sample size is required to analyze a couple of SNPs. But then when they do microarrays, they
expect to find the [INAUDIBLE] 5 microarrays out of 45,000 probes. It's exactly the same people. So what you can
do with this?

Well, let me introduce you to a notion that will remain very precious to you. When people will be confused-- as
some people are-- you will have a very easy and fast answer. What is the difference between supervised and
supervised? Is exactly the difference between a normal movie and a PG movie.

Supervised means that there is something or somebody supervising. They're telling you things. This is what a
supervisor does, tells you things. So a supervised thing means that they have either a human or some kind of
signal that will tell me what a particular sample means, right? A typical supervised problem is-- let's try to decide
what characterized the people in a particular room.

I get measurements from this room and that room. And in this room, this is a graded course in functional
genomics. In the other room is a class from the dental school. And let's make differences. We have properties of
these people. Let's see what is different. But I will tell you that people in this room are different from the people
in that room. And this is what is called your training signal, the difference between two clusters.

In an unsupervised thing I know I have no supervision. I'm old enough to go to a R-rate movie. So the question in
this case is-- I get a bunch of people-- are there groups among them? There are people that look more like
others. There are people that control other people. It looks more like, I can say, gossip, finding stories in these
things. But they answer two very different questions.

One is, what is different between these two groups of people? And the other is what is similar, or what is related,
or what are the stratification, or what are the things that we have in common among these different people? It
becomes clear. So what can we do with the microarray? With the microwave-- well, the first thing we can say is,
OK, I have two experimental conditions. And my aim is to see which genes are expressed more and which genes
are expressed less in this condition, right?

So typical example is cancer. I get a bunch of people with cancer. I get a bunch of people without cancer. I run
microarrays and then see what is different. What does it mean? Well, it means that they have tissues from
healthy cells and from tumor cells. And for each sample, I will create a microarray. And this is how my database,
at the end, will look like.

So the first column represents the name of the gene, name of the transcript directly looking at. And the second
column represents the value for that transcript for sample one, sample two, sample three, sample four, and
sample five. And then, I'm going to tell you, well, sample one, sample two, sample three belongs to one category,
are in this room. And sample four and five are in that room. Go and find what's different between these two
things. Now, what does it really mean-- what is different?



Remember, so if we do it by hand, we can take pictures of balls and say this ball is bigger than this one. But if I
have 50,000, 40,000 balls, what I'm going to do about this? Well, what they want to do, in this case, is to find
what is more expressed in one side rather than another. And the currency provision-- that I will tell you in a
second-- the currency of these measurements are called folds. Fold is how many times one condition is more
expressed than the other condition.

Now the problem is that this is good when you have one single ball. If I have 50 patients, what the hell I do?
Should I take the mean? Sure. I can take the mean, but then I don't have any measure of the variance in my
data. Maybe I have two things that the mean are very far apart. But because the variance is very big, they will
overlap. So there is not much evidence that they can collect.

So other measures are things like standardized differences, and make the difference, and standardize them by
the variance, which will somehow take into account the variance, that is under the assumption that these things
are normally distributed, so that kind of variance has any statistical meaning. Then what do you do? Well, then I
decide the threshold. I get the landscape of this thing. And I'm going to say the top 50 genes are what I actually
like and the bottom 20 genes.

The top 50 are the ones that are more change in one condition and the bottom are the ones that are more
change in the other condition. I'm going to pick up this stuff and see if there is anything interesting. What people
do typically is to make up stories or to pull up a protein-- like people are doing with their project-- pull out the
protein and see if I can actually-- a gene, find out the protein, and actually find out if this protein does something
to my particular phenotype.

This project, which is a project about preeclampsia the investigator there-- you get only two microarrays from a
preeclamptic-- preeclampsia is a disease that women get during pregnancy. It's a very bad disease-- and the
normal placenta, compare them, and pull out the protein. Put the protein into mice and found out the mice were
getting preeclampsia. There are this kind of an exploratory thing.

In this case, what I'm interested in is find out new hypothesis. Then they can test in some kind of laboratory
setting. As I said-- because, in this case, I have only two samples. But suppose I have several patients, what I can
do? One other problem we have here is that we are not really sure what kind of distributions are running this
microarray.

So what people say is, well, because we didn't know the distribution, let's use some distribution-free method,
which is a good idea. But it's an idea that rests on the hope that there is some free lunch of life. And there is no
free lunch in life. No parametric method, distribution-free method requires a lot of data because you have to do
two things. First, you have to decide what kind of distribution you have, implicitly. And then, you have to run your
test.

People use parametric method typically because they have an idea of the distribution. And so they need less data
to fit this test. If you have few data and no idea of the distribution, you are screwed. And running this kind of test
tends to be kind of a dangerous. One, because usually your sample size is too small to run a proper parametric
test. Two, because frequentist people have these things called p-values. P-values are very interesting animals.
What is the p-value? Who gives me a definition of p-value?

AUDIENCE: [INAUDIBLE]



MARCO

RAMONI:

Speak up.

AUDIENCE: The probability that--

MARCO

RAMONI:

Two things are different?

AUDIENCE: --that the means [INAUDIBLE] very different.

MARCO

RAMONI:

OK, so this is what patients believe. But to do that-- you work with patients too much. And that's a very
reasonable measure. I'm interested in finding what is the probability that these two things are different, right?
This is not the p-value. The p-value is the probability that you will make a mistake if you repeat the experiment N
times and compute it as the number of times you will be mistaken by repeating this study, which is an extremely
[? masturbational ?] measure.

There is no relationship with the probability of your hypothesis. And it's very difficult to put into practice. First of
all, people should explain me why I should repeat my experiment 100 times when I already repeat 20. And this is
what I know, right? The rest is educated or uneducated guess. But the p-value, in this case, has this other little
problem. That because I repeat the experiment a lot of times, sometimes things may come up just at random.

So if I say, OK, I'm going to accept something if my probability of is 5%-- so the p-value is 0.01-- if I test two
hypothesis, to maintain the same level of error, because I have the probability that something will come out at
random-- assuming that these two tests are independent-- I have to multiply the probability of this p-value, right?
So my real threshold to get a 5% evidence of a p-value would be the product of these two 5%s to maintain the
same level of strength of evidence.

Now imagine if you have to multiply 0.05 40,000 times. What kind of threshold you get? Nothing. Nothing will
pass that particular test. This is called Bonferroni correction. Nothing will pass the test. I have a very dear friend
of mine who is very frustrated by this and decided to be a biologist after trying to use p-test on this kind of
experiments. Because the threshold, the accepted evidence is 0.05%, will turn against you when you are testing
your hypothesis 40,000 times.

Besides, this is under the most lenient condition. Because you'll assume that all your hypotheses are
independent. But we know that this is not true. We know that these genes regulate each other. So the probability
something is up is not independent of the probability something else is up, OK? So even under the most simple
condition, we have a little problem with this.

So what can we do? Well, I will tell you in a second what can we do. But what we can do further-- not for the
experiment but in general-- so once I have the differences-- OK, I can go back to my lab and put the protein into
a couple of mice and see what happened. But isn't there anything better that I can do using these differences?
Well, maybe I can make predictive models.



Predictive models, rather than using proteins-- one protein at a time, what are called markers-- are able to put
together a batch of proteins and provide a profile, a prediction for a particular outcome. In this case, maybe I can
predict if a particular tissue is a tumor or it's not. I can predict if a particular tissue is a type of tumor or is not a
type of tumor. Maybe this type of tumor require different therapies. Maybe I can predict how long it will take for
a particular tissue to come back as a cancer, because they find a particular signature.

Now how do I find the signature? I have to run a game called feature selection. Feature selection is-- I have a
class. I have all these predictors down together. And I'm going to select some of them as good predictors for [? C.
?] I cannot use all of that, right? Why cannot use all of them? Because good prediction comes from specificity,
right? I'm glad you agree with this, because it's not really such a normal statement to accept.

People believe that you use 40,000 variables, you're going to give better prediction if you use five variables
independently of the quality of this variable. I mean, as long as these five variables are a subset of the 40,000
variables. But we all agree that this doesn't happen, right? Right? If somebody has a doubt, I have a joke. OK, no
joke. So what do I do? Well, I want to identify those genes that predict my class, the set of genes that predict the
class.

So if I do feature selection, I typically increase the predictive accuracy. I get a more competitive presentation. I
can get some insight in the process that may happen. Although, remember, this is not just differentiable analysis.
It's something that I want to use as a prognostic or a diagnostic set of markers when combined. And why
differences are important? Well, because we start from the assumption is that if two things are exactly the same
across two samples, it's very difficult that they will be able to discriminate between them.

So classification, which is this task in feature selection, looks sometimes very much like differentiable analysis,
but it's not. I have a twist at the end. And the aim of my game is not really to find out what is different. It's
finding what is predictive. And the example is-- supposed I give you two groups of people. And you don't know it,
but one group are men and the other group are women. And then I give you a list of properties of these people.
And there would be a lot of differences.

Women tend to be slightly shorter than men. Women tend to have more hair at certain age. Women tend to
make less money. But there are a couple of anatomical differences that are really good predictors of these
differences. Doesn't mean that there is no other difference. But it means that particular anatomical feature is a
perfect predictor between male and female.

So if you're doing differentiable analysis, you may be also interested in the fact that these people have
differences in income. But if you include these factors into your predictive model, maybe because I'm short and
don't make a lot of money, you end up classifying me as a woman, OK? May confuse your ideas.

So we were saying, non-parametric method has kind of little problems with this because we don't have enough
samples. But we have classifiers that are parametric classifiers. In this case, we make an assumption about the
distribution of our data. And then we try to fit our data into this distribution, thus saving us a lot of effort in
collecting more data.



Because data are very complicated and hypotheses are cheap. We can actually go and validate our hypotheses
afterward. So this is, as many of you know, is called a Naive Bayes Classifier, in which I assume that each gene
down there is conditionally independent given the class. It doesn't mean that it is independent, right? Like we
were doing before-- we were doing independent tests, you remember?

The independent tests assume that they are marginally independent. In this case, they are conditionally
independent. Conditional independent is that once I know the class, I don't give a dime about the dependency
between these two genes. Maybe there is a very complicated relationship between gene one and gene two. But
because my interest, in this case, is to find a classification, I don't care.

Because as far as the classification of the class is concerned, these things are not related, right? So it's like a
weak independence assumption where weak, in this case, means good. Because we are not forcing an
assumption that is too strong within your data analysis. Once I have that, I run-- let me go back a second to this--
the other one. I want the other picture. Come on.

See this? In this case, my genes are marginally independent. The arrow is going the other direction, right? So all
these genes [? cause ?] my class, but they are independent. And this is the structure of a standard classifier. In
the other case, they are conditionally independent given the class. So once I have this particular model, I have
selected which are the genes that I like. I have estimated the parametric model. Then, I can make predictions.

So if I had used some kind of differentiable analysis using a non-parametric test, by definition, I don't have
parameters. It's non-parametric. So I cannot really make a prediction with the parameter set [? lower. ?] What
people use are things called mixture of expert, in which they assign some kind of arbitrary weight to different
genes. And each gene will be like an expert, judging if this particular tissue is a cancer or is not a cancer.

But these weights are actually embedded in any parametric model you derive, which is the probability of
observing that particular gene expressed, given the fact that you have a change in your class, that the class is
tumor or not tumor. So you can apply Bayes' theorem, and reverse those errors, and obtain the posterior
probability that your particular sample is a tumor or is not a tumor. This is how it works.

Well, this is what I just said. [INAUDIBLE] had this one. So I have a class. And I'm interested in the probability of
the class, given the sample molecular profile, which is my new patient coming in. And by applying Bayes' rule, I
can actually compute. Because the probabilities I have are the probability of each feature given the class, which
is the direction of the arrow.

Bayes' rule will allow me to flip this rule backward, apply this as a product, and put all these things together into
a single posterior probability. It's just the sum of this probability. I have another interesting thing with this--
another goodie with this thing that I can actually validate my stuff. Well, validate this would mean to go back in
my lab and look at a couple of things. Validate means to see how my model is good to fit the entire 40,000
genes.

And the best way to validate something is to have an independent test set. I collect patients here at Harvard. I
build my model. And then, I call up my friends in San Antonio and say, listen, I have this model. Do you have 50
patients. for me that I can classify, and you know diagnosis already? And if he has them, then cool. I can really
say, this is the accuracy of my model from here to there. But sometimes, we don't have these things. Well, quite
often we don't have these things.



So how can we do this cheaply? Cheaply-- we can use cross-validation. Cross-validation means that I take my
data set. I split it in five parts. And I use four parts to learn my model. And then, I predict the fifth part. And then,
I take other four of these five parts. I build another model. And I predict the remaining fifth part. This decreases
the sample size I originally I had already.

So what happened is that people use a thing that is called leave one out cross-validation, where the number of
sets is equal to the number of samples. So what means that they pull out one sample. I build a model on the
other one. I try to predict the sample that's taken out of which I know the classification. This is an example. One
of the first predictive models that came out in 1999.

We have two types of leukemia-- ALL and AML, acute lymphoblastic leukemia, acute myeloid leukemia. And as
you can see under the microscope, they are very difficult to diagnose. So what these people at [? Wycliffe ?] did
was to say, well, let's collect, I think, 27 and 11 patients, right? And what they did was to create a dummy vector
of zeros and ones and then correlate the gene expression-- sorry. The columns are patients. The rows are genes,
right?

And now I don't remember if the blue is underexpressed or overexpressed. But what does it mean is that they
take some kind of average to represent this picture. And the positive distance of the point from this average is
the intensity of the red. And the negative distance is the intensity of the blue. So the more intense is the color,
the farther would be your point compared to the mean of these values.

And at the same time, the direction of this distance would be given by the color. So if it's dark blue, it would be
very negative. If it's dark red, it would be very positive. So what they did was to correlate these genes and pull
out the top 50. So the 50 that correlated more with the gene, with this dummy vector with the positive
correlation and with the negative correlation, 50 and 50.

And what they did then was to make a mixture of expert prediction and see what was the accuracy they could
get of their own patients. And since then, there have been gazillions of paper written like this. I want to stress the
fact that, in this case, we are not interested, again, in what is really different. We are interested in finding a
molecular classification for these things.

The hope here is that one day you can build a little check-- and they are really doing this for literature-- on which
you can put some specific genes and have a classification that will tell you this patient has this particular type of
leukemia. This patient has this other type of leukemia. OK, so I have talked about something that is [INAUDIBLE]
question, is controversial thing. But I thought last night about including this thing.

But then I said to myself, yeah, as long as I tell you that what I'm going to tell you may be kind of controversial.
It's OK if I tell you that, right? And this is why you want to go to school to be a professor. Because then you can
say controversial things. They cannot fire you, hopefully. One of the things people do to identify differences
easier, even with pass it down, cut the threshold, is to deflate the variance, OK?

If I have two samples that are very far-- but if I find a way to squeeze the variance of these cases, then I will have
a much smaller variance. And I have more chances that my changes will be significant, right? Because the
variance would be smaller. Now this is something that for any other type of data analysis, will send you at least
in disrepute, sometimes in jail. If you do this on a company budget or if you do this on a clinical trial, you go to
jail.



In microarrays, people don't go to jail. Because it is an original thing that made originally sense. Remember
cDNA microarrays? cDNA microarrays have two channels. Now we know that, by design, there is an imbalance
between these two channels. One channel is more intense than another. So if I'm comparing to samples, what I
may come up with is something that looks like this.

So I have the two microarrays that are lying on two parallel things, right? And you see that there is a bias. All the
red on one side and all the blue are on the other side. So what people used to actually do for this kind of
platform, because you have two channels, is to try to reconcile these two channels by studying the distribution of
these two things and try to put them one over the other. So as a form of correction, you do.

Because, by design, you know that your platform will introduce some bias. And this is fair. This is good. The
problem is that when oligonucleotide microarrays were introduced, people just blindly took these things and try
to apply to microarrays. And you start coming up with a couple of problems. First of all, oligonucleotide
microarrays are not two channels. They're one channel.

So suppose there have 50 patients. What do I do there? Which patient do I take to be my baseline? I'm going to
reconcile all the patients with the first patient at the beginning? And what happens if I change this patient? Are
my genes going to change? Yeah, you bet so. So now if you really want to have a great success talk with
biologists, go and tell them that they shouldn't normalize.

Because there are about 100 different normalization methods of this type. And people are confused. But people
are confused because there is really no need. People are not confused on normalization and cDNAs. People are
confused for normalization to squeeze your variance and get better results. Because in reality, even when you
have design with two channels-- so I have a pair case and control with microarrays. You get actually results that
look like this one.

Now these are microarrays that come from an institution from this [? street ?] to which I am not affiliated and
nobody here is affiliated to. So I can actually speak on them. And this is a good example of why not to do
normalization. So these are people before and after treatment, OK? These are paired experiments because it's
the same person that is sample before treatment and after treatment.

So you remember those lines that were like going one after the other? Means that we were plotting the intensity
of one channel against the intensity of the other channel. So look. We plot this microarray against this
microarray, which is the microarray before and after, right? So in this case, yeah, more or less, it looks like the
other one. You remember? Now look at this one. Can you imagine any transformation that will put those things
along the same line?

Yeah. Look at this one. So in this case, what happened is that there is something that is highly screwed up. And,
again, these are following exactly the same design that cDNA followed, the experimental design, although the
end practice is absolutely different. So my advice as far as normalization is concerned is don't change your data
that may be useful. But try to look at your data because they may contain some important information. This
microarray is completely screwed up and should be either removed, redone, or done something about it.



OK, so what have we learned? We have learned that we can actually find differences among samples in different
conditions. We can make predictors. Have we learn anything interesting about the genome cells? Not really. We
have learned nothing about the relationship among genes. Although we are measuring all of them at the same
time, we have completely disregarded-- actually we have fight against the idea that these things could be
related.

We are simply interested in finding something that was different in two conditions or simply interested in finding
something that, put together, could predict this condition. That's it. This is where supervised classification brings
us. If we want to take advantage of the fact that we measured all these genes and we observe the genome in
action to try to decode something about the genome, then we need some different method. And we don't need
supervision all the time.

It's like when you're a kid. If there is supervision, there is very little fun. So the easiest thing we can do is to say,
well, OK, forget about supervision. I got this bunch of genes in different conditions. Forget about these
conditions. I don't care about these conditions. What I want to see is which are the genes that behave more
similarly across all these different conditions? It's like having a car, right? Try to understand how it works by
kicking it, and kicking in different points of the car, and then see how the things go together under different
stresses.

So if I kick the wheel, if I keep the trunk, if I kick the door, what happens? How these things move together? What
is the relationship among these things? Was a nice analogy some time ago. But you study these things. And the
way in which you study these things-- this was for sequencing the genome. Well, it's like you have, in the future,
somebody comes up with the Volkswagen. And they discover a Volkswagen [INAUDIBLE] somewhere. And they
have no idea what it is.

So to understand how this works, they take the Volkswagen and they throw it off the cliff. And then, when it's
down, they try to put the pieces together again, right? This is what somehow we're trying to do. We are breaking
this down with some kind of solicitations and trying to see which parts behave together. So, in this case, like we
had 1,000 Volkswagens-- well, 100 Volkswagens. And we keep throwing them down.

And at the end, when they are down-- because we don't know how to open the engine-- when they are down, we
will see there are some pieces that are closer together. And they remain closer together. And this is independent
of the fact that these two things fall to the left or to the right of the main body of the Volkswagen. So a simple
thing is to say, well, let's measure correlation among these things.

Genes [INAUDIBLE] supervision. They have a lot of solicitations. They could be different compounds that are
treating a particular disease. These are maybe different type of cancer. I don't care. I don't want to find
classification. I just want to find out which are the genes that go together around these conditions. If I use
correlation, the only thing I can do, though, is to look at pairwise comparisons, right? I can only say that one
gene go to another gene.



A correlation is a distance between two points. I cannot have groups of three, or five, or 15. How can I put these
things together? Well, I can use another type of clustering called hierarchical clustering. Hierarchical clustering
start putting things together. But when it puts two things together, it creates some kind of a dummy gene, which
make us feel like the average of these two genes or something like this. And then try to correlate this average
profile, this average gene, with other genes.

So, at the end, the result would be something like this. Again, it's like the blue and the red. In this case, is green
and red. These are the Stanford color. Wycliffe uses the blue and pink. Duke, I think, use yellow. John Hopkins use
green and blue-- well, a few combinations of this. But you can actually recognize at least the platform they're
using by the color of their pictures.

So in this case, this is a Stanford picture. Again, the green is down and the red is up or vice versa. And you can
actually, by visual inspection, see that there are some points that are very highly expressed away from the
mean, are very down expresses, very [? low ?] expressed from the mean. So this is the zoom of that picture. And
you can see that these things are creating a tree or Venn diagram. And this tree will put together groups of
genes, not only two genes.

And the problem here is that you don't really have a good measure to decide when you've made a group.
Because, again, you have one single tree that will combine all of them in different order. So, technically, this is
not-- although it's called clustering-- clustering means to put things together and divide them. Technically, this is
a sorting algorithm by which I put a particular order-- in this case, a partial order-- over these things.

And then some knowledgeable biologists will come and say, oh, among these people here in this group, I see that
there are among this group-- I see that these genes are all related to a particular process. So maybe also these
genes that is right embedded between them is related to the same process. And maybe it's apoptosis. And these
are five apoptotic genes. And then, they find something else. And we create another group. But these groups,
these different coloring-- the pink, the purple, and the red there-- are handmade by somebody with a lot of
patience that put them together.

AUDIENCE: [INAUDIBLE].

MARCO

RAMONI:

Say again. What?

AUDIENCE: The trees are made by hand?

MARCO

RAMONI:

No, no. The trees-- sorry. The tree itself is built through some kind of metric. I don't know why it's not coming--
OK. So I compute the correlation between these two points, these two vectors of values. Then, I create, let's say,
an average value here. And then, I draw these two points. And they consider this new value that I have created
as a new member of my data set. I didn't see what this correlates to.

In this case, this correlates to this one. So the highest correlated thing is a gene. And this creates a new
hypothetical thing, which is the average of these two and this one. So what happens is that, at the end, I create a
structure like this. But the problem is that because they are all measures, at the end, they will have one single
tree. So how do I create blocks? The way in which blocks are created-- and I say, color this in purple and this in
pink. These were handmade.



I will tell you in a second how you can avoid to do this handmade. I can do something more interesting also. That
was a temporary experiment, [INAUDIBLE] second temporary experiment. So I knew the order of these
microarrays. But sometimes, I'm not really interested only in the way in which genes go together. I'm also
interested in finding some new class among patients, right? This is a very interesting paper from 2000 in which
what these people did was to try to cluster simultaneously genes and patients.

And what they came up with were groups. You see those groups up there. The groups up there is not a Venn
diagram. Those are group of patients based on some selection of genes that are more expressed across the two
conditions. And then what they did was to find out that-- if you look at the survival time-- how many of what is a
Kaplan-Meier curve? Everybody. OK, so if you look at the Kaplan-Meier curves of those groups, you see that there
are very significant difference in survival, OK?

So in this way, I can discover not something really that is about genes but something that is about the overall
classified disease. I find out new classification for diseases with interesting clinical consequences. Again, problem
is I have to do this darn coloring by hand. Is there a way by which we can actually avoid coloring this stuff? Yeah.
There is a way. And this is the idea.

If you want to cluster, it means that you have to make differences among things. So you can decide arbitrarily the
number of clusters. And say, OK, I have 50 clusters. And you divide everything in 50 parts. But why not 49, or 38,
or 15, or two. So central notion of the clustering is similarity. If we have a definition of similarity that is specific
enough, then this similarity will allow us to say when we can actually cluster without creating a threshold, just a
conceptual definition of similarity.

So I have to postulate this description of similarity. And I need a piece of theology before this. But let me
postulate this. In statistics, you don't believe that what you observed was directly created by God. What you
believe is that there are some processes that you don't observe that generate the data that you observe with
some randomness, some measure of uncertainty.

Now let's make an example. Let's suppose we take the electrocardiograms of each of us. And, hopefully,
especially for me, all these electrocardiograms would be different. But, hopefully, they would be coming from the
same process, which is the process of a healthy heart, mine will be slightly different because it's small but
probably will not be different enough from yours to say that this is a completely different stuff.

Now suppose we go to Brigham, to cardiology at Brigham, and we take electrocardiograms of people there.
There, I expect people to have differences between themselves that are great enough to be generated by
different processes, different pathology of the heart. Now I will pose to you that two things are similar if they are
generated by the same process. And two things are different if they are generated by two different processes.

And if you buy this story, then I can give you a method to compute when something is generated by the same
process and when something is not. How? Well, we know that these processes that we do not observe but they
underpin the data that we actually observe, generate our data with some kind of uncertainty, that is a random
process that is generating data from this. An example is aging, right?



Aging has a particular effect on people, usually make you wealthier, usually, after at a certain point, make you
stronger, after a certain point, make you weaker, has affect on your marital status. You tend to get married, and
then divorced, or widowed, or whatever. When coupled with other variables like gender, can have other physical
effects like you can lose your hair if you're male and so forth, right?

So if I find somebody that at 13 is on the verge of his third divorce, that's not impossible. But I would find it kind
of unlikely. Why? Because there is a process called aging that dictates, more or less, that people to be on their
third divorce usually have to be at least 35. So if this guy is 13, it's difficult. It's not impossible, but it's difficult.

So we have these general expectations that stem from the fact that there is these processes generating the
observation that we have and is constrained by other things. Like we're saying losing her is constrained by
gender, probabilities change by gender. But at the same time, once I observe the data, I can tell you that
something is probable to be generated by a particular process and something less probable to be generated by a
particular process, right?

And this is what we want to do. We want to compute the perceived probability that a set of processes, as
responsible of my data-- so M given D will is the data-- for each class we model, for each way of combining my
clusters. And then, I can combine the score and find out what is the most probable way of combining these
clusters. And at the very end, what I will have is a bunch of clusters, not simply a tree, not something that I have
to cut with the threshold.

But I would be able to tell you that if two things are put together, they are N times more probable to be
generated by the same process than they are to be generated by two different processes. Interesting paper--
you're going to read it. This is how it works. The probability of the model given the data by Bayes' theorem is
equal to the probability of the data given the model times [? provision ?] of model on the [? unprovision ?] of the
data.

Now I will not get delve into details. But at the end of the day, under some assumptions-- like the assumption
that before looking at any data, all models are equally probable and the assumptions that we are trying our
models on the same data, which is usually what we do. We have the same set of expression data and want to
find the best model. What we can compute is that probability, which is the probability of the data given the
model, which is proportional to the probability of the model given the data. And, therefore, we can use that as a
score.

These things is kind of compared with this to compute. It's called marginal likelihood. And so we can search all
these combinations and find out which is the most likely combination, which is the most probable combination,
of, in this case, genes, given the data that we observe. Now let me go-- so these are a couple advanced topics.
From now on, this is not subject to examination, for the test.

Suppose I'm interested in something like control. Have we learned anything about control so far? Well, we have
learned that things go together, things are similar. But we haven't really learned anything about how things
control things. To see how genes control other genes, we need a very important experiment design which is a
temporal experiment. We need to see what happened from one point to another.



And you say, well, it's kind of easy. I take this clustering method. I use this clustering method, and I put them
together. And then, I will find some kind of similarities. Can I do that? No. Why? Because measures like
correlation or distance measures assume that all the observations you have are marginally independent. What
happened to patient one in gene one is completely unrelated to what happened to patient two on gene one,
right?

But when it's time-- well, when it's time, it's really, really different. Time means that where I am now depends on
where it was five minutes ago, 10 minutes ago, 30 minutes ago, 100 minutes ago. So if I keep measuring the
same system a long time, my observations will not be independent. Let's put it this way. If I measure things a
long time, I don't have ground to safely assume that my assumptions are independent. Because assuming that
assumptions are independent is a simplification, right?

If I have a model that is able to account for dependency, I can always reduce it to a model of independence. But I
cannot do the other way around. And let me give you a practical example. These are two pairs, two genes up and
two genes down. So you are measuring the distance between these two genes. Now the correlation of the two
genes up there is something like 0.6. And the correlation of the genes down there is about 0.8, right?

But now consider the memory of time. And look at the first picture. Except for the first point, when the first gene
goes in one direction, the second gene goes exactly the same direction, right? They never intersect each other.
The second point-- it goes from one point, goes down. The second gene goes down. The third point-- the first
goes up and the second goes up. And then it goes down, and goes down, and goes down again. And the other
goes down again. It goes down a little less. It goes-- look at it.

Now look at the other one, which has a higher correlation. These genes are always one against the other. Every
time one gene goes up, the other gene goes down. So if I am actually interested in the dynamics of my system--
why correlation would put these things more similar to those ones-- my good measure-- by keeping in mind that
I'm interested in the dynamics of change of this thing-- would actually require a different perspective, a different
measure that takes into account what happened before and that we put those two together, those two closer
than these pairs.

How can I model these things? I can use a thing called autoregressive models. Autoregressive models-- it is very
simple. There are a lot of way of doing this. This is just an example of how to take into account your past. How
can I do this? Well, I have a time series of dependent observations. And what I can say is I assume that my
observed point, at in this moment, is independent of the remote past, given its recent past, right?

So to know that I'm here now, you don't really need to know where I was the day before yesterday. You need to
know where I was 10 minutes ago, an hour ago, maybe two hours ago. But the predictive ability of two days ago,
where I was five miles from here, is going to be very, very weak. So you can actually summarize your data,
summarize your expectation on somebody being here by forgetting the remote past and considering only the
recent past.

The most recent could be one point. And, in this case, you can create a model like this in which you plot your
present-- that is, my time now-- with your immediate past. And, in this case, you're assuming that everything--
my observation is independent of my past, given my most recent observation. This is the simplest autoregressive
model. Now this kind of experiments, again, tell us something about the similarity of things. Actually this is a kind
of analysis. The data are always the same.



Once we have this temporal data, if we do some clustering, we may see that things are working in the same way
a long time but are hardly going to tell us that something controls something else. In this case-- as I was saying
in the beginning-- it's not really the data of the design of the experiment. It's the type of analysis you make. So if
your interest is to find out which are functional clusters of genes that work together, well, clustering is your
solution.

But if you're interested in dissecting what is the regulation, the mechanism of regulation among genes, that will
not tell you. I may have things that behave kind of similarly, but they not necessarily behave together equally.
To be extreme, I would consider that something that controls something else will not really have exactly the
same temporal behavior, right? So if I want to have you here today, I have to call you yesterday or I have to be
here yesterday. I have to do something before you're here if I'm controlling you, right?

So a way to use these things, to try to dissect this kind of information, if this is the question you have, is to use a
thing called Bayesian networks. Bayesian networks are regulating genes-- in this case, relating variables in
general-- by looking at how probable it is that one particular set of variables will control another set of variables.
Originally, these things were built for humans, humans you want to clone information from, knowledge from.

You are buying lunch or dinner to your physician friend, getting drunk, and distract the promise that will come to
your lab the day after. And they will draw a network of this knowledge saying this gene versus other gene versus
other gene and then add some probability that describe the function by which a particular gene controls another
gene. This particular example-- I'm sorry. There are a couple of people who have seen this example at least 100
times. This is not about genes, just the intuition of what is there.

This network tells you that your age your education affects your income. So this is easy to draw. The problem is
how age and education affect your income? This is specified by that particular set of distributions. And those
distributions tell you that if you are young and if you have a low education, your probability of having a low
income is 0.9. And as you grow older and you get more educated, your probability of having a higher income
increases. It's not one because you can always choose to be an academic.

The problem is that we're not interested in doing these things by hand. We are interested in finding these things
from data, right? And we can play exactly the same game we're playing with the clustering thing. We can find
out what is the most probable set of nodes, which is the set of nodes that are most probable to control a
particular gene. And we can do this for each gene.

So the final picture-- lost it. Oh, the final picture of this is this one. Come on. Give me a picture. Here it is. Each
ball represents a gene, except these three blue balls. OK, so these are about 40 patients, say, 41 patients,
pediatric patients with leukemia. And for these patients, we have measured some phenotypes.

But the most important thing we are interested in is the molecular classification, so the type of is called oncology
status, oncogene status, which is the molecular classification of the tumor. And this is their survival. And this is [?
finding, ?] it's how many days they've been in the hospital, OK? And what they're interested in is find out if there
is a relationship between-- you remember when we were analyzing the other things into different conditions? We
were doing one analysis for each different phenotype.



We couldn't put the phenotypes together in a single picture. In this case, we can put the two phenotypes in a
single picture and see, for instance, if there is any link that will go from oncogene to survival and how this
process is mediated by other genes. And what we can also find out are dependencies among genes and other
genes. And you see there are directions in those arrows. And those directions mean actually that one gene
controls the other gene.

Example I usually run is suppose we want to discover which of these flickers control these lights, right? So I can
do it this way. I can change the flicker. I can change these things. And this will affect these lights to be on and
off. But if I try to unscrew those lights, they will not change the state of this one, right? The metrics we use is
very similar to this one.

So the metrics will actually take into account the fact that you are measuring the influence of a directed influence
from one gene to another gene. It's not just a simple distance. It's not just a pairwise measure. And actually, it's
not pairwise because, as you can see, you can have more than one parent. This node here-- just to make an
example-- is three parents, this one, this one, and this one. No, sorry. This is a child. And this is a parent. And
this is another child. And he also has a grandchild, here.

So you can actually use this kind of information to create a molecular landscape of the control mechanism of your
things. And you remember what we were saying about how probable it is? I can actually measure how more
probable is something to be affected by some variables than is to be affected by other variables through
something that they I will not bother you with. But it's called basically base factor. Base factor is the ratio
between the probability of two models, which tells you how more probable is one model compared to another.

And these are the numbers we get. So we say that oncogene status, which had these three parents, we choose
these three parents-- these are all the other possible combination of parents we have explored. And this picture
tells you that the runner-up-- which is this other thing down there, the second one-- is seven times less probable
than the top one to be responsible for the oncogene status. And the third one is going to be 56 times, and
[INAUDIBLE] times, and down, down, down, down, down.

And you see, basically, the runner-up, which tells you how more probable is the model you have compared to the
best scenario of any other model. So it gives you some kind measure of confidence. OK, so this is an example
how you can validate these things. You can actually do cross-validation. You remember? We were saying you pull
out one case and make a prediction. And first validation is here. It was 100% and something like this.

But the interesting thing is-- the take-home message for today and the thing that is important is that because
there are no hypotheses here, the way you collect the data is important. But the way in which you analyze the
data is the thing that is going to give you the answer. So if you are interested in mechanism of control,
comparative analysis will tell you squat. If you're interested in molecular classification, clustering will tell you
nothing. If you're interested in discovering new types of disease, these metrics will tell you nothing.

Each type of analysis, as a particular type of answers-- is designed to answer them. And this is the most
important thing you want to consider. There is a review up there. If you want to be bored to tears, then you can
take it down from that website. But it was the state-of-the-art until six months ago, nothing has changed much.
So the second is a [INAUDIBLE] book, which is part of your school equipment, right? Didn't you have to buy this
book, yes, for the course?



AUDIENCE: No.

MARCO

RAMONI:

No? OK, go and--

AUDIENCE: Not that I know of.

MARCO

RAMONI:

--see it because he's the director of the course. You may want to kiss some ass. Gene cluster and SAM are the--
you member The two non-parametric statistics I was describing before? Age is the thing that implements the
Bayesian metrics and the temporal analysis. And what I'm going to do is send around an assignment, which will
probably be a data [? study. ?] And you will do two different analysis for it.

I don't remember if you have to do both of them or if you have to choose which one you want to do. And one is
going to be a supervised analysis using either a gene cluster or SAM, two different statistics. And the other is
going to be an unsupervised analysis using gene [? calssification. ?] Gene cluster is two components, one doing
clustering and one doing a supervised differentiable analysis. OK, thank you.


