
MIT OpenCourseWare
http://ocw.mit.edu

MAS.110 Fundamentals of Computational Media Design
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/
http://ocw.mit.edu/terms

PART TWO: THE CSOUND ENGINE
Barry Vercoe

MIT Media Lab

2008

CONTENTS

1. SYNTAX OF THE ORCHESTRA
 STATEMENT TYPES 5
 CONSTANTS AND VARIABLES 6
 VALUE CONVERTERS: int, frac, dbamp, i,
 abs, exp, log, sqrt, sin, cos, ampdb 7
 rnd, birnd, ftlen, ftlptim 8
 PITCH CONVERTERS: octnot, cpsnot,
 octpch, pchoct, cpspch, octcps, cpsoct 9
 ARITHMETIC OPERATIONS 10
 CONDITIONAL VALUES 10
 EXPRESSIONS 11
 DIRECTORIES and FILES; NOMENCLATURE 11
 ASSIGNMENT STATEMENTS: =, init, tival, divz 12
 ORCHESTRA HEADER: sr, kr, ksmps, nchnls 13
 INSTRUMENT BLOCKS: instr, endin 14
 GENERAL CONTROL:
 goto, tigoto, if ... goto, timout 15
 reinit, rigoto, rireturn 16
 turnon, ihold, turnoff, maxalloc 17
 STRING SET, PRESET and PROGRAM SET VARIABLES:
 strset 18
 pset, vset, gvset, vdim 19
 pgminit, dpgminit, vprogs, dvprogs 21
 dpkeys, dpexclus, inexclus 23
 sfprogs, dlsprogs, dzone, endzone 24
 autopgms, auto_sf2, auto_dls 27
 MIDI CONTROLLERS and CONVERTERS:
 massign, ctrlinit, pctrlinit, dpctrlinit, uctrlmap, dsctrlmap,
 midictrl, chanctrl, dsctrl 29
 miditran, veloc, notnum(b), cpsmidi(b), octmidi(b), pchmidi(b),
 ampmidi, polyaft, aftouch, pchbend 31
 veloffs 33
 VALUE SELECTORS and SPLITTERS:
 mselect 34
 ftsplit, mtsplit 35
 FTABLES:
 ftgen, ftload, ftstep, ftscale 37
 MACROS:
 macro, endm 39

- 1 -

 SIGNAL GENERATORS:
 line, expon, linseg, linsegr, expseg, expsegr 40
 linseg4r 41
 adsr, dahdsr 42
 dexponr 44
 phasor 45
 table, tablei, dtable, oscil1, oscil1i, osciln 46
 lfo, oscil, oscili, foscil, foscili, coscil 48
 loscil 49
 doscil, doscilp, doscilpt, loscil1, loscil2 50
 poscil, buzz, gbuzz 51
 adsyn, pvoc 52
 fof 53
 harmon 55
 harmon2, harmon3, harmon4 56
 grain 57
 pluck 58
 pluck2 59
 rand, randh, randi 60
 linrand, exprand, cauchy, poisson, gauss, weibull, beta 61
 SIGNAL MODIFIERS:
 linen, linenr, envlpx, envlpxr 62
 port, tone, atone, reson, areson 64
 filter1, filter2 65
 filter4 66
 butterhp, butterlp, butterbp, butterbr 67
 lpread, lpreson, lpfreson 68
 cross 70
 rms, gain, balance, dbgain 71
 compress 72
 distort 74
 downsamp, upsamp, interp, integ, diff, samphold 75
 octup, octdown 77
 delayr, delayw, delay, delay1, vdelay 78
 deltap, deltapi 79
 comb, alpass, reverb, reverb2 81

 lrghall32, lrghall44 82
 chorus1, chorus2, chorus3 83

 flange1, flange2 84
 OPERATIONS USING SPECTRAL DATA TYPES:
 spectrum 85
 specaddm, specdiff, specscal, spechist, specfilt 87
 specptrk 88
 specsum, specdisp 90
 SENSING & CONTROL:
 midiout 91
 tempest 93
 xyin, tempo 95
 iftime, timegate 96
 SIGNAL INPUT & OUTPUT:
 in, ins, inq, inh, soundin, out, outs, outq, outh, soundout(s) 97
 hostin, hostout 99
 fxsend, mfxsend, outs12, panouts 100
 pan 101

- 2 -

 kread, kread2, kread3, kread4,
 kdump, kdump2, kdump3, kdump4 102
 SIGNAL DISPLAY:
 print, display, dispfft 103
 COSTING:
 clkon, clkoff 104

2. STANDARD NUMERIC SCORE
 Preprocessing of Standard Scores 105
 Next-P and Previous-P Symbols 96
 Ramping 97
 Function Table Statement 98
 Instrument Note Statements 99
 Advance Statement 100
 Tempo Statement 101
 Sections of Score 102
 End of Score 103

3. GEN ROUTINES
 GEN01 104
 GEN02 105
 GEN03 106
 GEN04 107
 GEN05, GEN07 108
 GEN06 109
 GEN08 110
 GEN09, GEN10, GEN19 111
 GEN11 112
 GEN12 113
 GEN13, GEN14 114
 GEN15 115
 GEN17 116
 GEN20 117
 GEN21 118

4. SCOT: A Score Translator
 Orchestra Declaration 119
 Score Encoding 120
 Pitch and Rhythm 121
 Groupettes; Slurs and Ties 123
 Pfield Macros 125
 Divisi 126
 Additional Features 127
 Output Scores 129

5. Running from MIDI Data
 Conventional Csound Operation 131
 Extended Csound Operation 132
 Preloading and MIDIFILE preprocessing 133

- 3 -

Appendix 1. The Soundfile Utility Programs
 intro - directories, paths, and soundfile formats 140
 sndinfo - get basic information about a soundfile 141
 hetro - hetrodyne filter analysis for adsyn 142
 lpanal - lpc analysis for the lp generators 144
 pvanal - fourier analysis for pvoc (Dan Ellis) 145

Appendix 2. CSCORE: A C-language Score Generator 146

Appendix 3. An Instrument Design Tutorial (R.C. Boulanger) 156

Appendix 4. An FOF Synthesis Tutorial (J.M. Clarke) 172

Appendix 5. A CSOUND QUICK REFERENCE 187

- 4 -

1. SYNTAX OF THE ORCHESTRA

An orchestra statement in Csound has the format:

 label: result opcode argument1, argument2, ... ; comments

The label is optional and identifies the basic statement that follows as the potential target of a go-
to operation (see Program Control Statements). A label has no effect on the statement per se.

Comments are optional and are for the purpose of letting the user document his orchestra code.
Comments always begin with a semicolon (;) and extend to the end of the line.

The remainder (result, opcode, and arguments) form the basic statement. This also is optional,
i.e. a line may have only a label or comment or be entirely blank. If present, the basic statement
must be complete on one line. The opcode determines the operation to be performed; it usually
takes some number of input values (arguments); and it usually has a result field variable to which
it sends output values at some fixed rate. There are four possible rates:

 1) once only, at orchestra setup time (effectively a permanent assignment);
 2) once at the beginning of each note (at initialization (init) time: I-rate);
 3) once every performance-time control loop (perf time control rate, or K-rate);
 4) once each sound sample of every control loop (perf time audio rate, or A-rate).

ORCHESTRA STATEMENT TYPES

An orchestra program in Csound is comprised of orchestra header statements which set various
global parameters, followed by a number of instrument blocks representing different instrument
types. An instrument block, in turn, is comprised of ordinary statements that set values, control
the logical flow, or invoke the various signal processing subroutines that lead to audio output.

An orchestra header statement operates once only, at orchestra setup time. It is most commonly
an assignment of some value to a global reserved symbol, e.g. sr = 20000. All orchestra header
statements belong to a pseudo instrument 0, an init pass of which is run prior to all other
instruments at score time 0. Any ordinary statement can serve as an orchestra header statement,
eg. gifreq = cpspch(8.09), provided it is an init-time only operation.

An ordinary statement runs at either init time or performance time or both. Operations which
produce a result formally run at the rate of that result (that is, at init time for I-rate results; at
performance time for K- and A-rate results), with the sole exception of the init opcode (q.v.).
Most generators and modifiers, however, produce signals that depend not only on the
instantaneous value of their arguments but also on some preserved internal state. These
performance-time units therefore have an implicit init-time component to set up that state. The
run time of an operation which produces no result is apparent in the opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic
expressions composed of constants, variables, reserved globals, value converters, arithmetic
operations and conditional values; these are described below.

- 5 -

CONSTANTS AND VARIABLES

constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available
continuously and do not change in value.

variables are named cells containing numbers. They are available continuously and may be
updated at one of the four update rates (setup only, I-rate, K-rate, or A-rate). I- and K-rate
variables are scalars (i.e. they take on only one value at any given time) and are primarily used
to store and recall controlling data, that is, data that changes at the note rate (for I-variables) or at
the control rate (for K-variables). I- and K-variables are therefore useful for storing note
parameter values, pitches, durations, slow-moving frequencies, vibratos, etc. A-variables, on the
other hand, are arrays or vectors of information. Though renewed on the same perf-time control
pass as K-variables, these array cells represent a finer resolution of time by dividing the control
period into sample periods (see ksmps below). A-variables are used to store and recall data
changing at the audio sampling rate (e.g. output signals of oscillators, filters, etc.).

A further distinction is that between local and global variables. local variables are private to a
particular instrument, and cannot be read from or written into by any other instrument. Their
values are preserved, and they may carry information from pass to pass (e.g. from initialization
time to performance time) within a single instrument. Local variable names normally begin with
the letter i, k, a or w. The same local variable name may appear in two or more different
instrument blocks without conflict.

global variables are cells that are accessible by all instruments. The names are either like the
above local names preceded by the letter g, or are special reserved symbols. Global variables are
used for broadcasting general values, for communicating between instruments (semaphores), or
for sending sound from one instrument to another (e.g. mixing prior to reverberation).

There are also three special symbols made from p, c, or v, followed by a number (e.g. p3, c10,
v5). These are normally local to an instrument, although numbered gv’s can also be defined.

Given these distinctions, there are twelve forms of local and global variables:
 type when renewable Local Global
reserved symbols permanent -- rsymbol
score parameter fields I-time pnumber --
v-set symbols I-time vnumber gvnumber
init variables I-time iname giname
midi controllers any time cnumber --
control signals P-time, K-rate kname gkname
audio signals P-time, A-rate aname ganame
spectral data types K-rate wname --

where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring
to a score pfield or sequence number, and name is a string of letters and/or digits with local or
global meaning. As might be apparent, score parameters are local I-variables whose values are
copied from the invoking score statement just prior to the Init pass through an instrument, while
midi controllers are variables which can be updated asynchronously from a midi file or midi
device.

- 6 -

VALUE CONVERTERS

 int(x) (init- or control-rate args only)
 frac(x) (init- or control-rate args only)
 dbamp(x) (init- or control-rate args only)
 i(x) (control-rate args only)
 abs(x) (no rate restriction)
 exp(x) (no rate restriction)
 log(x) (no rate restriction)
 sqrt(x) (no rate restriction)
 sin(x) (no rate restriction)
 cos(x) (no rate restriction)
 ampdb(x) (no rate restriction)
 twopwr(x)* (init- or control-rate args only)
where the argument within the parentheses may be an expression.

Value converters perform arithmetic translation from units of one kind to units of another. The
result can then be a term in a further expression.

int(x) returns the integer part of x.

frac(x) returns the fractional part of x.

dbamp(x) returns the decibel equivalent of the raw amplitude x.

i(x) returns an Init-type equivalent of the argument, thus permitting a K-time value to
 be accessed in at init-time or reinit-time, whenever valid.

abs(x) returns the absolute value of x.

exp(x) returns e raised to the xth power.

log(x) returns the natural log of x (x positive only).

sqrt(x) returns the square root of x (x non-negative).

sin(x) returns the sine of x (x in radians).

cos(x) returns the cosine of x (x in radians).

ampdb(x) returns the amplitude equivalent of the decibel value x.
 Thus 60 db gives 1000, 66 db gives 2000, 72 db gives 4000,
 78 db gives 8000, 84 db gives 16000 and 90 db gives 32000.

twopwr(x) returns 2.00 raised to the xth power.
 Thus 0 gives 1.00, 1.00 gives 2.00, 3.00 gives 8.00,
 0.5 gives root 2, -1.00 gives 0.5, and –0.5 gives 1 / (root 2).

- 7 -

 rnd(x) (init- or control-rate args only)
 birnd(x) (init- or control-rate args only)

 ftlen(x) (init-rate args only)
 ftlptim(x)* (init-rate args only)
where the argument within the parentheses may be an expression.

These value converters sample a global random sequence or return information about a stored
function table. The result can be a term in a further expression.

rnd(x) returns a random number in the unipolar range 0 to x.

birnd(x) returns a random number in the bipolar range -x to x.
 These units obtain values from a global psuedo-random number generator,
 then scale them into the requested range. The single global generator will
 thus distribute its sequence to these units throughout the performance,
 in whatever order the requests arrive.

ftlen(x) returns the size (no. of points, excl. guard point) of stored function table no. x.
 While most units referencing a stored table will automatically take its size
 into account (so tables can be of arbitrary length), this function reports
 the actual size if that is needed.

ftlptim(x) returns the loop segment start-time (in seconds) of stored function table no. x.
 This reports the duration of the direct recorded attack and decay parts of a
 sound sample, prior to its looped segment. Returns zero (and a warning
 message) if the sample does not contain loop points.

- 8 -

PITCH CONVERTERS

 octnot(not)* (init- or control-rate args only)
 cpsnot(not)* (init- or control-rate args only)
 octpch(pch) (init- or control-rate args only)
 pchoct(oct) (init- or control-rate args only)
 cpspch(pch) (init- or control-rate args only)
 octcps(cps) (init- or control-rate args only)
 cpsoct(oct) (no rate restriction)
where the argument within the parentheses may be a further expression.

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:
 name abbreviation
 MIDI note number (0 - 127) not
 octave point pitch-class (8ve.pc) pch
 octave point decimal oct
 cycles per second cps

The not form follows the MIDI convention (Middle C = 60, C# = 61, D = 62), but with
fractional parts indicating microtones (62.5 is the next quarter-tone). The pch and oct forms
consist of a whole number, representing octave registration, followed by a specially interpreted
fractional part. For pch, the fraction is read as two decimal digits representing the 12 equal-
tempered pitch classes from .00 for C to .11 for B. For oct, the fraction is interpreted as a true
decimal fractional part of an octave. The two fractional forms are thus related by the factor
100/12. In both forms, the fraction is preceded by a whole number octave index such that 8.00
represents Middle C, 9.00 the C above, etc. Thus A440 can be represented alternatively by 440
(cps), 8.09 (pch), 8.75 (oct), 69 (not), or 7.21 (pch), etc. Microtonal divisions of the pch
semitone can be encoded by using more than two decimal places.

Although negative cps values are not meaningful, negative not, pch, and oct are legal, giving
small or fractional cps values under conversion.

The mnemonics of the pitch conversion units are derived from morphemes of the forms
involved, the second morpheme describing the source and the first morpheme the object (result).
Thus
 cpspch(8.09)
will convert the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440.
Since the argument is constant over the duration of the note, this conversion will take place at I-
time, before any samples for the current note are produced. By contrast, the conversion
 cpsoct(8.75 + K1)
which gives the value of A440 transposed by the octave interval K1 will repeat the calculation
every, K-period since that is the rate at which K1 varies.

N.B. The conversion from not, pch or oct into cps is not a linear operation but involves an
exponential process that could be time-consuming when executed repeatedly (especially at audio
rates). Csound uses a built-in table lookup to do this efficiently.

- 9 -

ARITHMETIC OPERATIONS:
 - a
 + a
 a && b (logical AND; not audio-rate)
 a | | b (logical OR; not audio-rate)
 a + b
 a - b
 a * b
 a / b

where the arguments a and b may be further expressions.

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical
AND logical OR, add, subtract, multiply and divide. Note that a value or an expression may fall
between two of these operators, either of which could take it as its left or right argument, as in
 a + b * c.

In such cases three rules apply:
 1) * and / bind to their neighbors more strongly than + and -.
 Thus the above expression is taken as
 a + (b * c),
 with * taking b and c and then + taking a and b * c.
 2) + and - bind more strongly than &&, which in turn is stronger than | | :
 a && b - c | | d is taken as (a && (b-c)) | | d
 3) When both operators bind equally strongly,
 the operations are done left to right:
 a - b - c is taken as (a - b) - c.

Parentheses may be used as above to force particular groupings.

CONDITIONAL VALUES:
 (a > b ? v1 : v2)
 (a < b ? v1 : v2)
 (a > = b ? v1 : v2)
 (a < = b ? v1 : v2)
 (a = = b ? v1 : v2)
 (a ! = b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater
than b, a less than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not
equal to b), then the conditional expression has the value of v1; if the relation is false, the
expression has the value of v2. (For convenience, a sole ‘=‘ will function as ‘= =‘.) NB.: If v1 or
v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e., the relational operators (>,<, etc.),
and ?, and :) are weaker than the arithmetic and logical operators (+, -, *, /, && and | |).

Example:
 (k1 < p5/2 + p6 ? k1 : p7)

binds the terms p5/2 and p6. It will return the value k1 below this threshold, else the value p7.

- 10 -

EXPRESSIONS:

Expressions may be composed to any depth from the components shown above. Each part of an
expression is evaluated at its own proper rate. For instance, if the terms within a sub-expression
all change at the control rate or slower, the sub-expression will be evaluated only at the control
rate; that result might then be used in an audio-rate evaluation. For example, in

 k1 + abs(int(p5) + frac(p5) * 100/12 + sqrt(k1))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note I-time, and the
remainder of the expression evaluated every k-period. The whole might occur in a unit generator
argument position, or be part of an assignment statement .

DIRECTORIES and FILES:

Many generators and the csound command itself specify filenames to be read from or written to.
These are optionally full pathnames, whose target directory is fully specified. When not
fullpath, filenames are sought in several directories in order, depending on their type and on the
setting of certain environment variables. The latter are optional, but they can serve to partition
and organize the directories so that source files can be shared rather than duplicated in several
user directories. The environment variables can define directories for soundfiles (SFDIR), sound
samples (SSDIR), and sound analysis (SADIR). The search order is:

 Soundfiles being written are placed in SFDIR (if it exists), else the current directory.
 Soundfiles for reading are sought in the current directory, then SSDIR, then SFDIR.
 Analysis control files for reading are sought in the current directory, then SADIR.

NOMENCLATURE:

In Csound there are ten statement types, each of which provides a heading for the descriptive
sections that follow in this chapter:

 assignment statements midi converter statements
 orchestra header statements signal generator statements
 instrument block statements signal modifier statements
 program control statements signal input and output
 duration control statements signal display statements

Throughout this document, opcodes are indicated in boldface and their argument and result
mnemonics, when mentioned in the text, are given in italics. Argument names are generally
mnemonic (amp, phs), and the result is denoted the letter r. Both are preceded by a type
qualifier i, k, a or x (e.g. kamp, iphs, ar). The prefix i denotes scalar values valid at note Init
time; prefixes k or a denote control (scalar) and audio (vector) values, modified and referenced
continuously throughout performance (i.e. at every control period while the instrument is active).
Arguments are used at the prefix-listed times; results are created at their listed times, then remain
available for use as inputs elsewhere. The validity of inputs is defined by the following:

 arguments with prefix i must be valid at Init time;
 arguments with prefix k can be either control or Init values (which remain valid);
 arguments with prefix a must be vector inputs;
 arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above.
Most opcodes (such as linen and oscil) can be used in more than one mode, which one being
determined by the prefix of the result symbol.

- 11 -

ASSIGNMENT STATEMENTS

 ir = iarg
 kr = karg
 ar = xarg
 kr init iarg
 ar init iarg

 ir tival

 ir divz ia, ib, isubst (these not yet implemented)
 kr divz ka, kb, ksubst
 ar divz xa, xb, ksubst

= (simple assignment) - Put the value of the expression iarg (karg, xarg) into the named result.
This provides a means of saving an evaluated result for later use.

init - Put the value of the I-time expression iarg into a K- or A-variable, i.e., initialize the result.
Note that init provides the only case of an Init-time statement being permitted to write into a
Perftime (K- or A-rate) result cell; the statement has no effect at Perf-time.

tival - Put the value of the instrument's internal "tie-in" flag into the named I-variable. Assigns 1
if this note has been 'tied' onto a previously held note (see I Statement); assigns 0 if no tie
actually took place. (See also tigoto.)

divz - Whenever b is not zero, set the result to the value a / b; when b is zero, set it to the value
of subst instead.

Example:

 kcps = i2/3 + cpsoct(k2 + octpch(p5))

- 12 -

ORCHESTRA HEADER STATEMENTS

 sr = n1
 kr = n2
 ksmps = n3
 nchnls = n4

These statements are global value assignments, made at the beginning of an orchestra, before any
instrument block is defined. Their function is to set certain reserved symbol variables that are
required for performance. Once set, these reserved symbols can be used in expressions
anywhere in the orchestra.

sr = (optional) - set sampling rate to n1 samples per second per channel. The default value is
10000.

kr = (optional) - set control rate to n2 samples per second. The default value is 1000.

ksmps = (optional) - set the number of samples in a Control Period to n3. This value must
equal sr/kr. The default value is 10.

nchnls = (optional) - set number of channels of audio output to n4. (1 = mono, 2 = stereo, 4 =
quadraphonic.) The default value is 1 (mono).

In addition, any global variable can be initialized by an init-time assignment anywhere before
the first instr statement.

All of the above assignments are run as instrument 0 (i - pass only) at the start of real
performance.

Example:

 sr = 10000
 kr = 500
 ksmps = 20

gi1 = sr/2.
ga init 0
gitranspose = octpch(.0l)

- 13 -

INSTRUMENT BLOCK STATEMENTS

 instr i, j, ...
 .
 . < body
 . of
 . instrument >
 .
 endin

These statements delimit an instrument block. They must always occur in pairs.

instr - begin an instrument block defining instruments i, j, ...

i, j, ... must be numbers, not expressions. Any positive integer is legal, and in any order, but
excessively high numbers are best avoided. The maximum instrument number is currently 200.

endin - end the current instrument block.

Note:

There may be any number of instrument blocks in an orchestra.

Instruments can be defined in any order (but they will always be both initialized and performed
in ascending instrument number order).

Instrument blocks cannot be nested (i.e. one block cannot contain another).

- 14 -

GENERAL CONTROL STATEMENTS

 igoto label
 tigoto label
 kgoto label
 goto label
 if ia R ib igoto label
 if ka R kb kgoto label
 if ia R ib goto label
 timout istrt, idur, label

where label is in the same instrument block and is not an expression, and where R is one of the
Relational operators (>, <, >=, <=, ==, !=) (and = for convenience, see also under Conditional
values).

These statements are used to control the order in which statements in an instrument block are to
be executed. I-time and P-time passes can be controlled separately as follows:

igoto - During the I-time pass only, unconditionally transfer control to the statement labeled by
label.

tigoto - similar to igoto, but effective only during an I-time pass at which a new note is being
'tied' onto a previously held note (see I Statement); no-op when a tie has not taken place. Allows
an instrument to skip initialization of units according to whether a proposed tie was in fact
successful (see also tival, delay).

kgoto - During the P-time passes only, unconditionally transfer control to the statement labeled
by label.

goto - (combination of igoto and kgoto) Transfer control to label on every pass.

if...igoto - conditional branch at I-time, depending on the truth value of the logical expression "ia
R ib". The branch is taken only if the result is true.

if...kgoto - conditional branch during P-time, depending on the truth value of the logical
expression "ka R kb". The branch is taken only if the result is true.

if...goto - combination of the above. Condition tested on every pass.

timout - conditional branch during P-time, depending on elapsed note time. istrt and idur
specify time in seconds. The branch to label will become effective at time istrt, and will remain
so for just idur seconds. Note that timout can be reinitialized for multiple activation within a
single note (see example next page).

Example:

 if k3 > p5 + 10 kgoto next

- 15 -

 reinit label
 rigoto label
 rireturn

These statements permit an instrument to reinitialize itself during performance.

reinit - whenever this statement is encountered during a P-time pass, performance is temporarily
suspended while a special Initialization pass, beginning at label and continuing to rireturn or
endin, is executed. Performance will then be resumed from where it left off.

rigoto - similar to igoto, but effective only during a reinit pass (i.e., No-op at standard I-time).
This statement is useful for bypassing units that are not to be reinitialized.

rireturn - terminates a reinit pass (i.e., No-op at standard I-time). This statement, or an endin,
will cause normal performance to be resumed.

Example:

The following statements will generate an exponential control signal whose value moves from
440 to 880 exactly ten times over the duration p3.

reset: timout 0, p3 /10, contin ;after p3/10 seconds,
 reinit reset ; reinit both timout
contin: expon 440, p3/10,880 ; and expon
 riretum ; then resume perf

- 16 -

 turnon insno[, itime]
 ihold
 turnoff
 maxalloc* imax[, imethod]

Activate an instrument, or cause it to modify its own duration or density.

INITIALIZATION

itime (optional) - time in seconds until actual turnon. The default value is zero.

imax - maximum number of copies that can be allocated.

imethod (optional) - method of handling additional requests. If non-zero the oldest running copy
will be taken over; if zero, the request will be ignored. The default value is 0 (ignore).

PERFORMANCE

turnon - activate a particular instrument for an indefinite performance time. This is typically
used in the orchestra header section (Instrument 0) to activate an instrument required
continuously (such as one containing reverb or global effects).

ihold - this I-time statement causes a finite-duration note to become a ‘held’ note. It thus has the
same effect as a negative p3 (see Score I-statement), except that p3 here remains positive and the
instrument reclassifies itself to being held indefinitely. The note can be turned off explicitly with
turnoff, or its space taken over by another note of the same instrument number (i.e. it is tied into
that note). Effective at I-time only; no-op during a reinit pass.

turnoff - this P-time statement enables an instrument to turn itself off. Whether of finite
duration or 'held', the note currently being performed by this instrument is immediately removed
from the active note list. No other notes are affected.

maxalloc - an instrument containing this statement can allocate no more than imax instances of
itself. Any further requests (from a score, midifile, or keyboard) will cause either the oldest
running copy to be taken over or the request ignored, depending on imethod. This unit can
prevent a computationally expensive instrument from becoming too prevalent.

Example:

The following statements will cause a note to terminate when a control signal passes a certain
threshold (here the Nyquist frequency).

 k1 expon 440, p3/10, 880 ; begin gliss and continue
 if k1 < sr/2 kgoto contin ; until Nyquist detected
 turnoff ; then quit
contin: a1 oscil a1, k1, 1

- 17 -

STRING SET, PRESET and PROGRAM SET VARIABLES

Many of the following are described as operating at Orchestra load-time. This means they
make their contribution when the Orchestra is first translated and loaded; they have no active
role when the instrument in which they occur is run. Their role is one of setup—of creating
variables, and defining the relationships between them. Their placement is indicative of scope:
those in the Orchestra header (instr 0) generally have global influence, while those in an
instrument have local.

 strset ndx, string

Put a string into an indexed array for later reference.

This unit operates at load-time, putting the string pointer into an internal array at position ndx.
The ndx argument must be a constant, and string is any sequence of characters or spaces
enclosed in double quotes. The opcode can be repeated for multiple string entries. However,
there is a limit of 32 strings that may currently be stored, and the indexes must lie in the range 1 -
32.

Certain opcodes permit one of their input arguments to be either a numeric variable or a string
variable. (See adsyn, pvoc, lpread, soundin, and GEN01.) While a quoted string variable is
most direct, numeric indexing can offer useful flexibility. These opcodes generally interpret a
positive numeric value as an ndx into the array of string pointers defined by strset commands.
While strset is itself a load-time action, the numeric value which references it later need only be
I-time valid, so can come from generated instrument or score event data.

Example:

 strset 1, “pianopiece1”
 strset 2, “/newsamps/piano2.aiff”

 instr 1
a1, a2 soundin p6 ; get whichever and play it
 outs a1, a2
 endin

This would enable the two named soundfiles to be read and played at times determined by score
events. The events may be sequential, overlapping or simultaneous.

- 18 -

 pset con1, con2, con3, ...
 vset* con1, con2, con3, ...
 gvset* con1, con2, con3, ...
 vdim* con1

Give preset values to array variables for later reference or modification.

These units define and initialize numeric arrays at Orchestra load-time. Although they are
defined within an instrument and adhere to its scope, they are not part of its init-time or perf-time
threaded operation. They exist only so their contents can be accessed, modified and re-accessed
over time.

Each array belongs to the instrument template in which it is defined. This means that all
instances of that template (each allocated copy of the instrument) will reference the same
physical array. The current values in that array are thus global to all active copies of the
instrument.

The variable presets must be constants, not expressions or other variables. Variables once
defined can be modified by an accessing instrument, or by external operations (such as ontimer
and sysex). The three forms available are related, but carefully distinguished.

pset - preset the pfield array (maximum of one statement per instrument). These values are
available as I-time defaults. Although an instrument invoked from a numeric score will receive
the pfield values of that score line, the same instrument invoked from a MIDI file or MIDI event
can receive a copy of the template preset values, beginning with the third (positions are ordered:
p1, p2, p3, ...). While for a MIDI invoked instrument its p1 and p2 will always receive the
instrument number and current activation time, slots p3, p4 ... will receive the actual preset
values. These presets are useful when developing a MIDI instrument from a score, and vice
versa.

vset - preset a local v-array (maximum of one statement per instrument). This array (not a copy
as in pset) is directly available to all instances of the host instrument, whether score invoked or
midi invoked. Values are accessed as v1, v2, v3 ..., syntactically similar to p1, p2 ... in that they
are valid at I-time and can be terms of an expression. They can also be modified, except that
(unlike pfields) the modification is seen by all instances, and remains modified until changed
again. These values may also be modified externally (by ontimer vnumset, or sysex), providing a
way for external processes to change the behavior of an active instrument.

gvset - preset a global v-array (maximum one statement per orchestra, header section (instr 0)
only). This array is similar to vset, with members gv1, gv2 ... valid anywhere in the orchestra.
Modifications will be seen by all referencing instruments from the moment they occur. By
further comparison with vset, this enables external processes to modify the behavior of many
different instruments at once.

vdim - create a local v-array of dimension con1 for later loading with data. In the absence of a
vset or vprogs, this unit allows v-symbols to be legal in the current instrument definition.

UPDATES AND EXPRESSIONS

Although preset variables are syntactically similar to i-variables, there is a subtle difference.
Like i-variables they can be bound at I-time with other i-variables or constants in an expression
to form hidden temporary i-variables. But unlike normal i-variables, the vset and gvset members
may be modified during performance, and this change will not be reflected in the intermediate

- 19 -

result. When the intent is for a changed vnum or gvnum to be immediately effective, it should
either be used directly in a k-input, or be assigned to a k-variable before becoming part of an
expression.

Example:
 gvset 12 ; master volume
 instr 1
 pset 0, 0, 3, 4, 5, 6 ; pfield substitutes
 vset 1, 440
 kamp = gv1 ; get current volume
 a1 oscil kamp * 1000, v2, p6 ; and scale it

- 20 -

 pgminit* pgm.bn, ival1[, ival2, ... ival150]
 dpgminit* dpgm.ch, ival1[, ival2, ... ival150]

 vprogs* pgmno1[, pgmno2, ... pgmno32]
 dvprogs* dpgmno1[, dpgmno2, ... pgmno32]

Construct a v-array and initialize it. Associate one or more v-arrays with an Instrument block.

INITIALIZATION

pgmno, dpgmno – base program id numbers (1-128) that identify a specific v-array. Constants
only, valid at Orch load-time. These are of two types, standard and auxilliary (pgmno, dpgmno).
The same id number is valid for different program types, provided each is unique within its type.

pgm.bn, dpgm.ch - like pgmno, dpgmno, with an optional two-digit decimal part denoting a bank
number (0-64) or midi drum channel (1-96), e.g. 1.08. A base pgm or dpgm number can have
only one bank or channel associated with it. The default bank is 0, and default drum channel is
10.

ival1, ival2, .. - values assigned to a specific v-array. Can be either constants or I-time
expressions. The members of a v-array are invoked by the symbols v1, v2, ... v150. When used
in the body of an instrument these are syntactically equivalent to i-variables.

PERFORMANCE

These units define and reference a v-array by a unique program number. pgminit, dpgminit can
occur only in the Orchestra header (instrument 0); vprogs and dvprogs (which can be repeated)
can be used only in subsequent instruments. The program number is the link that associates an
initialized v-array with a specific instrument definition.

When an instrument contains one or more vprogs lists of program numbers, the instrument is
invoked with just one of these programs active. Any v-symbol in the text (v1,v2,…) will have
the value of that member of the currently active program. If the instrument is launched with a
different program number, the v-symbols present will take on the initialized values of the new
set.

A reference to a program number is thus a reference to a specially parameterized instrument
block. During performance this reference can come in the form of a MIDI program change,
which will cause the communicating MIDI channel to invoke the associated instrument with the
v-values set by the pgminit for that program number. In MIDI invocation some instruments are
denoted as drum sets, with a separate auxilliary set of program numbers; in this case, dpgminit
and dvprogs can be used to avoid number clahes with the standard set.

Example:

 ift1 ftgen 1, 0, 2048, 10, 1 ; create two stored ftables
 ift2 ftgen 2, 0, 2048, 10, 3, 2, 1
 pgminit 21, 440, ift1 ; & define two program sets
 pgminit 22, 660, ift2

 instr 1, 2, 3, 4, 5 ; define an instrument type
 vprogs 21, 22 ; & assoc both program sets
 a1 oscil 10000, v1, v2 ; so as to run with either

- 21 -

 out a1
 endin

- 22 -

 dpkeys* dpgm.ch, ikey1, ikey2, …
 dpexclus* dpgm.ch, ikey1, ikey2, …
 inexclus* chnl, ctrlno, ins1, ins2, ins3, …

Set up a drumset keylist or instrument list, and specify any exclusive members.

LOAD-TIME

These statements are valid only in the Orchestra Header section, and are applied only at load-
time. The input arguments must be constants, not variables. The argument dpgm.ch specifies a
drum program and a two-digit channel number (see dpgminit). The default channel is 10.

dpkeys is used to specify which drum-keys will be used within a drumset. The keys should be
listed in ascending order. When a program change is received, the system will make an attempt
to preload all the sound samples needed by the keylist. A dpgminit should precede.

dpexclus is used to specify which drum-keys within a program form an exclusive performing
set. When any member of an exclusive set is activated, all other members of the set still active
are made mute. There can be up to eight exclusive sets defined within a single drum program,
and each exclusive set can have up to 4 members. A dpgminit should precede.

inexclus defines a set of instrument numbers which will operate as an exclusive set when turned
on by a value from midi controller ctrlno. If another member of the set is still active when a new
request is received, that instrument is sent a turnoff message and the new instrument turnon will
be delayed until the first is fully off. If the active instrument contains a note-off sensing "r" unit
such as linenr, its life will be extended and the new instrument turnon will be delayed
accordingly. There can be any number of exclusive instrument sets, and each set can have up to
16 members.

Example:

 dpexclus 1.10, 42, 44, 46 ; make closed, pedal, and open hi-hat
 ; exclusive in channel 10

- 23 -

 sfprogs* pgmno1[, pgmno2, … pgmno32]
 dlsprogs* pgmno1[, pgmno2, … pgmno32]

 dzone*
 endzone*

Associate specialty-type programs with v-arrays and d-arrays in an Instrument block.

PERFORMANCE

sfprogs and dlsprogs, like vprogs, serve to associate an Instrument block with specific Midi
program changes, and will then pass the program-defining data into the activated instrument
during performance. But whereas vprogs is a conduit for both explicitly defined programs
(pgminit) and standard implicit compiled-in ones (autopgms), sfprogs and dlsprogs will pass
data from only auto_sf2 and auto_dls sources, respectively. There can be one or more program
lists in an instrument, but only one type of list per instrument.

dlsprogs will place its articulation data in v-array cells, just like vprogs. The data arriving from
a DLS file is a fixed array of 22 values, pre-processed by the Csound loader from a fixed-point
encoded set into a scaled floating-point array for fast and convenient use by the Instrument. The
parameters imply a specific instrument design (lfo, 2 envelopes, dB volume control, no filter),
which is conveyed by the source file. It uses non-overlapping split data, accessible via v22.
Additional source parameters have been folded into the following scaled set.
 v1 – lfo frequency, in cps v13 – pch envlp attack time
 v2 – lfo delay, in seconds v14 – pch envlp decay time
 v3 – lfo attenuation scale v15 – pch envlp sustain level
 v4 – lfo pitch scale v16 – pch envlp release time
 v5 – lfo modwheel to attenuation v17 – pch envlp velocity to attack
 v6 – lfo modwheel to pitch v18 – pch envlp key to decay
 v7 – vol envlp attack time v19 – default pan (0 – 1)
 v8 – vol envlp decay time v20 – vol envlp to attenuation
 v9 – vol envlp sustain level v21 – vol envlp to pitch
 v10 – vol envlp release time v22 – multi-sample split data
 v11 – vol envlp velocity to attack
 v12 – vol envlp key to decay

sfprogs data implies a more complex instrument. In addition to having a time-varying filter, it
has overlapping split zones, defined by both key number and note-on velocity. This structure
requires multiple layers, either as simultaneous cooperating instruments or as a single multi-
dimensioned instrument. Csound enables the latter by the use of dzones. The dzone statement
declares an area in an instrument in which a new d-array data type is valid; the area is delimited
by an endzone. A d-value is basically a v-value which conveys a different value in different
zones. d-values are strictly local to the current zone, so that a d-symbol (d1, d2, ..) in one zone is
quite independent of the same d-symbol in another. Any other symbols (ival, ksig, etc.) are still
global across all zones. There can be any number of dzones within an instrument. When
sfprogs passes program data to an instrument, it will pass a unique set of d-values to each zone.
An instrument must have enough dzones to accommodate this, and when an instrument is first
associated with a program number, the soundfont Preset which represents that program will print
its maximum required zone depth. An instrument with insufficient zones will render the channel
mute. When an instrument has more zones than currently required (e.g. the current key does not
lie in overlapped zones), the extra zones are simply skipped during performance.

- 24 -

Articulation data from a Soundfont Preset is a 2-dimensional array of n x 58 values, pre-
processed and scaled for efficient use by instruments. Unused slots are available for temporary
calculations, but reserved slots must be left intact. The parameters have the following meaning
in each zone:
 d1 – reserved d31 – key to mod env hold, scale per oct
 d2 – reserved d32 – key to mod env decay, scale per oct
 d3 – reserved d33 – vol env delay, in secs
 d4 – reserved d34 – vol env rise, in secs
 d5 – mod lfo to pitch, in octs d35 – vol env hold, in secs
 d6 – vib lfo to pitch, in octs d36 – vol env decay, in secs
 d7 – mod env to pitch, in octs d37 – vol env sust, as fract
 d8 – filter freq, as midi notnum d38 – vol env rels, in secs
 d9 – filter Q, as dB gain d39 – key to vol env hold, scale per oct
 d10 – mod lfo to filter freq, in nots d40 – key to vol env decay, scale per oct
 d11 – mod env to filter freq, in nots d41 – instrument number
 d12 – reserved d42 – split hi key, as notnum
 d13 – mod lfo to vol, in dB d43 – split lo key, as notnum
 d14 – unused d44 – split lo veloc, as veloc
 d15 – chor fxsend, as fract d45 – reserved
 d16 – rvb fxsend, as fract d46 – forced keynum
 d17 – pan, as fract left d47 – forced veloc
 d18 – ftbl number d48 – init attenuation, in dB
 d19 – reserved (allkeys flag) d49 – split hi veloc, as veloc
 d20 – reserved (allvelocs flag) d50 – reserved
 d21 – mod lfo delay, in secs d51 – reserved
 d22 – mod lfo freq, in cps d52 – reserved
 d23 – vib lfo delay, in secs d53 – sample ID
 d24 – vib lfo freq, in cps d54 – reserved
 d25 – mod env delay, in secs d55 – tuning, in nots
 d26 – mod env rise, in secs d56 – scale tuning, as not mult
 d27 – mod env hold, in secs d57 – reserved (exclus code)
 d28 – mod env decay, in secs d58 – rootkey, as notnum
 d29 – mod env sust, as fract
 d30 – mod env rels, in secs

Example:

instr 1, 2, 3 ; make a simple 2-layer soundfont instr
sfprogs 5, 27, 35 ; for these 3 progs (Presets)

 ioct octmidi
dzone ; 1st zone articulators

k1 dahdsr d33, d34, d35, d36, d37, d38, -96, 0 ; vol envlp as db
down

k2 lfo d24, gisin, d23 ; vibrato lfo
a1 loscil1 10000 * ampdb(k1), cpsoct(ioct + d6 * k2), d18, cpsnot(d58)
garvb fxsend a1, d16
 panouts a1, d17 ; send audio to output

 endzone
dzone ; 2nd zone articulators

k1 dahdsr d33, d34, d35, d36, d37, d38, -96, 0 ; use as above
k2 lfo d24, gisin, d23
a1 loscil1 10000 * ampdb(k1), cpsoct(ioct + d6 * k2), d18, cpsnot(d58)
garvb fxsend a1, d16
 panouts a1, d17

- 25 -

 endzone
 endin

- 26 -

 autopgms*
 auto_sf2*
 auto_dls*

Induce automatic loading and activation of program data.

LOAD-TIME

These statement are valid only in the Orchestra Header section. Each will create an automatic
link between incoming MIDI program changes, the sound samples and articulation data that are
available to the system, and the special vprogs, sfprogs or dlsprogs data cells that pass this
information to an activated instrument.

In a Csound orchestra, an instrument needing special data for its performance (sound samples
and articulation data) must have these preloaded before the first note even begins. This can be
done explicitly at Orch Init time (instr 0) using pgminit, dpgminit and ftsplit, and many of our
best demonstration orchestras are constructed in just this way. However, such an orchestra can
respond to only this set of program changes and articulation data, and no other.

The purpose of the above statements is to induce the Orchestra at Load time to look elsewhere
for sound samples and articulation data. Each statement can infer a different place, and all three
can be present simultaneously. They are characterized as follows:

autopgms will direct the loader to a compiled-in list of programs found in the module progs.c.
This module includes both articulation data and an index into a directory of sound samples that is
part of the standard distribution. Any ensuing program-change can be satisfied with sounds and
data from this standard set, but none of the sound data is loaded until asked for later.

auto_sf2 will cause the loader to open and peruse a file named by the command-line –e flag.
The file should be in SoundFont 2.0 format, and is usually large. It contains all the articulation
data needed by various program changes (called Presets), many of which are multi-layered; it
also includes all the required sound samples within the file. On perusing the file, Csound will
read all the articulation data into Host memory, but will skip over the sound data until asked for
later.

auto_dls will cause the loader to open and peruse a file named by the command-line –j flag.
The file should be in Downloadable Sounds Level 1 format, and is usually large. It contains a
coded version of the signal-processing networks that are the Instruments and programs of this
set; it also includes all the required sounds within the file. On perusing this file, Csound will
read all the articulation data into Host memory, but will skip over the sound data until asked for
later.

When asked to preload the data of a specific program change, Csound will first examine the
Instrument definitions to see which of the above program types is required. It will then
download the articulation data to the DSP, and read the necessary sound samples from the file.

The program data and associated sound samples can be requested in two ways. On opening a
MIDI file, Csound will first scan it for Csound sysex data which lists all the expected program
changes, and will then load the information as described above. If the Midi stream cannot be pre-
searched (e.g. it is being relayed by a Host-based Sequencer), alternative loading is provided by
the Preload feature (-P flag), wherein a Preload list of expected program changes and drumset
keys is given by a file. See Chapter 6, Running from MIDI data.

- 27 -

In all of these cases, the data that distinguishes a program change and its manner of performance
can be preloaded and passed to the respective instruments by the vprogs, sfprogs and dlsprogs
operations. An Orchestra of instruments need only be a set of signal-processing templates or
methods; the different-sounding instances will be induced by the newly arriving program
changes, and the data needed by each program is guaranteed to have been loaded.

These are powerful opcodes, enabling Csound to emulate specific audio synthesis systems, such
as the Roland Sound Canvas SC88, the General Music WK4 synthesizer, the EMU/Creative
SoundFont model, and the DLS general synthesizer. Alternatively, one can mix and match
different program types within a single orchestra. Whichever the approach, these modules can
enable timely loading of the appropriate wavetables and articulation data for any program
change that will be invoked.

- 28 -

MIDI CONTROLLERS and CONVERTERS

These units allow instruments to be controlled from a disk-resident MIDI file, from internally
generated MIDI commands (see “ontimer”), or from an external MIDI device such as a
keyboard. All three sources can be operating simultaneously. Includes automatic scaling for
Csound use.

 massign ichnl, insno
 ctrlinit ichnl, ictlno1, ival1[, ictlno2, ival2[, ictlno3, ... ival32]]
 pctrlinit* pgm.bn, ictlno1, ival1[, ictlno2, ival2[, ictlno3, ... ival32]]
 dpctrlinit* dpgm.ch, ictlno1, ival1[, ictlno2, ival2[, ictlno3, ... ival32]]
 uctrlmap* ictlno[, ilow, ihigh]
 dsctrlmap* iparm[, ilow, ihigh]

 ival midictrl ictlno[, ilow, ihigh]
 kval midictrl ictlno[, ilow, ihigh]
 ival chanctrl ichnl, ictlno[, ilow, ihigh]
 kval chanctrl ichnl, ictlno[, ilow, ihigh]
 ival dsctrl* iparm

Assign channels, set MIDI controller values, or get values from continuous controllers and
convert them to a locally useful format.

INITIALIZATION

pgm.bn, dpgm.ch – base program id numbers (1-128), with bank or channel suffixes and their
defaults as in pgminit, dpgminit. Constants only, so as to be valid at Orchestra load-time.

ichnl, ictlno - MIDI channel number (1 - 96) and MIDI controller number (0 - 120).

ilow, ihigh (optional) - I-time range pair onto which an incoming byte value 0-127 will be
mapped. The default range for the above units is 0 - 127.

PERFORMANCE

These units manipulate the 121 controller values that are associated with each midi channel.
Controllers belong to a channel, and any instrument invoked on a channel has access to all of the
channel's controllers.

massign, ctrlinit - these commands will first open a MIDI channel (if not already open) and
initialize the channel controllers to a standard set of default values. massign will then assign the
channel to a specific Csound instrument with the defaults intact. ctrlinit will selectively
override the defaults by reinitializing them to other values (it presumes the channel has been
assigned to an instrument, or to instr 1 by default). These units are orchestra header
statements, executed as part of instrument 0 before any other instruments are run. The units are
repeatable, i.e. there can be any number of these statements in the orchestra header. If both units
are applied to the same channel (assign and override), massign should precede.

pctrlinit, dpctrlinit - reinitialize one or more controllers following a program change (see
vprogs). These are orchestra header statements, executed as part of instrument 0. In contrast
to ctrlinit, these values are saved and used later to reinit certain controllers following a program

- 29 -

change on the invoking channel. There can be only one init list (max of 32 overrides) for each
base program id.

uctrlmap - set up a universal mapping function for a specific controller (all channels). This is
an orchestra header statement, executed at instrument 0 time. Thereafter, all incoming
controller values of that number will be mapped as directed, and the mapped value will then
serve as the current value of that controller on the invoking channel. This unit provides an
efficient means of scaling a standard controller value to the required range immediately on
arrival; the scaled value can then be accessed by any instrument on that channel via the symbols
c0, c1, c2, ... c120.

dsctrlmap - set up a drumset mapping function for a specific parameter (all drum channels).
This is an orchestra header statement, executed only at instrument 0 time. Thereafter, all
incoming drum instrument parameter settings of this number will be mapped as directed, and the
mapped value will then serve as the current value of that parameter. Drum instrument
parameters are set via non-registered parameter numbers (NRPN's) arriving on a drum channel.
The numbering (normally a MSB value) varies among manufacturers, but this unit enforces a
simple numbering for both mapped storage and later retrieval. For GS MIDI the number
relations are:
 1: MSB 24 (drum instr pitch) 4: MSB 29 (drum instr reverb send)
 2: MSB 26 (drum instr volume) 5: MSB 30 (drum instr chorus send)
 3: MSB 28(drum instr pan) 6: MSB 31 (drum instr delay send)
The current values can be referenced via the simple numbers (1 - 6).

midictrl, chanctrl - get the current value of a controller and optionally map it onto a specific
range. These units are part of some instrument, operating only when that instrument is activated.
Their purpose is to grab the current value of a controller, which may have been modified from its
initial value by some external process or device. Since each channel has its own set of
controllers, these units differ in that the first will access the controller set of the current channel,
while the second can access the controllers of some other channel. The optional mapping should
be used only if universal mapping (see uctrlmap) is not in effect; the option here is to provide a
raw controller value with different mappings on different channels.

dsctrl - get the current value of a drumset instrument parameter on the current channel using
simplified parameter numbering (see dsctrlmap). The values are scaled only on arrival.

Example:
 uctrlmap 7, 0, 650 ; always map volume
 uctrlpan 10, 0, 1 ; and pan

- 30 -

 ival miditran idist
 ival veloc [ilow, ihigh]
 inot notnum
 inot notnumb [isens]
 knot notnumb [isens]
 icps cpsmidi
 icps cpsmidib [isens]
 kcps cpsmidib [isens]
 ioct octmidi
 ioct octmidib [isens]
 koct octmidib [isens]
 ipch pchmidi
 ipch pchmidib [isens]
 kpch pchmidib [isens]
 iamp ampmidi iscal[, ifn]
 kaft polyaft [ilow, ihigh]
 kaft aftouch [ilow, ihigh]
 ibnd pchbend [ilow, ihigh]
 kbnd pchbend [ilow, ihigh]

Modify or get a value from the MIDI event that activated this instrument, and convert it to a
locally useful format, such as scaled by a non-MIDI value to make it optimum for Csound use.

INITIALIZATION

idist – transposing interval in semitones (up or down).

isens (optional) – pitch bend sensitivity (in semitones) by which the current note value 0-127 can
be modified by a pitch bend value (up or down) prior to output in the requested form. If isens is
2, a full bend will modify the pitch by two semitones each way. Standard sensitivity is either 2
or 12. If the isens value here is zero, the sensitivity is taken from that for the channel (normally
2, but changeable by RPN controller values). The default value is 0 (get from the channel).

ilow, ihigh (optional) - I-time range pair onto which an incoming byte value 0-127 will be
mapped. The default range for most units is 0, 127; the default range for pchbend is -1, +1.

ifn (optional) - function table number of a normalized translation table, by which the incoming
value is first interpreted. The default value is 0, denoting no translation.

PERFORMANCE

miditran – transpose the current MIDI note number by idist semitones, i.e. make this a
transposing instrument. This unit normally occurs at the top of an instrument, so that all
subsequent pitch references are with respect to the transposed value.

veloc - get the MIDI byte value (0 - 127) denoting the velocity of the current event, and
optionally remap it linearly to a different range.

notnum, cpsmidi, octmidi, pchmidi - get the note number of the current MIDI event, or express
it in cps, oct, or pch units for local processing.

notnumb, cpsmidib, octmidib, pchmidib - get the note number of the current MIDI event,
modify it by the current pitch-bend value (with isens scaling), and express the result in not, cps,
oct, or pch units. The output is available as an I-time value or as a continuous ksig value.

- 31 -

ampmidi - get the velocity of the current MIDI event, optionally pass it through a normalized
translation table, and return an amplitude value in the range 0 - iscal.

polyaft, aftouch - get the general (across all channels) or current channel after-touch value, and
map it to the specified range.

pchbend - get the current pitch-bend value for this channel, and map it to the specified range.
Note that this access to pitch-bend data is independent of the MIDI pitch, enabling the value here
to be used for any arbitrary purpose.

- 32 -

 veloffs*

Make this instrument sensitive to MIDI noteoff velocities.

PERFORMANCE

This unit is seen only at Orchestra translation and load-time, but its effect continues throughout
Performance. Its purpose is to enable an instrument to respond to the noteoff velocities which
are sometimes sent by MIDI files and MIDI performance keyboards.

Many unit generators in the following pages have names ending in “r” (linsegr, linenr, adsr).
(Some of these also have an irindep argument.) These units are capable of extending the
duration of a note by an additional “release time”, and an instrument containing one of these
units will (on reaching the end of its p3 duration or on sensing a MIDI noteoff signal)
immediately go into release mode and automatically extend its duration by the stated release
time. For scored p3 event times, release time is based on I-time data and extension proceeds as
directed. But for MIDI events, the noteoff command (which signals the event closing) comes in
two flavors: a noteon with velocity 0, or a noteoff with a release velocity. In the latter case, the
presence of a veloffs command will cause the r-unit release time to vary with the release
velocity.

Two rules govern r-unit release times. An extended release is necessarily the property of a note,
so if two or more r-units in an instrument have different release times, and their rindep flag is
off, each will use the longer time. Secondly, if the instrument contains a veloffs command, and
if the turnoff data is a MIDI command with noteoff velocity (0 - 127), the r-unit release time will
be modified. The mapping is exponential, and ranges from one-tenth the given release time (for
high velocities) to ten times the given time (for low velocities). Thus if an adsr has a release
time of 0.1 seconds, a keyboard performer with good release control could vary the actual time
to range from .01 to 1 seconds. A MIDI noteoff velocity of 64 will preserve the original time
value.

Example:

 instr 1
 iamp veloc 0, 5000
 icps cpsmidi
 veloffs
 k1 linenr iamp, .03, .1
 a1 oscil k1, icps, 1
 out a1
 endin

This instrument will permit its release time of .1 seconds to be actively modified by the
performer.

- 33 -

 VALUE SELECTORS and SPLITTERS

 ival mselect* iscal, index, ival0, ival1[, ival2, … ival15]
 kval mselect* kscal, index, kval0, kval1[, kval2, … kval15]

Index into an argument list and scale the selected value.

INITlALIZATION

index – selector index (0-15), used to choose amongst up to 16 input arguments.

PERFORMANCE

These units use a predefined index code to select from a set of control values or control signals,
and the selected value is then multiplied by a scaling factor prior to output.

These units operate at the I-time rate or at the k-rate, depending on the type of output argument.
index is always an I-time input, validated in the normal way. I-time mselect will choose from
amongst a set of constants or I-time variables. For k-rate mselect, the k-time inputs (kscal,
kval0, kval1, …) may variously contain control signals or constants or i-variables.

mselect is useful for such things as dynamic selection of control signals or modulation sources,
especially during performances of an instrument template with behavior-modifying needs, such
as those induced by MIDI program-changes and channel controllers.

Example:

 kfc mselect kscal, index, ksig1, ksig2, c1, c7, c11, 0, 1000 ; set filter freq
 ; from amongst various controllers & control signals

- 34 -

 id ftsplit* isets, jsize, i1j1, i1j2, ... ,i2j1,i2j2, ... ,i3j1, ... [, isets2, jsize2, …]
i1,i2,i3,...i10 mtsplit* [id, ilay]

Store and retrieve multi-sample data from a two-dimensional list, with optional multi-layers.

INITIALIZATION

isets, jsize - dimensions of the array of values (i1j1, i1j2,...) in a layer, where the total number of
injn values listed must equal isets x jsize (in that layer).

id (optional) - identifier relating the two opcodes. 0 if autopgms in use. The default value is 0.

ilay (optional) - layer level of data to be accessed in the split array. The default value is 1.

PERFORMANCE

These units allow a multi-sample instrument to gain quick acccess to parameters that pertain to
its current pitch. The data can also be organized and retrieved in layers.

ftsplit (instr 0 header only) creates a structured list of isets groups of jsize items for later access
via id. Each group consist of a MIDI split point, followed by parameter values that pertain to
notes at or above the split. The first split is zero, and splits for other groups in a layer must be in
ascending order. A new zero denotes the start of a new layer. The number of items in each
group (including the split) must equal jsize, and the total number of all groups must equal isets.
The resulting array is given a unique id that may be referenced at any time during performance.

mtsplit is an I-time function that permits an instrument to access information stored by ftsplit
simply by invoking id and ilay values. The current midinote is used as an index into the array
for a given layer, and the result cells (up to 10) are automatically filled with data from the
appropriate split-point group. This enables a multi-sampled and multi-layered instrument to
access multiple control values across its entire pitch range. Multiple layers may be referenced in
any order.

The unique id can be specified directly, or via indirect selection. An example of the latter is seen
when two or more id symbols are imbedded in alternate midi program data, and the choice is
made by a vprogs program change. In fact, when autopgms is enabled (ftsplit not actually
present, but a hidden one is implied), this indirect strategy is the one internally implemented.

Example:

 ip1 ftload "pno1"
 ip2 ftload "pno2" ; load samples
 ih1 ftload "hrp1"
 ih2 ftload "hrp2"
 ispn ftsplit 2,2, 0,ip1, 60,ip2 ; set up split data
 ishp ftsplit 2,2, 0,ih1, 58,ih2
 pgminit 1,ispn ; & store each id in a pgm
 pgminit 7,ishp

 instr 3,4
 vprogs 1,7 ; on a program change
 iamp ampmidi 1000
 icps cpsmidi
 ift mtsplit v1 ; fetch the right split data

- 35 -

 a1 loscil1 iamp, icps, ift ; & play from that ftable

- 36 -

FTABLES

 iafno ftgen ifno, itime, isize, igen, iarga[, iargb, ...iargz]
 iafno ftload* ifilnam[, iskiptime, iformat, ichnl, inorm]
 iafno ftstep* ix1, ia, ix2, ib[, ix3, ic, ...], ixn
 ftscale* ifno, iscale

These units allow stored function tables, normally defined in a Csound score (see the F
statement), to be defined in the orchestra.

INITlALIZATION

iafno - ftable number, either requested or automatically assigned (101, 102, 103). A global
(giafno) can be referenced from any instrument in the orchestra.

ifno, itime, isize, igen, iarga, iargb , ..- input values as described in the score F statement, except
for the following differences:
 ifno if zero, an ftable number is automatically assigned (101, ...) and copied into iafno.
 if non-zero, the requested number is copied into iafno.
 itime ignored, effectively the action time of this instr (e.g. time 0 for header
statements).

ifilnam - file name enclosed in quotes of a disk-resident sample file, expected in either the
current directory or that defined by SFDIR.

iskiptime, iformat, ichnl (optional) - input values as described in GEN01. All values default to 0.

inorm (optional) – normalization flag (normalize to +,-1, else no rescaling). Default value is 1
(normalize ON).

x1, a, x2 ... - input values as described in GEN17 (x-ordinate plus y-value pairs), except that a
final x-ordinate is required to define the size of the function table.

PERFORMANCE

These units bring ftable generation into the orchestra. Table creation time is either at Orchestra
Init (header statements, instr 0) or at each action time of an instrument containing one of these
units. Each table may be automatically assigned a number, which can be referenced
symbolically to reduce the book-keeping that attends score definition. However, automatic
numbering means that ftable numbers above 100 should not be explicitly used.

ftgen - invoke any ftable generator, as described in the Gen Routines of Chapter 4. Note that
when using Extended Csound, the ftable (normally local) can optionally be stored in host
memory by appending a fractional part (.3) to ifno. The fraction .35 will additionally give the
table two other downsampled forms (by 2 and by 4), to speed access by an loscil unit.

ftload - a brief way of invoking GEN01 (read a file from disk) when the filename is known (not
generated) and the size is automatically deferred. Useful for reading sampled sound into an
ftable.

ftstep - a brief way of invoking GEN17 with no rescaling. Creates a step function from x = 0
using some number of x,y coordinate points (x ordinates increasing). Must terminate in a single

- 37 -

x ordinate (power-of-two or one less), to define the overall size of the ftable. Useful for mapping
midi note numbers onto control data such as ftable numbers.

ftscale - rescale an existing ftable by the factor iscale. When neither the original amplitude nor
rescaling to unity is suitable, an existing ftable can be rescaled by any factor. This is useful for
balancing a set of recorded samples for consistent voicing. No fidelity is lost in rescaling.

Example:

 ivln1 ftload "violin.C4" ; get 3 violin tones
 ivln2 ftload "violin.A4"
 ivln3 ftload "violin.F#5
 givtbl ftstep 0, ivln1, 64, ivln2, 73, ivln3, 127 ; fn to map to them from midi

 ftscale ivln1, 1.2 ; make the 1st a little louder
 ftscale ivln3, 0.9 ; and the 3rd a little softer

- 38 -

MACROS

 macro* name
 endm*

Define a group of Orchestra statements for use later in the text.

Csound statements that are frequently used in fixed combinations may be defined as a macro and
invoked anywhere in the orchestra text. Macros must be defined at the top of the Orchestra file;
they may be preceded by or contain comments or blank lines, but they cannot be preceded by
any real opcodes (such as orchestra header statements). There is currently a limit of ten macro
definitions in an orchestra.

Macros will be expanded as literal text repeats; no parameter substitutions are possible. On
expansion, the text will be translated as if each line were in the original file. Argument names
and labels must conform to the syntax of a normal Csound Orchestra.

On compiling the expanded orchestra, Csound will flag syntactic errors. Line numbers will be
those of the unexpanded text. Problems with a macro call inside an instrument will be flagged as
problems in the original definition.

While the use of macros is an editing convenience, there will be a tendency to include statements
not always necessary at every invocation. One should use the editing convenience in pursuit of
elegant and efficient instrument designs, especially if realtime performance is the goal.

Example:

 ; this is my first macro
 macro getmidi
 iamp veloc 0, 100
 kcps cpsmidib 2
 kvol midictrl 7, 0, 20 ; chk this later -- maybe too fussy !
 kamp = iamp * kvol
 endm

 sr = 16000

 instr 1,2,3
 getmidi
 a1 oscil kamp, kcps, 1
 out a1
 endin

- 39 -

SIGNAL GENERATORS

 kr line ia, idur1, ib
 ar line ia, idur1, ib
 kr expon ia, idur1, ib
 ar expon ia, idur1, ib
 kr linseg ia, idur1, ib[, idur2, ic[...]]
 ar linseg ia, idur1, ib[, idur2, icI...]]
 kr linsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
 ar linsegr ia, idur1, ib[, idur2, icI...]], irel, iz
 kr expseg ia, idur1, ib[, idur2, ic[...]]
 ar expseg ia, idur1, ib[, idur2, ic[...]]
 kr expsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
 ar expsegr ia, idur1, ib[, idur2, ic[...]], irel, iz

Generate straight line segment(s) or exponential curve segment(s), with optional noteoff sensing.

INITIALIZATION

ia, ib, ic, etc. - value at start, and after dur1 seconds, etc. Exponentials cannot include zero.

idur1 - duration in seconds of first segment. A negative value will skip all initialization.

idur2, idur3, etc. - duration in seconds of subsequent segments. A zero or negative value means
move immediately to the next point, permitting discontinuities in the line or curve sequence.

irel, iz - duration in seconds and final value of a note releasing segment.

PERFORMANCE

These units generate control or audio signals whose values can pass through 2 or more specified
points. The sum of dur values may or may not equal the instrument's performance time: a
shorter performance will truncate the specified pattern, while a longer one will hold the last-
defined point (or the one before a release segment).

linsegr, expsegr are amongst the Csound “r” units that contain a note-off sensor and release
time extender. When each senses an event termination or MIDI noteoff, it immediately extends
the performance time of the current instrument by irel seconds, and sets out to reach the value iz
by the end of that period (no matter which segment the unit is in). “r” units can also be modified
by MIDI noteoff velocities (see veloffs). For two or more extenders in an instrument, extension
is by the greatest period.

Example:

 k2 expsegr 440, .25, 880, .25, 440, .1, 660

This statement creates a control signal which moves exponentially from 440 to 880 and back
over one half second, then remains there until it senses a noteoff, when it goes to 660 in the extra
tenth.

- 40 -

 kr linseg4* ia, idur1, ib, idur2, ic, idur3, id, idur4, ie [, imode, itmap, ilvlvel,
 iatvel, iktrk]

 kr linseg4r* ia, idur1, ib, idur2, ic, idur3, id, idur4, ie, irel, iz[, irind, imode,
itmap, ilvlvel, iatvel, iktrk, irelmod]

Generate a four-segment control signal, with optional velocity and key tracking influence.

INITIALIZATION
ia, ib, ic, id, ie – ouput value at start, and after the intervening dur1, dur2 … seconds.
idur1, idur2, etc. – duration in seconds of intervening line segments. A zero or negative value
means move immediately to the next point, permitting discontinuities in the line sequence.
irel, iz - duration in seconds and final value of a note releasing segment.
irind (optional) – independence flag. If non-zero, the release time irel will not follow the
instrument maximum (see adsr). The default value is 0 (will follow).
imode (optional) – mode of operation. There are 3 modes available:

0 – normal mode, in which the 4th segment end value ie will be sustained until the current
note is released, at which time the output will move over irel seconds to the value
iz.

1 – finish mode, in which the sustain portion is skipped, and the release portion happens
immediately as a 5th segment, stopping at the value iz.

2 – repeat mode. When the 4th segment terminates at ie, output will then move over idur1
seconds to the value ib, then over idur2 to ic, etc., repeating this loop until the note
is released, when the output will move over irel seconds to the value iz.

The default mode is 0 (normal mode).
itmap (optional) – invoke time mapping. If non-zero, all time arguments (0 – 99) will be mapped
through an internal psuedo-exponential function, represented by the following sample points:

0 0 30 .44 60 3.2 85 18
1 .01 36 .62 65 4.6 90 26
2 .02 43 1.0 70 6.5 95 37
10 .1 50 1.6 75 9.3 99 49
25 .30 55 2.3 80 13

Time mapping is required for the options below. The default value is 0 (unmapped, no extra
opts).
ilvlvel, iatvel, irelmod (optional) – velocity to level, velocity to attack, velocity to release. These
are scaling factors (0 to 1) that cause the midi-event onset velocity to modify the input levels
ia…iz, the rise time idur1, and the release time irel, respectively, each by a proportionate amout.
If ilvlvel is non-zero, velocities less than 127 will decrease the levels by a proportionate amount.
If iatvel is non-zero, velocities above zero will decrease the rise time by a proportionate amount.
If irelmod is non-zero, velocities above zero will decrease the release time by a proportionate
amount. The magnitude of this influence is proportional to the scaling factors (0 to 1); negatives
will cause the reverse effect. The default values are each 0 (no influence due to velocity).
iktrk (optional) – key-number to timing. This is a scaling factor that causes the midi-event key
number to modify the durations of the middle segments. The key influence pivots around key
66: high key numbers will decrease the time values, while low key numbers will increase the
values. The magnitude of this influence is proportional to the iktrk scaling factor (0 to 1);
negatives will cause the reverse effect. The default value is 0 (no influence due to key number).

PERFORMANCE

- 41 -

These are specialty line-segment generators that incorporate several desirable functions that
would otherwise be tedious to obtain using normal Csound opcodes. Their inclusion here allows
them to be invoked simply and efficiently.

- 42 -

 kr adsr* iris, idec, isus, irel, ibas, ipeak[, iconv][, irind][, ioff]
 ar adsr* iris, idec, isus, irel, ibas, ipeak[, iconv][, irind][, ioff]
 kr dahdsr* idel, iris, ihold, idec, isus, irel, ibas, ipeak[, iconv][, irind][, ioff]

Generate a four- or six-segment control signal or audio signal, with optional convex rise.

INITIALIZATION

idel, iris, ihold, idec, irel - time in seconds for the delay, rise, hold, decay and release segments
of the signal. A zero value in any position will move the envelope immediately to the next
segment.

ibas, ipeak – floor and ceiling values between which the segments will rise and fall. Can be
positive or negative values, with a positive or negative difference (polarity), but one of the pair
must be 0 (e.g. 0,1; 1,0; -96,0; etc.). The rise segment will traverse the full range (ibas to
ipeak), after which the remaining segments will trace a return to the base value. In dahdsr the
delay segment will iterate the initial base value, and the hold will iterate the peak value.

isus – fraction of the peak value to which the decay will fall. This value will then be sustained
until the instrument receives a note-off command, when the unit will release towards its base.

iconv (optional) – convex rise flag. If non-zero, will cause the rise segment to be convex while
other segments remain linear. The curve is such that a –96 to 0 span will, under ampdb
transformation, revert to a linear rise. The default value is 0 (not convex).

irind (optional) - independence flag. If non-zero, the release time (irel) will not follow the
instrument maximum (see below). The default value is 0 (will follow).

ioff (optional) – end-of-release turnoff flag. If non-zero, an internal sensor will automatically
turn off the instrument upon reaching end-of-release. The default value is 0 (no turnoff).

PERFORMANCE

adsr and dahdsr provide efficient and flexible segments suitable for amplitude and pitch
control. The second unit is identical to the first, but can prolong the start and end values (base,
peak) that surround the rise segment. dahdsr currently exists only as a control-signal generator.

These units ordinarily generate straight lines in each segment, which are often then exponentially
modified for appropriate amplitude or pitch control. The rise segment, however, can optionally
be a convex curve, so that the rise shape will retain a linear character under such modification.

The segment timings (in seconds) are often made to vary with note-on velocity or key number,
applied as I-time calculations. Also, as in other "r" units, the release time may be further
modified by a velocity-bearing MIDI note-off (invoked by a veloffs anywhere in the instrument).

Example:

 icps cpsmidi ; notnum in cps form
 ioct octmidi ; notnum in oct form
 idec = .2 ; decay for middle C
 ifact = .5 ; factor per octave up
 idec = idec * twopwr((8 – ioct) * ifact) ; decay for this note
 kdb adsr .1, idec, .9, .3, -96, 0, 1 ; amp envlp as dB down
 a1 oscil 10000 * ampdb(kdb), icps, 1 ; now applied to audio sig

- 43 -

 kr dexponr* ival, idel, idecrat, irel
 ar dexponr* ival, idel, idecrat, irel

Trace a delayed exponential decay, with note-off release.

INITIALIZATION

ival, idel - initial value, and time in seconds for which it will be held.

idecrat - decay rate, as a fractional rate per second, that will be applied to ival after idel seconds.

irel - release time in seconds, following a note-off command.

PERFORMANCE

These units generate control envelopes, by which an independent audio signal can be
progressively decayed. They are particularly useful for modifying the amplitude output of a
looping oscilator, so that it appears to lose energy during its psuedo steady-state. The initial
delay allows the sampled attack portion to remain untouched, and should be set to the first loop
point in the sample. The decay rate should also be chosen to suit the sampled sound and the
pitch at which it is being played. The release path is linear towards zero over the given time.

dexponr is among the Csound "r" units that contain a note-off sensor and release time
extender. On sensing an event termination or MIDI noteoff, it immediately extends the
performance time of the current instrument by irel seconds, then moves linearly to the value zero
in the extra time allotted. For 2 or more extenders in an instrument, extension is by the greatest
period.

Example:

 kamp dexponr 1, ftlptim(ifn), .77, .1 ; create a delayed amp decay
 a1 loscil1 kamp, 440, ifn, 261 ; and modify the sample

- 44 -

 kr phasor kcps[, iphs]
 ar phasor xcps[, iphs]

Produce a normalized moving phase value.

INITIALIZATION

iphs (optional) - initial phase, expressed as a fraction of a cycle (0 to 1). A negative value will
cause phase initialization to he skipped. The default value is zero.

PERFORMANCE

An internal phase is successively accumulated in accordance with the cps frequency to produce a
moving phase value, normalized to lie in the range 0. <= phs < 1.

When used as the index to a table unit, this phase (multiplied by the desired function table
length) will cause it to behave like an oscillator.

Note that phasor is a special kind of integrator, accumulating phase increments that represent
frequency settings.

Example:

 k1 phasor 1 ; cycle once per second
 kpch table k1 * 12, 1 ; through 12-note pch table
 a1 oscil p4, cpspch(kpch), 2 ; with continuous sound

- 45 -

 ir table indx, ifn[, ixmode][, ixoff][, iwrap]
 ir tablei indx, ifn[, ixmode][, ixoff][, iwrap]
 kr table kndx, ifn[, ixmode][, ixoff][, iwrap]
 kr tablei kndx, ifn[, ixmode][, ixoff][, iwrap]
 ar table andx, ifn[, ixmode][, ixoff][, iwrap]
 ar tablei andx, ifn[, ixmode][, ixoff][, iwrap]
 ir dtable* indx, ifn
 kr oscil1 idel, kamp, idur, ifn
 kr oscil1i idel, kamp, idur, ifn
 ar oscil1 idel, xamp, idur, ifn
 ar oscil1i idel, xamp, idur, ifn
 ar osciln kamp, ifrq, ifn, itimes

Table values are accessed by direct indexing or by incremental sampling.

INITIALIZATION

ifn - function table number. tablei, oscil1i require the extended guard point.

ixmode (optional) - ndx data mode. 0 = raw ndx, 1 = normalized (0 to 1). The default value is 0.

ixoff (optional) - amount by which ndx is to be offset. For a table with origin at center, use
tablesize/2 (raw) or .5 (normalized). The default value is 0.

iwrap (optional) - wraparound ndx flag. 0 = nowrap (ndx < 0 treated as ndx=0; ndx > tablesize
sticks at ndx=size), 1 = wraparound. The default value is 0.

idel - delay in seconds before oscil1 incremental sampling begins.

idur - duration in seconds to sample through the oscil1 table just once. A zero or negative value
will cause all initialization to be skipped.

ifrq, itimes - rate and number of times through the stored table.

PERFORMANCE

table invokes table lookup for init, control or audio indices—as raw numbers (0,l,2...size-1) or
scaled values (0 to 1-e). Indices are first modified by the offset value then checked for range
before table lookup (see iwrap). If ndx can go to full scale or interpolation is being used, the
table should have an extended guard point. table indexed by a periodic phasor simulates an
oscillator.

dtable is a very fast table lookup, operating only at instrument I-time. It does no range-checking
or wrap around, and presumes the raw index is exactly within range. It does not use
interpolation. This unit is often used for extracting values from a GEN17-generated table of
split-point data.

oscil1 accesses values by sampling once through the function table at a rate determined by idur.
For the first idel seconds, the point of scan will reside at the first location of the table; it will then
move through the table at a constant rate, reaching the end in another idur seconds; from that
time on (i.e. after idel + idur seconds) it will remain pointing at the last location. Each value
obtained is then multiplied by an amplitude factor kamp before being written into the result.

- 46 -

osciln will sample several times through the stored table at a rate of ifrq times per second, after
which it will output zeros. Generates audio signals only, with output values scaled by kamp.

tablei and oscil1i are interpolating units in which the fractional part of ndx is used to interpolate
between adjacent table entries. Interpolation is at some cost in execution time (see also oscili),
but interpolating and non-interpolating units are otherwise interchangeable. Note that when
tablei uses a periodic index whose modulo n is less than the power of 2 table length, the
interpolation requires that there be an (n + 1)th table value that is a repeat of the 1st (see F
statement in Score).

- 47 -

 kr lfo* kcps, ifn[, idel, iphs]
 kr oscil kamp, kcps, ifn[, iphs]
 kr oscili kamp, kcps, ifn[, iphs]
 ar oscil xamp, xcps, ifn[, iphs]
 ar oscili xamp, xcps, ifn[, iphs]
 ar foscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs]
 ar foscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs]
 ar coscil* xamp, kcps, kcents, ifn[, iphs]

Table ifn is incrementally sampled modulo the table size and the value obtained is scaled by
amp.

INITIALIZATION

ifn - function table number. Requires a wrap-around guard point.

idel (optional) - delay in seconds before incremental sampling begins. The default value is 0.

iphs (optional) - initial phase of sampling, expressed as a fraction of a cycle (0 to 1). A negative
value will cause phase initialization to be skipped. The default value is 0.

PERFORMANCE

The oscil units output periodic control (or audio) signals consisting of the value returned from
sampling a stored function table, scaled by kamp (xamp). The internal phase is then advanced
according to cps. lfo is unique in having an initial delay and no amplitude scaling. While amp
and cps inputs to K-rate oscils are scalar only, the inputs to audio-rate oscils may be either scalar
or vector, thus permitting amplitude and frequency modulation at either sub-audio or audio rates.

foscil is a composite unit that effectively banks two oscils in the familiar Chowning FM setup,
wherein the audio-rate output of one generator is used to modulate the frequency input of
another (the "carrier"). Effective carrier frequency = kcps * kcar, and modulating frequency =
kcps * kmod. For integral values of kcar and kmod, the perceived fundamental will be the
minimum positive value of kcps * (kcar - n * kmod), n = 0,1,2,.. The input kndx is the index of
modulation (usually time-varying and ranging 0 to 4 or so) which determines the spread of
acoustic energy over the partial positions given by n = 0,1,2,.., etc. ifn should point to a stored
sine wave.

coscil is a chorusing oscillator that banks three oscils in detuned additive synthesis. The
detuning interval kcents (100 for a semitone) causes the second and third oscillators to add sound
above and below the central kcps frequency to provide an efficient chorusing effect. The three
units are internally added and scaled to unity before the amplitude xamp is applied. coscil is
available only with krate frequency controls, and there is no interpolating version.

oscili and foscili differ from oscil and foscil respectively in that the standard procedure of using
a truncated phase as a sampling index is here replaced by a process that interpolates between two
successive lookups. Interpolating generators will produce a noticeably cleaner output signal, but
they may take as much as twice as long to run. Adequate accuracy can also be gained without
the time cost of interpolation by using large stored function tables of 2K, 4K or 8K points if the
space is available.

Example:

 k1 lfo 5, 1 ; 5 cps vibrato (fn 1 is sinusoid)

- 48 -

 a1 oscil 5000, 440 + 10 * k1, 1 ; of +/- 10 cps around A440

- 49 -

 ar1 [,ar2] loscil xamp, kcps, ifn[, ibas][, imod1,ibeg1,iend1][, imod2,ibeg2,iend2]

Read sampled sound (mono or stereo) from a table, with optional sustain and release looping.

INITIALIZATION

ifn - function table number, typically denoting an AIFF sampled sound segment with prescribed
looping points. The source file may be mono or stereo.

ibas (optional) - base frequency in cps of the recorded sound. Optionally overrides the
frequency given in the AIFF file, but is required if the file did not contain one. The default is 0
(no override).

imod1, mod2 (optional) - play modes for the sustain and release loops. A value of 1 denotes
normal looping, 2 denotes forward & backward looping, 0 denotes no looping. The default value
(-1) will defer to the mode and the looping points given in the source file.

ibeg1, iend1, ibeg2, iend2 (optional, dependent on mod1, mod2) - begin and end points of the
sustain and release loops. These are measured in sample frames from the beginning of the file,
so will look the same whether the sound segment is monaural or stereo.

PERFORMANCE

loscil samples the ftable audio at a rate determined by kcps, then multiplies the result by xamp.
The sampling increment for kcps is dependent on the table’s base-note frequency ibas, and is
automatically adjusted if the orchestra sr value differs from that at which the source was
recorded. In this unit, ftable is always sampled with interpolation.

If sampling reaches the sustain loop endpoint and looping is in effect, the point of sampling will
be modified and loscil will continue reading from within that loop segment. Once the instrument
has received a turnoff signal (from the score or from a MIDI noteoff event), the next sustain
endpoint encountered will be ignored and sampling will continue towards the release loop end-
point, or towards the last sample (henceforth to zeros).

loscil is the basic unit for building a sampling synthesizer. Given a sufficient set of recorded
piano tones, for example, this unit can resample them to simulate the missing tones. Locating
the sound source nearest a desired pitch can be done via table lookup. Once a sampling
instrument has begun, its turnoff point may be unpredictable and require an external release
envelope; this is often done by gating the sampled audio with linenr, which will extend the
duration of a turned-off instrument by a specific period while it implements a decay.

Example:

 inum notnum
 icps cpsmidi
 iamp ampmidi 3000, 1
 ifno table inum, 2 ;notnum to choose an audio sample
 ibas table inum, 3
 kamp linenr iamp, 0, .05 ;at noteoff, extend by 50 millisecs
 asig loscil kamp, icps, ifno, cpsoct(ibas/12. + 3)

- 50 -

ar doscil* kamp, ifno[, iautoff]
 ar doscilp* kamp, kcps, ifno[, ibas, iautoff]
 ar doscilpt* kamp, kcps, ktempo, ifno, iris, iss[, ibas, iautoff]
 ar loscil1* kamp, kcps, ifno[, ibas]
 a1,a2 loscil2* kamp, kcps, ifno[, ibas]

Read a sampled sound with optional sustain looping and/or pitch and tempo control.

INITIALIZATION

ifno - function table number, typically denoting a WAV file (for doscil, doscilp, doscilpt) or an
AIFF sampled file with sustain loop points (for loscil1, loscil2).

iris, iss – rise time and steady-state time (in seconds) of an internal cross-fade envelope within
the doscilpt unit. Both should be small, e.g. .005 and .01, or even smaller if the tempo changes
are excessive. iris should be at least one k-prd, though iss can be as small as 0.

ibas (optional) - base frequency in cps of the recorded sound. Optionally overrides the
frequency given in the WAV or AIFF file, but is required if the file did not contain one. The
default is 0 (no override).

iautoff (optional) – if non-zero, automatically turn off the current instrument when the end of
sampled sound is reached (else output zeros). The default value is 1 (automatic turn-off).

PERFORMANCE

doscil is a direct form of loscil, with no frequency control and no looping. It simply reads the
table from beginning to end, then stops. This is useful for sampled effects such as percussion
sounds, where the pitch needs no alteration and loop points are not provided.

doscilp is a variant of the non-looping doscil, with additional frequency control. It is useful for
playing back samples like recorded percussion sounds in which some additional tuning or pitch
modification is desired. Note that while instrument sounds can often be varied by as much as an
octave up or down, recorded voice moved by just a few semitones will be noticeably distorted
since this unit does not preserve speech formants. For pitch-shifted voice, use a harmon unit.

doscilpt is a variant of the non-looping doscilp with independent pitch and tempo control.
When ktempo is 1 the sound sample will play at the original tempo; when ktempo is say .5 or 1.5
the sound sample will play at one-half tempo or 1.5 times the original tempo, but with no pitch
shift. Tempo variation can be quite extreme when iris and iss are carefully set. The unit even
allows tempo speed-up with pitch lower, not higher, etc. However, speech formant limits still
apply.

NB: doscilp, doscilpt, loscil1 and loscil2 sample the ftable data at a rate determined by kcps.
The sampling increment for kcps is dependent on the table's base-note frequency ibas, and is
automatically adjusted if the orchestra sr value differs from that at which the source was
recorded. The ftables are sampled with two-point interpolation.

Example:

 kamp dexponr 1, ftlptim(ifn), .77, .1 ; create a delayed amp decay
 a1 loscil1 kamp, 440, ifn, 261 ; and modify the sample

- 51 -

 ar poscil* kamp, kcps, kfrac[, iphs]
 ar buzz xamp, xcps, knh, ifn[, iphs]
 ar gbuzz xamp, xcps, knh, klh, kr, ifn[, iphs]

Output a pulse train, or set of harmonically related cosine partials.

INITIALIZATION

iphs (optional) - initial phase of the fundamental frequency, expressed as a fraction of a cycle (0
to 1). A negative value will cause phase initialization to be skipped. The default value is zero.

ifn - table number of a stored function containing (for buzz) a sine wave, or (for gbuzz) a cosine
wave. In either case a large table of at least 8192 points is recommended.

PERFORMANCE

kfrac - fractional width of the pulse part of a cycle. poscil is a k-rate varying pulse-width audio
oscillator, with on/off levels set to provide a zero-average DC offset. Although pulse-width
oscillation is an unnatural signal (it does not occur in natural instruments), it is a popular source
in synthesizers.

The buzz units generate an additive set of harmonically related cosine partials of fundamental
frequency xcps, and whose amplitudes are scaled so their summation peak equals xamp. The
selection and strength of partials is determined by the following control parameters:

knh - total number of harmonics requested. Must be positive.

klh - lowest harmonic present. Can be positive, zero or negative. In gbuzz the set of partials can
begin at any partial number and proceeds upwards; if klh is negative, all partials below zero will
reflect as positive partials without phase change (since cosine is an even function), and will add
constructively to any positive partials in the set.

kr - specifies the multiplier in the series of amplitude coefficients. This is a power series: if the
klhth partial has a strength coefficient of A, the (klh + n)th partial will have a coefficient of A *
(kr ** n), i.e. strength values trace an exponential curve. kr may be positive, zero or negative,
and is not restricted to integers.

buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a special
case of the more general gbuzz in which klh = kr = 1; it thus produces a set of knh equal-strength
harmonic partials, beginning with the fundamental. (This is a band-limited pulse train; if the
partials extend to the Nyquist, i.e. knh = int (sr / 2 / fundamental freq.), the result is a real pulse
train of amplitude xamp.) Although both knh and klh may be varied during performance, their
internal values are necessarily integer and may cause "pops" due to discontinuities in the output;
kr, however, can be varied during performance to good effect. Both buzz and gbuzz can be
amplitude- and/or frequency-modulated by either control or audio signals.

N.B. The buzz and gbuzz units have their analogs in GEN11, in which the same set of cosines
can be stored in a function table for sampling by an oscillator. Although computationally more
efficient, the stored pulse train has a fixed spectral content, not a time-varying one as above.

- 52 -

 ar adsyn kamod, kfmod, ksmod, ifilcod
 ar pvoc ktimpnt, kfmod, ifilcod [, ispecwp]

Output is an additive set of individually controlled sinusoids, using either an oscillator bank or
phase vocoder resynthesis.

INITIALIZATION

ifilcod - integer or character-string denoting a control-file derived from analysis of an audio
signal. A positive integer denotes an indexed filename in the Orchestra (see strset); a negative
integer denotes the suffix of a file adsyn.m or pvoc.m; a character-string (in double quotes) gives
the filename itself. Filenames are optionally fullpath. If not fullpath, the file is sought first in
the current directory, then in the one given by the environment variable SADIR (if defined).
adsyn control contains breakpoint amplitude- and frequency-envelope values organized for
oscillator resynthesis, while pvoc control contains similar data organized for fft resynthesis.
Memory usage depends on the size of the files involved, which are read and held entirely in
memory during computation but are shared by multiple calls (see also lpread).

ispecwp (optional) - if non-zero, attempts to preserve the spectral envelope while its frequency
content is varied by kfmod. The default value is zero.

PERFORMANCE

adsyn synthesizes complex time-varying timbres through the method of additive synthesis. Any
number of sinusoids, each individually controlled in frequency and amplitude, can be summed
by high-speed arithmetic to produce a high-fidelity result.

Component sinusoids are described by a control file describing amplitude and frequency tracks
in millisecond breakpoint fashion . Tracks are defined by sequences of 16-bit binary integers:
 -1, time, amp, time, amp,...
 -2, time, freq, time, freq,...
such as from hetrodyne filter analysis of an audio file. (For details see the Appendix on hetro.)
The instantaneous amplitude and frequency values are used by an internal fixed-point oscillator
that adds each active partial into an accumulated output signal. While there is a practical limit
(currently 50) on the number of contributing partials, there is no restriction on their behavior
over time. Any sound that can be described in terms of the behavior of sinusoids can be
synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during re-synthesis. The signals
kamod, kfmod, ksmod will modify the amplitude, frequency, and speed of contributing partials.
These are multiplying factors, with kfmod modifying the cps frequency and ksmod modifying the
speed with which the millisecond bread-point line-segments are traversed. Thus .7, 1.5, and 2
will give rise to a softer sound, a perfect fifth higher, but only half as long. The values 1,1,1 will
leave the sound unmodified. Each of these inputs can be a control signal.

pvoc implements signal reconstruction using an fft-based phase vocoder. The control data stems
from a precomputed analysis file with a known frame rate. The passage of time through this file
is specified by ktimpnt, which represents the time in seconds. ktimpnt must always be positive,
but can move forwards or backwards in time, be stationary or discontinuous, as a pointer into the
analysis file. kfmod is a control-rate transposition factor: a value of 1 incurs no transposition, 1.5
transposes up a perfect fifth, and .5 down an octave.

This implementation of pvoc was written by Dan Ellis. It is based in part on the system of Mark
Dolson, but the pre-analysis concept is new.

- 53 -

 ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec,
 iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak
at xform. For xfund above 25 Hz these bursts produce a speech-like formant with spectral
characteristics determined by the k-input parameters. For lower fundamentals this generator
provides a special form of granular synthesis.

INITIALIZATION

iolaps - number of preallocated spaces needed to hold overlapping burst data. Overlaps are
frequency dependent, and the space required depends on the maximum value of xfund * kdur.
Can be over-estimated at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb - table numbers of two stored functions. The first is a sine table for sineburst synthesis
(size of at least 4096 recommended). The second is a rise shape, used forwards and backwards
to shape the sineburst rise and decay; this may be linear (GEN07) or perhaps a sigmoid
(GEN19).

itotdur - total time during which this fof will be active. Normally set to p3. No new sineburst is
created if it cannot complete its kdur within the remaining itotdur.

iphs (optional) - initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The
default value is 0.

ifmode (optional) - formant frequency mode. If zero, each sineburst keeps the xform frequency it
was launched with. If non-zero, each is influenced by xform continuously. The default value is
0.

PERFORMANCE

xamp - peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise
may exceed this value given a large bandwidth (say, Q < 10) and/or when the bursts are
overlapping.

xfund - the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform - the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse.
This frequency can be fixed for each burst or can vary continuously (see ifmode).

koct - octaviation index, normally zero. If greater than zero, lowers the effective xfund
frequency by attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions
transitional.

kband - the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec - rise, overall duration, and decay times (in seconds) of the sinusoid burst. These
values apply an enveloped duration to each burst, in similar fashion to a Csound linen generator
but with rise and decay shapes derived from the ifnb input. kris inversely determines the
skirtwidth (at -40 dB) of the induced formant region. kdur affects the density of sineburst
overlaps, and thus the speed of computation. Typical values for vocal imitation are
.003,.02,.007.

- 54 -

Csound's fof generator is loosely based on Michael Clarke's C-coding of IRCAM's CHANT
program (Xavier Rodet et al.). Each fof produces a single formant, and the output of four or
more of these can be summed to produce a rich vocal imitation. fof synthesis is a special form of
granular synthesis, and this implementation aids transformation between vocal imitation and
granular textures. Computation speed depends on kdur, xfund, and the density of any overlaps.

- 55 -

 ar harmon asig, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, imode, iminfrq, iprd

Analyse an audio input and generate harmonizing voices in synchrony.

INITIALIZATION

imode - interpeting mode for the generating frequency inputs kgenfreq1, kgenfreq2.
 0: input values are ratios w.r.t. the audio signal analyzed cps.
 1: input values are the actual requested frequencies in cps.

iminfrq - the lowest expected frequency (in cps) of the audio input. This parameter determines
how much of the input is saved for the running analysis, and sets a lower bound on the internal
pitch tracker.

iprd - period of analysis (in seconds). Since the internal pitch analysis can be time-consuming,
the input is typically analysed only each 20 to 50 milliseconds.

PERFORMANCE

This unit is a harmonizer, able to provide up to two additional voices with the same amplitude
and spectrum as the input. The input analysis is assisted by two things: an input estimated
frequency kestfrq (in cps), and a fractional maximum variance kmaxvar about that estimate
which serves to limit the size of the search. Once the real input frequency is determined, the
most recent pulse shape is used to generate the other voices at their requested frequencies.

The three frequency inputs can be derived in various ways from a score file or MIDI source. The
first is the expected pitch, with a variance parameter allowing for inflections or inaccuracies; if
the expected pitch is zero the harmonizer will be silent. The second and third pitches control the
output frequencies; if either is zero the harmonizer will output only the non-zero request; if
both are zero the harmonizer will be silent. When the requested frequency is higher than the
input, the process requires additional computation due to overlapped output pulses. This is
currently limited for efficiency reasons, with the result that only one voice can be higher than the
input at any one time.

This unit is useful for supplying a background chorus effect on demand, or for correcting the
pitch of a faulty input vocal. There is essentially no delay between input and output. Output
includes only the generated parts, and does not include the input.

Example:

 asig1 in ; get the live input
 kcps1 cpsmidib ; and its target pitch
 asig2 harmon asig1, kcps1, .3, kcps1, kcps1 * 1.25, 1, 110, .04 ; add maj 3rd
 out asig2 ; output just the corrected and added voices

- 56 -

 ar harmon2* asig, koct, kfrq1, kfrq2, icpsmode, ilowest
 ar harmon3* asig, koct, kfrq1, kfrq2, kfrq3, icpsmode, ilowest
 ar harmon4* asig, koct, kfrq1, kfrq2, kfrq3, kfrq4, icpsmode, ilowest

Generate harmonizing voices with formants preserved.

INITIALIZATION

icpsmode - interpreting mode for the generating frequency inputs kfrq1, kfrq2, kfrq3, kfrq4.
 0: input values are ratios w.r.t. the cps equivalent of koct.
 1: input values are the actual requested frequencies in cps.

ilowest - lowest value of the koct input for which harmonizing voices will be generated.

PERFORMANCE

These are high-performance harmonizers, able to provide up to four pitch-shifted copies of the
input asig with spectral formants preserved. The pitch-shifting algorithm requires an accurate
running estimate (koct, in decimal oct units) of the pitched content of asig, normally gained from
an independent pitch tracker such as specptrk. The algorithm then isolates the most recent full
pulse within asig, and uses this to generate the other voices at their required pulse rates.

If the frequency (or ratio) presented to kfrq1, kfrq2, kfrq3 or kfrq4 is zero, then no signal is
generated for that voice. If any of them is non-zero, but the koct input is below the value ilowest,
then that voice will output a direct copy of the input asig. As a consequence, the data arriving at
the k-rate inputs can variously cause the generated voices to be turned on or off, to pass a direct
copy of a non-voiced fricative source, or to harmonize the source according to some constructed
algorithm. The transition from one mode to another is cross-faded, giving seemless alternating
between voiced (harmonized) and non-voiced fricatives during spoken or sung input.

harmon2, 3, 4 are especially matched to the output of specptrk. The latter generates pitch data
in decimal octave format; it also emits its base value if no pitch is identified (as in fricative
noise) and emits zero if the energy falls below a threshold, so that harmon2, 3, 4 can be set to
pass the direct signal in both cases. Of course, any other form of pitch estimation could also be
used. Since pitch trackers usually incur a slight delay for accurate estimation (for specptrk the
delay is printed by the spectrum unit), it is normal to delay the audio signal by the same amount
so that harmon2, 3, 4 can work from a fully concurrent estimate.

Example:

 a1,a2 ins ; get mic input
 w1 spectrum a1, .02, 7, 24, 12, 1, 3 ; and examine it
 koct,kamp specptrk w1, 1, 6.5, 9.5, 7.5, 10, 7, .7, 0, 3, 1
 a3 delay a1, .065 ; allow for ptrk delay
 a4 harmon2 a3, koct, 1.25, 0.75, 0, 6.9 ; output a fixed 6-4 harmony
 outs a3, a4 ; as well as the original

- 57 -

 ar grain xamp, xcps, xdens, kampdev, kcpsdev, kgdur, igfn, iwfn, imaxdur

Generate a granular synthesis texture with variable amplitude, frequency, duration and density
characteristics.

INITIALIZATION

igfn - table number of the grain periodic waveform. Normally a sine wave, but could be a
sampled sound of any length.

iwfn - table number of the envelope applied to each grain. This can be any shape, and can be
conveniently defined using GEN20.

imaxdur - maximum grain duration (in seconds) that can be generated. Limits the range of
kgdur.

PERFORMANCE

This unit generates a succession of granular sound elements of amplitude xamp, frequency xcps,
and granular density xdens grains per second. The amplitude and frequency of successive grains
can be randomly varied within the (bipolar) deviations kampdev and kcpsdev; if these values are
0 there is no random variation in that dimension. The density can also be given a random
component (e.g. added noise) via the xdens parameter; if this value is constant the result is
synchronous granular synthesis, similar to fof.

Individual grains are made from cycles of the periodic waveform igfn, and each is made to start
from a random position within that table. Each grain lasts a duration kgdur, and is shaped by the
envelope function igfn. The k-varying duration is limited by imaxdur, and is clipped to that
value if kgdur exceeds it.

The overall output amplitude of this generator is a dynamic function of the amplitude of each
grain, the density of grains, their envelopes, and their durations.

The grain generator is based primarily on work and writings of Barry Truax and Curtis Roads.
This implementation is by Paris Smaragdis.

- 58 -

 ar pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]

Audio output is a naturally decaying plucked string or drum sound based on the Karplus-Strong
algorithms.

INITIALIZATION

icps - intended pitch value in cps, used to set up a buffer of 1 cycle of audio samples which will
be smoothed over time by a chosen decay method. icps normally anticipates the value of kcps,
but may be set artificially high or low to influence the size of the sample buffer.

ifn - table number of a stored function used to initialize the cyclic decay buffer. If ifn = 0, a
random sequence will be used instead.

imeth - method of natural decay. There are six, some of which use parameters values that
follow.

1 - simple averaging. A simple smoothing process, uninfluenced by parameter values.
2 - stretched averaging. As above, with smoothing time stretched by a factor of iparm1 (>= 1).
3 - simple drum. The range from pitch to noise is controlled by a 'roughness factor' in
 iparm1 (0 to 1). Zero gives the plucked string effect, while 1 reverses the polarity of
 every sample (octave down, odd harmonics). The setting .5 gives an optimum snare

drum.
4 - stretched drum. Combines both roughness and stretch factors. iparm1 is roughness (0 to 1),
 and iparm2 the stretch factor (>= 1).
5 - weighted averaging. As method 1, with iparm1 weighting the current sample (the status quo)
 and iparm2 weighting the previous adjacent one. iparm1 + iparm2 must be <= 1.
6 - 1st order recursive filter, with coefs .5. Unaffected by parameter values.

iparm1, iparm2 (optional) - parameter values for use by the smoothing algorithms (above). The
default values are both 0.

PERFORMANCE

An internal audio buffer, filled at I-time according to ifn, is continually resampled with
periodicity kcps and the resulting output is multiplied by kamp. Parallel with the sampling, the
buffer is smoothed to simulate the effect of natural decay.

Plucked strings (1,2,5,6) are best realized by starting with a random noise source, which is rich
in initial harmonics. Drum sounds (methods 3,4) work best with a flat source (wide pulse),
which produces a deep noise attack and sharp decay.

The original Karplus-Strong algorithm used a fixed number of samples per cycle, which caused
serious quantization of the pitches available and their intonation. This implementation resamples
a buffer at the exact pitch given by kcps, which can be varied for vibrato and glissando effects.
For low values of the orch sampling rate (e.g. sr = 10000), high frequencies will store only very
few samples (sr / icps). Since this may cause noticeable noise in the resampling process, the
internal buffer has a minimum size of 64 samples. This can be further enlarged by setting icps to
some artificially lower pitch.

- 59 -

 ar pluck2* ifrq, iamp, ipickup, ipluck, iaw0, iawPi, aamp

Output is a high-quality plucked string simulation using waveguide techniques

INITIALIZATION

PERFORMANCE

- 60 -

 kr rand xamp[, iseed]
 kr randh kamp, kcps[, iseed]
 kr randi kamp, kcps[, iseed]
 ar rand xamp[, iseed]
 ar randh xamp, xcps[, iseed]
 ar randi xamp, xcps[, iseed]

Output is a controlled random number series between +amp and -amp

INITIALIZATION

iseed (optional) - seed value for the recursive psuedo-random formula. A value between 0 and
+1 will produce an initial output of kamp * iseed A negative value will cause seed re-
initialization to be skipped. The default seed value is .5.

PERFORMANCE

The internal psuedo-random formula produces values which are uniformly distributed over the
range kamp to -kamp. rand will thus generate uniform white noise with an R.M.S value of kamp
/ root 2.

The remaining units produce band-limited noise: the cps parameters permit the user to specify
that new random numbers are to be generated at a rate less than the sampling or control
frequencies. randh will hold each new number for the period of the specified cycle; randi will
produce straightline interpolation between each new number and the next.

Example:

 i1 = octpch(p5) ; center pitch, to be modified
 k1 randh 1, 10 ;10 times/sec by random displacements up to 1 oct.
 a1 oscil 5000, cpsoct(i1+ k1), 1

- 61 -

 xr linrand krange[, ipol]
 xr exprand krange[, ipol]
 xr cauchy kalpha[, ipol]
 xr poisson klambda
 xr gauss krange
 xr weibull ksigma, ktau
 xr beta krange, kalpha, kbeta

Output is a series of random number with specified distribution over a certain range.

INITIALIZATION

ipol (optional) - polarity attribute. The value 1 denotes unipolar (0 to krange), and the value 2
denotes bipolar (-krange to +krange). The default is 2 (bipolar).

PERFORMANCE

All units are available in three different forms, determined by the output variable xr which can
be of type ir, kr or ar. Units of type ir require i-type input, while units of type kr and ar can
take k-type input or slower (i.e. can be either i or k).

linrand generates a linear distribution over the range. The unipolar form has a linear rolloff
distribution; the bipolar form has a triangular rolloff distribution (symmetric about 0).

exprand generates an exponential distribution over the range.

cauchy generates a Cauchy distribution, in which kalpha controls the spread of values away
from zero.

poisson generates a Poisson distribution, positive numbers only, with klambda denoting the
mean.

gauss generates a Gaussian distribution, always over a bipolar range (-krange to +krange).

weibull generates a Weibull distribution, positive numbers only, in which ksigma controls the
spread away from zero. If ktau = 1, the distribution is exponential; if ktau < 1, small numbers
are favored; if ktau > 1, numbers near ksigma are favored.

beta generates a Beta distribution, positive numbers only (0 to krange). If kalpha < 1, numbers
near 0 are favored; if kbeta < 1, numbers near krange are favored. If kalpha = 1 and kbeta = 1,
uniform distribution will result. If both are > 1, a form of Gaussian distribution will result.

- 62 -

SIGNAL MODIFIERS

 kr linen kamp, irise, idur, idec
 ar linen xamp, irise, idur, idec
 kr linenr kamp, irise, idec[, irind]
 ar linenr xamp, irise, idec[, irind]
 kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]
 ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]
 kr envlpxr kamp, irise, idec, ifn, iatss, iatdec[, ixmod][, irind]
 ar envlpxr xamp, irise, idec, ifn, iatss, iatdec[, ixmod][, irind]

linen - apply a straight line rise and decay pattern to an input amp signal.
envlpx - apply an envelope consisting of 3 segments: 1) stored function rise shape, 2) modified
 exponential "pseudo steady state", 3) exponential decay
linenr, envlpxr - as above, except that the final segment is entered only on sensing a note
release, and the note is then extended by the decay time.

INITIALIZATION

irise - rise time in seconds. A zero or neg value signifies no rise portion, and begins from ifn
end.

idur - overall duration in seconds. A zero or negative value will cause initialization to be
skipped; for envlpx(r) skipped initialization can also be induced by a zero ifn number.

idec - decay time in seconds. Zero means no decay.

irind (optional) - independence flag. If left zero, the release time (idec) will influence the
extended life of the current note following a note-off. If non-zero, the idec time is quite
independent of the note extension (see below). The default value is 0.

ifn - function table number of stored rise shape with extended guard point.

iatss - attenuation factor, by which the last value of the envlpx rise is modified during the note's
pseudo "steady state." A factor > l causes an exponential growth, and < l an exponential decay.
A 1 will maintain a true steady state at the last rise value. NB. this attenuation is not by fixed
rate (as in a piano), but is sensitive to a note's duration. However, if iatss is negative (or if
"steady state" < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used.
envlpxr (which has no idur), always uses the fixed per second rate. 0 is illegal.

iatdec - attenuation factor by which the closing "steady state" value is reduced exponentially
over the decay period. This value must be positive and is normally of the order of .01. A large
or excessively small value is apt to produce a cutoff which is audible. A zero or neg value is
illegal.

ixmod (optional, between +- .9 or so) - exponential curve modifier, influencing the "steepness"
of the exponential trajectory during the "steady state." Values less than zero will cause an
accelerated growth or decay towards the target (e.g. subito piano). Values greater than zero will
cause a retarded growth or decay. The default value is zero (unmodified exponential).

PERFORMANCE

- 63 -

Rise modifications are applied for the first irise seconds, and decay from time idur - idec. If
these periods are separated in time there will be a "steady state" during which amp will be
unmodified (linen) or modified by the first exponential pattern (envlpx). The decay segments
can begin at any point in the pattern; they will go to zero in linen and tend asymptotically to
zero in envlpx.

linenr, envlpxr are examples of the special Csound “r” units that contain a note-off sensor and
release time extender. Unless made independent by irind, when each senses a score event
termination or a MIDI noteoff, it will immediately extend the performance time of the current
instrument by idec seconds, then begin a decay (as described above) from wherever it was at the
time. These “r” units can also be modified by MIDI noteoff velocities (see veloffs). If the irind
flag is on (non-zero), the overall performance time is unaffected by note-off and veloff data.

Mulitple “r” units. When two or more “r” units occur in the same instrument it is usual to have
only one of them influence the overall note duration. This is normally the master amplitude unit.
Other units controlling, say, filter motion can still be sensitive to note-off commands while not
affecting the duration by making them independent (irind non-zero). Depending on their own
idec (release time) values, independent “r” units may or may not reach their final destinations
before the instrument terminates. If they do, they will simply hold their target values until
termination. If two or more “r” units are simultaneously master, note extension is by the greatest
idec.

Example 1:

 kamp linenr isig, .1, 2 ;fast rise, then slow decay of 2 on note-off (master)
 kvib linenr ivib, 1.5, .3, 1 ;slow rise, then quick decay to 0 on note-off
(indep).

Example 2:

 kenv envlpxr ksig, .1, .2, 7, .25, .01, -.5

This applies an envelope to the signal ksig, rising in .1 secs by ftable 7 to its endpoint, then doing
a subito piano aimed at one fourth that value, and continuing this more gently until sensing a
noteoff, when it decays in .2 seconds to one one-hundredth of where it happened to be.

- 64 -

 kr port ksig, ihtim[, isig]
 ar tone asig, khp[, istor]
 ar atone asig, khp[, istor]
 ar reson asig, kcf, kbw[, iscl, istor]
 ar areson asig, kcf, kbw[, iscl, istor]

A control or audio signal is modified by a low- or band-pass recursive filter with variable
frequency response.

INITIALIZATION

isig - initial (i.e. previous) value for internal feedback. The default value is 0.

istor - initial disposition of internal data space. Since filtering incorporates a feedback loop of
previous output, the initial status of the storage space used is significant. A zero value will clear
the space; a non-zero value will allow previous information to remain. The default value is 0.

iscl - coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1, i.e.
all frequencies other than kcf are attenuated in accordance with the (normalized) response curve.
A value of 2 raises the response factor so that its overall RMS value equals 1. (This intended
equalization of input and output power assumes all frequencies are physically present; hence it is
most applicable to white noise.) A zero value signifies no scaling of the signal, leaving that to
some later adjustment (e.g. see balance). The default value is 0.

PERFORMANCE

port applies portamento to a step-valued control signal. At each new step value, ksig is low-pass
filtered to move towards that value at a rate determined by ihtim. ihtim is the "half-time" of the
function (in seconds), during which the curve will traverse half the distance towards the new
value, then half as much again, etc., theoretically never reaching its asymptote.

tone implements a first-order recursive low-pass filter in which the variable khp (in cps)
determines the response curve's half -power point. Half power is defined as peak amp / root 2, or
peak power / 2.

reson is a second-order filter in which kcf controls the center frequency, or cps position of the
peak response, and kbw controls its bandwidth (the cps difference between the upper and lower
half -power points).

atone, areson are filters whose transfer functions are the complements of tone and reson. atone
is thus a form of high-pass filter and areson a notch filter whose transfer functions represent the
"filtered out" aspects of their complements. Note, however, that power scaling is not normalized
in atone, areson, but remains the true complement of the corresponding unit. Thus an audio
signal, filtered by parallel matching reson and areson units, would under addition simply
reconstruct the original spectrum (iscl = 1 only, iscl = 2 giving twice amplitude). This property
is useful for controlled mixing of different sources (e.g., see lpreson).

Complex response curves such as those with multiple peaks can be obtained by using a bank of
suitable filters in series. (The resultant response is the product of the component responses.) In
such cases, the combined attenuation may result in a serious loss of signal power, but this can be
regained by the use of balance.

- 65 -

 ar filter1* asig, kfreq, kdamp, imode[, istor]
 ar filter2* asig, kfreq, kdamp, imode[, istor]

Apply a resonance filter to an input signal according to mode control.

INITIALIZATION

imode - mode of filtering, determined by a coded value:
 1 low pass resonance filter 4 EQ filter
 2 bandpass resonance filter 5 highpass shelving
 3 high pass resonance filter 6 lowpass shelving

istor (optional) - initial disposition of internal feedback data space. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

PERFORMANCE

These are multi-purpose filters, whose mode of operation is determined by Init-time data values,
and whose performance behavior is determined by two k-rate inputs. The value kfreq in cps is
both a resonance frequency (bandpass) and a resonance and cutoff frequency (lowpass,
highpass). There is no direct bandwidth control as in reson; instead, the value kdamp is a
damping factor that controls the Q of the filter (in an inverse way), with low values giving
narrow-band (hi-Q) results and higher values producing broad-band (lo-Q) effects. The damping
factor should lie in the range 0.01 to 0.99.
These filters have no automatic gain or rms control, and the overall gain will vary somewhat
with kdamp. In filter1 the peak gain (at kfreq) will stay constant as kfreq moves the resonance
about, but may vary with kdamp. In filter2 the DC gain is 1 when the kdamp is high (flat
response, no resonance), then retreats below 1 as the damping factor is relaxed and a resonance
forms at kfreq.
The two filters also differ in speed and behavior. filter1 is fast, but has some non-linear features.
It is most useful and reliable when kdamp is small (< .2); as kdamp increases, the resonance
frequency is much less pronounced. Also, the resonance position is not quite linear, and at high
frequencies it will be artificially displaced upwards, possibly going unstable. To improve
linearity and stability, the resonance frequency is internally limited and remapped. By contrast,
filter2 is both accurate and stable throughout. However, it takes almost twice as long to run.
Both filters are slowed slightly by changes in either kfreq or kdamp, but both are reasonably
efficient for the task they perform. filter1 is generally preferred for most practical applications.
Resonance filters are commonly used in music instrument synthesis because a peak that follows
a time-varying cutoff frequency makes filter motion very audible. Its use to simulate attenuation
of high-frequency energy following an onset is often overdone, but a musically useful resonance
can be obtained by setting kdamp between .1 and .4. The resonance motion will be quite
audible, and any overall gain will usually stay within a factor of 1.5 or 2 (filter1 is usually
louder, while filter2 is usually softer). For increased gain control, use the rms feature of
balance.
These units are loosely based on the Chamberlin filter (P. Dutilleux, "Simple to Operate Digital
Time Varying Filters", 86th AES Convention, 1989, and J. Dattorro, “Effect Design”, JAES
45/9, Sept 1997), but the versions here are reworked for more stability and similarity.

Example:

 a1 loscil1 kamp, icps, ifn ; read sampled data
 kfrq expon icps * 10, .5, icps * 5 ; and over the 1st .5 seconds

- 66 -

 a2 filter2 a1, kfrq, .3, 1 ; quickly damp the highs

- 67 -

 ar filter4* asig, kfc1, kfc2, imode[, istor]

Apply a 4-stage cascade filter to an input signal according to mode control.

INITIALIZATION

imode - mode of cascade filtering, with cut frequencies kfc1, kfc2 applied as follows:

0 2 low pass, 2 high pass
1 3 low pass, 1 high pass
2 2 low pass, 2 low pass
3 3 low pass, 1 low pass

istor (optional) - initial disposition of internal feedback data space. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

PERFORMANCE

This is a direct cascade of four simple low-pass and high-pass filters, aimed at emulating some
early filter-banks found in the music industry. The two cut frequencies kfc1, kfc2 are applied to
sub-groups within the cascade. For cut frequencies applied to low-pass sections, the cut-off
represents the 3-dB down point in the transfer function compared with unity gain at DC. For cut
frequencies applied to high-pass sections, the cut-off represents the 3-dB down point in the
transfer function compared with unity gain near the Nyquist (sr/2); the high-pass filter has zero
transmission at the actual Nyquist. The combination of low-pass and high-pass sections will
produce a band-pass effect.

When either low-pass or high-pass sections are themselves in cascade, the normal 6-dB per
octave rolloff becomes 12, 18 or 24 dB. While low-pass kfc values can range from 0 to sr/2,
high-pass kfc values are capped at (can go no higher than) 1600 Hz. For kfc values < sr/2, the
filter is always partly subtractive, i.e. all component frequencies emerge with a gain <= 1.
However, as a special feature, filter4 is permitted to have low-pass kfc values > sr/2:
specifically, when the low-pass kfc is in the range sr/2 to sr, the subtractive filtering effect is
gradually eliminated, until at kfc = sr the filter has a flat response with unity gain throughout (i.e.
the signal passes through unmodified).

Although the cascaded filter4 is not as flexible as the resonance units like filter1, it has many
useful and audible features, and is no more expensive to operate.

Example:

 kfc1 expon 440, 10, 44100 ; sweep a cutoff above the Nyquist
 a1 buzz 1000, 220, 100, gisin
 a1 filter4 a1, kfc1, kfc1, 3 ; and watch the spectrum go flat
 dispfft a1, .1, 1024, 1

- 68 -

 ar butterhp asig, kcps[, istor]
 ar butterlp asig, kcps[, istor]
 ar butterbp asig, kcf, kbw[, istor]
 ar butterbr asig, kcf, kbw[, istor]

Modify an audio signal using a high-pass, low-pass, band-pass or band-reject Butterworth filter.

INITIALIZATION

istor (optional) - initial disposition of the internal data space. A zero value will clear the space;
a non-zero value will allow previous information to remain. The default value is 0.

PERFORMANCE

butterhp, butterlp are high-pass and low-pass filters with a cutoff frequency kcps.

butterbp, butterbr are band-pass and band-reject filters with center frequency kcf and
bandwidth kbw (both in cps).

These Butterworth filters are similar to their reson counterparts. They are somewhat slower to
run, but they exhibit superior characteristics with an almost flat passband and good stopband
attenuation.

The implementations are by Paris Smaragdis.

Example:

 asig rand 10000 ; generate a white-noise source
 alp butterlp asig, 2000 ; cut the frequencies above 2000 Hz
 abr butterbr alp, 800, 200 ; and those from 700 to 900 Hz

- 69 -

 krmsr,krmso,kerr,kcps lpread ktimpnt, ifilcod[, inpoles][, ifrmrate]
 ar lpreson asig
 ar lpfreson asig, kfrqratio

These units, used as a read/reson pair, use a control file of time-varying filter coefficients to
dynamically modify the spectrum of an audio signal.

INITIALIZATION

ifilcod - integer or character-string denoting a control-file (reflection coefficients + four
parameter values) derived from n-pole linear predictive spectral analysis of a source audio
signal. A positive integer denotes an indexed filename in the Orchestra (see strset); a negative
integer denotes the suffix of a file lp.m; a character-string (in double quotes) gives the filename
itself. Filenames are optionally fullpath. If not fullpath, the file is sought first in the current
directory, then in that of the environment variable SADIR (if defined). Memory usage depends
on the size of the file, which is held entirely in memory during computation but shared by
multiple calls (see also adsyn, pvoc).

inpoles, ifrmrate (optional) - number of poles, and frame rate per second in the lpc analysis.
These arguments are required only when the control file does not have a header; they are ignored
when a header is detected. The default value for both is zero.

PERFORMANCE

lpread accesses a control file of time-ordered information frames, each containing n-pole filter
coefficients derived from linear predictive analysis of a source signal at fixed time intervals (e.g.
1/100 of a second), plus four parameter values:
 krmsr - root-mean-square (rms) of the residual of analysis,
 krmso - rms of the original signal,
 kerr - the normalized error signal,
 kcps - pitch in cps.
lpread gets its values from the control file according to the input value ktimpnt (in seconds). If
ktimpnt proceeds at the analysis rate, time-normal synthesis will result; proceeding at a faster,
slower, or variable rate will result in time-warped synthesis. At each K-period, lpread
interpolates between adjacent frames to more accurately determine the parameter values
(presented as output) and the filter coefficient settings (passed internally to a subsequent
lpreson).

The error signal kerr (0 to 1) derived during predictive analysis reflects the
deterministic/random nature of the analyzed source. This will emerge low for pitched (periodic)
material and higher for noisy material. The transition from voiced to unvoiced speech, for
example, produces an error signal value of about .3. During synthesis, the error signal value can
be used to determine the nature of the lpreson driving function: for example, by arbitrating
between pitched and non-pitched input, or even by determining a mix of the two. In normal
speech resynthesis, the pitched input to lpreson is a wideband periodic signal or pulse train
derived from a unit such as buzz, and the nonpitched source is usually derived from rand.
However, any audio signal can be used as the driving function, the only assumption of the
analysis being that it has a flat response.

lpfreson is a formant shifted lpreson, in which kfrqratio is the (cps) ratio of shifted to original
formant positions. This permits synthesis in which the source object changes its apparent
acoustic size. lpfreson with kfrqratio = 1 is equivalent to lpreson.

- 70 -

Generally, lpreson provides a means whereby the time-varying content and spectral shaping of a
composite audio signal can be controlled by the dynamic spectral content of another. There can
be any number of lpread/lpreson (or lpfreson) pairs in an instrument or in an orchestra; they
can read from the same or different control files independently.

- 71 -

 ar cross* acar, amod, kdepth, kvol, ilocut, ihicut

Filter a carrier signal with the spectrum of a modifier signal.

INITIALIZATION

ilocut, ihicut - low frequency and hi-frequency spectral rolloff points (in cps).

PERFORMANCE

This unit performs cross synthesis between two signals by filtering the first with the spectral
shape of the second. This is done using Fourier transforms, wherein the spectral coefficients of
the carrier are modified by a scaled and normalized spectrum of the modifier.

The degree of modification can be controlled by a spectral depth factor kdepth (0 to 1 or above).
Zero will give no audible modification, .8 - 1.0 will be normal, and above that will be
exaggerated. Modification can also be affected by a loudness factor kvol (0 to 1 or above), by
which the changing energy of the modifier will influence the loudness of the reconstructed
carrier. Both factors can be varied during performance. Typical values are .9 and .75
respectively.

Since this process involves multiplying two scaled amplitude values in each frequency bin, cross
can produce some high amplitude samples when spectral peaks coincide. To counter this, scale
down the acar input or its output when pushing kdepth or kvol beyond normal.

Spectral cross synthesis is most effective when the carrier is broad-band (has good highs) and the
modifier has strong and varying spectral peaks. Noisy music and formant resonant speech are
good examples; whispered speech is especially effective. The formants of the modifier can be
given extra focus by a spectral envelope shaper, whose low-frequency and hi-frequency rolloffs
begin at ilocut and ihicut respectively. Suitable values here are 400 and 4000 Hz, but these will
depend on the quality of the modifying signal.

cross is a computationally demanding opcode, currently costing 19 mips at a 16KC sampling
rate. The cost and audio quality are somewhat affected by the control rate: the analysis window
is less than or equal to 4 kperiods (longest power-of-two samples within), and should hold a full
cycle of the lowest frequency present. kr=100 is convenient; greater may tend to boom on the
lows, and less will begin to sound reverberant.

Example:

 a1 soundin “mytune.aif”
 a2 in ; voice input
 a3 cross a1, a2, .75, .5, 400, 4000

- 72 -

 kr rms asig[, ihp, istor]
 ar gain asig, krms[, ihp, istor]
 ar balance asig, acomp[, ihp, istor]
 ar dbgain * asig, kdb[, iatktim, istor]

The rms power of asig can be interrogated, set, or adjusted to match that of a comparator signal.

INlTlALIZATlON

ihp (optional) - half-power point (in cps) of a special internal low-pass filter. The default value
is 10.

istor (optional) - initial disposition of internal data space (see reson). The default value is 0.

iatktim (optional) – flag indicating a zero or positive attack-time. If zero, the internal
interpolator will move immediately to the first kdb point received; if non-zero, the interpolator
will go from zero to that point during the first control period. The default value is 1 (interpolated
rise).

PERFORMANCE

rms output values kr will trace the rms value of the audio input asig. This unit is not a signal
modifier, but functions rather as a signal power-guage.

gain provides an amplitude modification of asig so that the output ar has rms power equal to
krms. rms and gain used together (and given matching ihp values) will provide the same effect
as balance.

balance outputs a version of asig, amplitude-modified so that its rms power is equal to that of a
comparator signal acomp. Thus a signal that has suffered loss of power (eg., in passing through
a filter bank) can be restored by matching it with, for instance, its own source. It should be noted
that gain and balance provide amplitude modification only - output signals are not altered in any
other respect.

dbgain is a signal amplitude modifier whose gain level is specified in decibels. The incoming
kdb is first converted to an amplitude multiplier equivalent (see ampdb), and the a-rate
interpolated value is then used as an amplitude scaler of the incoming audio signal. Thus, k-rate
control signals will not cause “zipper noise”. The interpolation proceeds identically for each
control period except the first, where an additional option iatktim allows the first interpolation
target to be immediate. kdb scaling can be positive (amplifying) or negative (reducing); a zero
kdb will cause no change to the incoming signal.

Example:

 asrc buzz 10000,440, sr/440, 1 ; band-limited pulse train
 a1 reson asrc, 1000,100 ; sent through
 a2 reson a1,3000,500 ; 2 filters
 afin balance a2, asrc ; then balanced with source

- 73 -

 ar compress* aasig, acsig, kthresh, kloknee, khiknee, kratio, katt, krel, ilook

Compress, limit, expand, duck or gate an audio signal.

INITIALIZATION

ilook - lookahead time in seconds, by which an internal envelope release can sense what is
coming. This induces a delay between input and output, but a small amount of lookahead
improves the performance of the envelope detector. Typical value is .05 seconds, sufficient to
sense the peaks of the lowest frequency in acsig.

PERFORMANCE

This unit functions as an audio compressor, limiter, expander, or noise gate, using either soft-
knee or hard-knee mapping, and with dynamically variable performance characteristics. It takes
two audio input signals, aasig and acsig, the first of which is modified by a running analysis of
the second. Both signals can be the same, or the first can be modified by a different controlling
signal.

compress first examines the controlling acsig by performing envelope detection. This is
directed by two control values katt and krel, defining the attack and release time constants (in
seconds) of the detector. The detector rides the peaks (not the RMS) of the control signal.
Typical values are .01 and .1, the latter usually being similar to ilook.

The running envelope is next converted to decibels, then passed through a mapping function to
determine what compresser action (if any) should be taken. The mapping function is defined by
four decibel control values. These are given as positive values, where 0 db corresponds to an
amplitude of 1, and 90 db corresponds to an amplitude of 32768.

kthresh - sets the lowest decibel level that will be allowed through. Normally 0 or less, but if
higher the threshold will begin removing low-level signal energy such as background noise.

kloknee, khiknee - decibel break-points denoting where compression or expansion will begin.
These set the boundaries of a soft-knee curve joining the low-amplitude 1:1 line and the higher-
amplitude compression ratio line. Typical values are 48 and 60 db. If the two breakpoints are
equal, a hard-knee (angled) map will result.

kratio - ratio of compression when the signal level is above the knee. The value 2 will advance
the output just one decibel for every input gain of two; 3 will advance just one in three; 20 just
one in twenty, etc. Inverse ratios will cause signal expansion: .5 gives two for one, .25 four for
one, etc. The value 1 will result in no change.

The actions of compress will depend on the parameter settings given. A hard-knee compressor-
limiter, for instance, is obtained from a near-zero attack time, equal-value break-points, and a
very high ratio (say 100). A noise-gate plus expander is obtained from some positive threshold,
and a fractional ratio above the knee. A voice-activated music compressor (ducker) will result
from feeding the music into aasig and the speech into acsig. A voice de-esser will result from
feeding the voice into both, with the acsig version being preceded by a band-pass filter that
emphasizes the sibilants. Each application will require some experimentation to find the best
parameter settings; these have been made k-variable to make this practical.

Example:

 aout compress amus, avoc, 0, 40, 60, 3, .1, .5, .02 ; voice-activated compressor

- 74 -

 ; with low-level sensitivity

- 75 -

 ar distort* asig, kdist, ifn[, ihp, istor]

Distort an audio signal via waveshaping and optional clipping.

INITIALIZATION

ifn – table number of a waveshaping function with extended guard point. The function can be of
any shape, but it should pass through 0 with positive slope at the table mid-point. The table size
need not be large, since it is read with interpolation.

ihp (optional) – half-power point (in cps) of an internal low-pass filter. The default value is 10.

istor (optional) – initial disposition of internal data space (see reson). The default value is 0.

PERFORMANCE

This unit distorts an incoming signal using a waveshaping function ifn and a distortion index
kdist. The input signal is first compressed using a running rms, then passed through a
waveshaping function which may modify its shape and spectrum. Finally it is rescaled to
approximately its original power.

The amount of distortion depends on the nature of the shaping function and on the value of kdist,
which generally ranges from 0 to 1. For low values of kdist, we should like the shaping function
to pass the signal almost unchanged. This will be the case if, at the mid-point of the table, the
shaping function is near-linear and is passing through 0 with positive slope. A line function
from -1 to +1 will satisfy this requirement; so too will a sigmoid (sinusoid from 270 to 90
degrees). As kdist is increased, the compressed signal is expanded to encounter more and more
of the shaping function, and if this becomes non-linear the signal is increasingly “bent” on read-
through to cause distortion.

When kdist becomes large enough, the read-through process will eventually hit the outer limits
of the table. The table is not read with wrap-around, but will “stick” at the end-points as the
incoming signal exceeds them; this introduces clipping, an additional form of signal distortion.
The point at which clipping begins will depend on the complexity (rms-to-peak value) of the
input signal. For a pure sinusoid, clipping will begin only as kdist exceeds 0.7; for a more
complex input, clipping might begin at a kdist of 0.5 or much less. kdist can exceed the clip
point by any amount, and may be greater than 1.

The shaping function can be made arbitrarily complex for extra effect. It should generally be
continuous, though this is not a requirement. It should also be well-behaved near the mid-point,
and roughly balanced positive-negative overall, else some excessive DC offset may result. The
user might experiment with more aggressive functions to suit the purpose. A generally positive
slope allows the distorted signal to be mixed with the source without phase cancellation.

distort is useful as an effects process, and is usually combined with reverb and chorusing on
effects busses. However, it can alternatively be used to good effect within a single instrument.

Example:

 gifn ftgen 0,0, 257, 9, .5,1,270 ; define a sigmoid, or better …
 gifn ftgen 0,0, 257, 9, .5,1,270,1.5,.33,90,2.5,.2,270,3.5,.143,90,4.5,.111,270

 kdist line 0, 10, 1.2 ; and over 10 seconds
 aout distort asig, kdist, gifn ; gradually increase the distortion

- 76 -

 kr downsamp asig[, iwlen]
 ar upsamp ksig
 ar interp ksig[, iatktim, istor]
 kr integ ksig[, istor]
 ar integ asig[, istor]
 kr diff ksig[, istor]
 ar diff asig[, istor]
 kr samphold xsig, kgate[, ival, ivstor]
 ar samphold asig, xgate[, ival, ivstor]

Modify a signal by up- or down-sampling, integration, and differentiation.

INITIALIZATION
iwlen (optional) - window length in samples over which the audio signal is averaged to
determine a downsampled value. Maximum length is ksmps; 0 and 1 imply no window
averaging. The default value is 0.
iatktim (optional) – flag indicating a zero or positive attack-time. If zero, the interpolator will
move immediately to the first kdb point received; if non-zero, the interpolator will go from zero
to that point during the first control period. The default value is 1 (interpolated rise).
istor (optional) - initial disposition of internal save space (see reson). The default value is 0.
ival, ivstor (optional) - controls initial disposition of internal save space. If ivstor is zero the
internal “hold" value is set to ival ; else it retains its previous value. Defaults are 0,0 (init to
zero).

PERFORMANCE
downsamp converts an audio signal to a control signal by downsampling. It produces one kval
for each audio control period. The optional window invokes a simple averaging process to
suppress foldover.

upsamp, interp convert a control signal to an audio signal. The first does it by simple repetition
of the kval, the second by linear interpolation between successive kvals (with optional control
over the first k-period). upsamp is a slightly more efficient form of the assignment, ‘asig =
ksig’.

integ, diff perform integration and differentiation on an input control signal or audio signal.
Each is the converse of the other, and applying both will reconstruct the original signal. Since
these units are special cases of low-pass and high-pass filters, they produce a scaled (and phase
shifted) output that is frequency-dependent. Thus diff of a sine produces a cosine, with
amplitude 2 * sin(pi * cps / sr) that of the original (for each component partial); integ will
inversely affect the magnitudes of its component inputs. With this understanding, these units can
provide useful signal modification.

samphold performs a sample-and-hold operation on its input according to the value of gate. If
gate > 0, the input samples are passed to the output; If gate <= 0, the last output value is
repeated. The controlling gate can be a constant, a control signal, or an audio signal.

Example:
 asrc buzz 10000,440,20,1 ; band limited pulse train
 adif diff asrc ; emphasize the highs
 anew balance adif, asrc ; but retain the power
 agate reson asrc,0,440 ; use a lowpass of the original

- 77 -

 asamp samphold anew, agate ; to gate the new audiosig
 aout tone asamp,100 ; smooth out the rough edges

- 78 -

 ar octup* asig, isegtim
 ar octdown* asig, isegtim

Pitch-shift a signal up or down one octave.

INITIALIZATION

isegtim - time in seconds of each windowed segment.

PERFORMANCE

These units perform an elementary pitch shift using windowed and overlaid sound fragments.
Voice formants are not preserved (c.f. harmon, harmon2, 3, 4). Rather, the octave shifts are
due to resampling the input stream prior to windowing and redistribution. The isegtim durations
depend mostly on the direction of pitch shift, and partly on the audio content. Suggested
practical values are .05 for octup and .3 for octdown, but these should be set by experiment.

- 79 -

 ar delayr idlt[, istor]
 delayw asig
 ar delay asig, idlt[, istor]
 ar delay1 asig[, istor]
 ar vdelay asig, xdlt, imaxdlt[, istor]

A signal can be read from or written into a delay path, or it can be automatically delayed by
some time interval.

INITIALIZATION

idlt, imaxdlt - requested or maximum delay time in seconds. This can be as large as available
memory will permit. The space required for n seconds of delay is 4n * sr bytes. It is allocated at
the time the instrument is first initialized, and returned to the pool at the end of a score section.

istor (optional) - initial disposition of delay-loop data space (see reson). The default value is 0.

PERFORMANCE

delayr reads from an automatically established digital delay line, in which the signal retrieved
has been resident for idlt seconds. This unit must be paired with and precede an accompanying
delayw unit. Any other Csound statements can intervene.

delayw writes asig into the delay area established by the preceding delayr unit. Viewed as a
pair, these two units permit the formation of modified feedback loops, etc. However, there is a
lower bound on the value of idlt, which must be at least 1 control period (or 1/kr).

delay is a composite of the above two units, both reading from and writing into its own storage
area. It can thus accomplish signal time-shift, although modified feedback is not possible. There
is no minimum delay period.

delay1 is a special form of delay that serves to delay the audio signal asig by just one sample. It
is thus functionally equivalent to "delay asig, 1/sr" but is more efficient in both time and space.
This unit is particularly useful in the fabrication of generalized non-recursive filters.

vdelay is a variable-length delay line whose delay time xdlt can range from 0 sample-periods to
imaxdlt seconds. xdlt can be either k-rate or a-rate. k-rate xdlt is convenient for slow-changing
and medium-changing delay times, such as in doppler effects, chorusing and flanging; a-rate
xdlt is appropriate for faster changing delay times, such as pitch-shift effects. Both versions use
interpolated readout. If fast changes still result in audible noise, try deltapi as an alternative.
Note that all values of xdlt should be positive, and should remain within the imaxdlt limit. If the
boundary is crossed, vdelay will still generally produce output but will “click” at each boundary
wrap-around.

Example:

 tigoto contin ; except on a tie,
 a2 delay a1, .05, 0 ; begin 50 msec clean delay of sig
 contin:

- 80 -

 ar deltap kdlt
 ar deltapi xdlt

Tap a delay line at variable offset times.

PERFORMANCE

These units can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of
stored sound. There can be any number of deltap and/or deltapi units between a read/write pair.
Each receives an audio tap with no change of original amplitude.

deltap extracts sound by reading the stored samples directly; deltapi extracts sound by
interpolated readout. By interpolating between adjacent stored samples deltapi represents a
particular delay time with more accuracy, but it will take about twice as long to run.

The arguments kdlt, xdlt specify the tapped delay time in seconds. Each can range from 1
Control Period to the full delay time of the read/write pair; however, since there is no internal
check for adherence to this range, the user is wholly responsible. Each argument can be a
constant, a variable, or a time-varying signal; the xdlt argument in deltapi implies that an audio-
varying delay is permitted there.

These units can provide multiple delay taps for arbitrary delay path and feedback networks.
They can deliver either constant-time or time-varying taps, and are useful for building chorus
effects, harmonizers, and doppler shifts. Constant-time delay taps (and some slowly changing
ones) do not need interpolated readout; they are well served by deltap. Medium-paced or fast
varying dlt's, however, will need the extra services of deltapi.

N.B. K-rate delay times are not internally interpolated, but rather lay down stepped time-shifts
of audio samples; this will be found quite adequate for slowly changing tap times. For medium
to fastpaced changes, however, one should provide a higher resolution audio-rate timeshift as
input.

Example:

 asource buzz 1, 440, 20, 1
 atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
 ampfac = 1/atime/atime ; and calc an amp factor
 adump delayr 1 ; set maximum distance
 amove deltapi atime ; move sound source past
 delayw asource ; the listener
 out amove * ampfac

- 81 -

 ar comb asig, krvt, ilpt[, istor]
 ar alpass asig, krvt, ilpt[, istor]
 ar reverb asig, krvt[, istor]
 ar reverb2 asig, krvt, khfabs[, istor]

An input signal is reverberated for krvt seconds with "colored" (comb), flat (alpass), or "natural
room" (reverb, reverb2) frequency response.

INITIALIZATION

ilpt - loop time in seconds, which determines the "echo density" of the reverberation. This sets
the "color" of the comb filter whose frequency response curve will contain ilpt * sr/2 peaks
spaced evenly between 0 and sr/2. Loop time is limited only by memory, an n second loop
requiring 4n * sr bytes. comb and alpass delay space is allocated and returned as in delay.

istor (optional) - initial disposition of delay-loop data space (cf. reson). The default value is 0.

PERFORMANCE

These filters reiterate input with an echo density determined by the loop time ilpt. The
attenuation rate is independent and is determined by krvt, the reverberation time (defined as the
time in seconds for a signal to decay to 1/1000, or 60dB down from its original amplitude).
Output from a comb filter will appear only after ilpt seconds; alpass output will begin to appear
immediately.

reverb is composed of four comb filters in parallel followed by two alpass units in series.
reverb2 is composed of six parallel comb-lopass filters followed by five alpass units in series.
While the first is fast and rather bright, the second is slower but also more natural due to a lopass
filter in the comb loops that simulates the high-frequency energy absorption of air. The
parameter khfabs (0 - 1) controls the degree of high-frequency absorption, from none to full.

 In both reverb units, internal looptimes are pre-set for optimal "natural room response."
Memory requirements are proportional to the sampling rate, the first requiring 3K words per
10KC and the second 5K words per 10KC. Alternative reverberators may be built from similar
operators.

Reverberator units are intended to represent only sound reflections (from walls and ceilings).
Output will begin to appear after about .05 seconds (time of first reflection), and the amplitude is
unlikely to grow beyond three-fourths of the original. Consequently it is normal to output both
the source and the reverberated signal. Since the reverberated sound will persist long after the
cessation of direct instrument sound, it is normal to put a reverb unit in a separate instrument
which runs continuously. Sound can then be fed into it via a global variable, as shown below:

 ga1 init 0 ; init an audio receiver/mixer

 instr 1 ; instr (there may be any number of these)
 a1 oscili 8000, cpspch(p5), 1 ; generate a source signal
 out a1 ; output the direct sound
 ga1 = ga1 + a1 ; and add to audio receiver
 endin

 instr 99 ; (highest instr number executed last)
 a3 reverb ga1, 1.5 ; reverberate whatever is in ga1
 out a3 ; and output the result

- 82 -

 ga1 = 0 ; empty the receiver for the next pass
 endin

- 83 -

 a1,a2 lrghall32* asig
 a1,a2 lrghall44* asig

Apply large-hall reverberation to a mono input signal to produce stereo independent output.

PERFORMANCE

These are both variants of a fixed-algorithm reverberator, designed to produce high-quality
stereo output via two uncorrelated output channels. Like other Csound units, these both have an
Initialization phase. However, the internal parameters used are not accessible to the user, but
have been set in advance. The two units are pretuned to operate best at two specific sampling
rates—32 KHz and 44.1 KHz, respectively. Both will run at other rates without error, but the
reverberation will sound best at the rates prescribed.

The algorithms will first pass the monaural input through a low-pass filter, then two allpasses in
series, an allpass nested within an allpass, two allpasses nested within an allpass, and finally a
lowpass feedback. The uncorrelated ouputs derive from two independent sets of four taps into
the combined delay space. There is no tap on the direct input path.

These reverberators may be used in similar fashion to reverb and reverb2, and are typically
used to process data on an effects bus. The direct signal is not included in the output. The
algorithms are high-quality but expensive: the tuned parameter settings require 10K and 15K
words of delay space respectively, and the two units will cost 13 mips and 20 mips respectively
to run at the intended sampling rates.

The algorithms are due to W.G. Gardner, The Virtual Acoustic Room, MIT Master’s Thesis
(1992), and so too is the initial version of the SHARC assembler code.

Example:

 gar fxsend asig, .3 ; write to an effects bus

 a1,a2 lrghall32 gar ; and reverberate the contents
 outs a1, a2
 gar = 0

- 84 -

 a1 chorus1* asig, krat1, krat2, krat3, idel1, idel2, idel3, ipred, idpth, ifdbk, ifsin
 a1,a2 chorus2* asig, krat1, krat2, krat3, krat4, idel1, idel2, idel3, idel4, ipred,
 idpth, ifdbk, ifsin
 a1,a2 chorus3* asig, krat1, krat2, krat3, krat4, idel1, idel2, idel3, idel4, ipred,
 idpth, ifdbk, ifsin

Perform chorus effects processing on an audio signal.

INITIALIZATION

idel1,idel2, idel3,idel4 - delay times in seconds for the mono (3 path) or stereo (2+2 path) signal
storage paths. Times should be dissimilar, and normally from .03 to .1 seconds.

ipred - predelay in seconds. An optional delay-line supplement, through which the input asig
first passes before going to the above delay lines. The value 0 will disable.

idpth - chorusing depth.

ifdbk - feedback factor. This fraction of the chorused output is mixed in with the incoming
signal.

ifsin - ftable number of a stored sinwave, used to vary the index of the delay-line readouts. The
sine table is read with interpolation, so need not be large.

PERFORMANCE

These units boost an incoming signal with various delayed versions of itself. The delay times
are continuously varied, causing small undulating pitch shifts in the added components and a
chorus effect in the overall output. The output contains both the source and the delayed signals.

The continuous variation of the delays is a function of the rates krat1, krat2, .. which cause the
readout to traverse the delay lines with sinusoidal oscillatory motion. Rates are expressed in
cycles per second, and are normally slow, similar, but not identical; values in the range of .2 to
.5 cps are typical. The degree of pitch shift is a function of each delay-line extent and the rate at
which its varied readout is being alternately advanced or retarded over this extent. The signal
delay paths are cumulative, so the readout pointers will never cross or be coincident; however,
the pitch deflections will cross each other as they go from positive to negative.

While chorus1 gives monaural output, chorus2 (the 4 controls are applied 1,2 to channel 1 and
3,4 to channel 2) can be set to give stereo uncorrelated output. Both units can be further
enhanced by a non-zero feedback factor; in the stereo unit the feedback moves left channel
output back into right and right back into left. The user should experiment with various settings
to achieve different results. chorus3 is essentially an assembler version of chorus2, taking
about 4.8 mips instead of 7.2 mips at 32 KC.

Example:

 a1 chorus1 asig, .43, .37, .31, .05, .073, .094, 0, 0, .2, 1

This sets three dissimilar delay lines, traversed at three dissimilar rates (longest slowest), with
feedback but no predelay.

- 85 -

 a1 flange1* asig, krate, idel, ifdbk, ifn
 a1,a2 flange2* asig, krate, idel, idiff, ifdbk, ifn

Perform flange effects processing on an audio signal.

INITIALIZATION

idel - delay line length in seconds.

idiff- phase difference between stereo flanges, expressed as a fraction, 0 - .999.

ifdbk - feedback factor. Fraction of flanged audio output to be mixed with the incoming signal.

ifn - ftable number of a stored sinewave, used to vary the index of the delay-line readouts. The
sine table is read with interpolation, so need not be large.

PERFORMANCE

These units will augment an audio signal with delayed versions of itself in the form of flange
effects. A small time difference between a source input and its delayed addition will create a
pitched focus at the frequency 1/timediff, and this pitch can be moved over a wide range as the
readout slowly varies its point of scan. The readout is varied with the assistance of a stored
periodic function, normally a single sinusoid, and the cyclic change induced by krate normally
spans several seconds. The resultant flanged audio can optionally be added back into the
incoming signal for further enhanced effect.

flange2 differs from flange1 by maintaining two distinct delay lines, with readouts and pitched
effects differing by some initial phase difference (e.g. .25). The flanged output can also
optionally be added back into the incoming signal, although unlike chorus2 the feedback is not
interchanged between the two channels.

Example:

 a1,a2 flange2 asig, 5, .03, .25, .2, 1

- 86 -

OPERATIONS USING SPECTRAL DATA-TYPES

These units generate and process a non-standard signal data type wsig, which is an
exponentially-spaced frequency-domain (spectral) representation of a given control or audio
signal. The data type is self-defining, and its contents are not processable by any other Csound
units. Its purpose is to enable perceptually-based analysis of audio input. The units below are
experimental, and subject to change between releases; they will also be joined by others later.

 wsig spectrum xsig, iprd, iocts, ifrqs, iq[, ihann, idbout, idisprd, idsines]

This unit will generate a constant-Q, exponentially-spaced DFT across all octaves of a multiply-
downsampled control or audio input signal.

INITIALIZATION

ihann (optional) - apply a hamming or hanning window to the input. The default value is 0
(hamming window).

idbout (optional) - coded conversion of the DFT output: 0 = magnitude, 1 = dB, 2 = mag
squared, 3 = root magnitude. The default value is 0 (magnitude).

idisprd (optional) - if non-zero, display the composite downsampling buffer every idisprd
seconds. The default value is 0 (no display).

idsines (optional) - if non-zero, display the hamming or hanning windowed sinusoids used in
DFT filtering. The default value is 0 (no sinusoid display).

PERFORMANCE

This unit first puts signal asig or ksig through iocts of successive octave decimation and
downsampling, and preserves a buffer of down-sampled values in each octave (optionally
displayed as a composite buffer every idisprd seconds). Then at every iprd seconds, the
preserved samples are passed through a filter bank (ifrqs parallel filters per octave, exponentially
spaced, with frequency/bandwidth Q of iq), and the output magnitudes optionally converted
(idbout) to produce a band-limited spectrum that can be read by other units.

The stages in this process are computationally intensive, and computation time varies directly
with iocts, ifrqs, iq, and inversely with iprd. Settings of ifrqs = 12, iq = 10, idbout = 3, and iprd
= .02 will normally be adequate, but experimentation is encouraged. ifrqs currently has a
maximum of 120 divisions per octave. For audio input, the frequency bins are tuned to coincide
with A440.

This unit produces a self-defining spectral datablock wsig, whose characteristics used (iprd,
iocts, ifrqs, idbout) are passed via the data block itself to all derivative wsigs. There can be any
number of spectrum units in an instrument or orchestra, but all wsig names must be unique.

Example:

 asig in ; get external audio

- 87 -

 wsig spectrum asig, .02, 6, 12, 33, 0, 1, 1 ; downsample in 6 octs & calc a 72
pt
 ; dft (Q 33, dB out) every 20 msecs

- 88 -

 wsig specaddm wsig1, wsig2[, imul2]
 wsig specdiff wsigin
 wsig specscal wsigin, ifscale, ifthresh
 wsig spechist wsigin
 wsig specfilt wsigin, ifhtim

INITIALIZATION

imul2 (optional) - if non-zero, scale the wsig2 magnitudes before adding. The default value is 0.

PERFORMANCE

specaddm - do a weighted add of two input spectra. For each channel of the two input spectra,
the two magnitudes are combined and written to the output according to: magout = mag1in +
mag2in * imul2. The operation is performed whenever the input wsig1 is sensed to be new. This
unit will (at Initialization) verify the consistency of the two spectra (equal size, equal period,
equal mag types).

specdiff - find the positive difference values between consecutive spectral frames. At each new
frame of wsigin, each magnitude value is compared with its predecessor, and the positive
changes written to the output spectrum. This unit is useful as an energy onset detector.

specscal - scale an input spectral datablock with spectral envelopes. Function tables ifthresh and
ifscale are initially sampled across the (logarithmic) frequency space of the input spectrum; then
each time a new input spectrum is sensed the sampled values are used to scale each of its
magnitude channels as follows: if ifthresh is non-zero, each magnitude is reduced by its
corresponding table-value (to not less than zero); then each magnitude is rescaled by the
corresponding ifscale value, and the resulting spectrum written to wsig.

spechist - accumulate the values of successive spectral frames. At each new frame of wsigin, the
accumulations-to-date in each magnitude track are written to the output spectrum. This unit thus
provides a running histogram of spectral distribution.

specfilt - filter each channel of an input spectrum. At each new frame of wsigin, each magnitude
value is injected into a 1st-order lowpass recursive filter, whose half-time constant has been
initially set by sampling the ftable ifhtim across the (logarithmic) frequency space of the input
spectrum. This unit effectively applies a persistence factor to the data occurring in each spectral
channel, and is useful for simulating the energy integration that occurs during auditory
perception. It may also be used as a time-attenuated running histogram of the spectral
distribution.

Example:

 wsig2 specdiff wsig1 ; sense onsets
 wsig3 specfilt wsig2, 2 ; absorb slowly
 specdisp wsig2, .1 ; & display both spectra
 specdisp wsig3, .1

- 89 -

 koct, kamp specptrk wsig, kvar, ilo, ihi, istrt, idbthresh, inptls, irolloff[, iodd,
 iconfs, interp, ifprd, iwtflg]

Estimate the pitch and amplitude of the most prominent complex tone in the spectrum.

INITIALIZATION

ilo, ihi, istrt - pitch range conditioners (low, high, and starting) expressed in decimal octave
form.

idbthresh - energy threshold (in decibels) for pitch tracking to occur. Once begun, tracking will
be continuous until the energy falls below one half the threshold (6 db down), whence the koct
and kamp outputs will be zero until the full threshold is again surpassed. idbthresh is a guiding
value. At initialization it is first converted to the idbout mode of the source spectrum (and the 6
db down point becomes .5, .25, or 1/root 2 for modes 0, 2 and 3). The values are also further
scaled to allow for the weighted partial summation used during correlation. The actual
thresholding is done using the internal weighted and summed kamp value that is visible as the
second output parameter.

inptls, irolloff - number of harmonic partials used as a matching template in the spectrally-based
pitch detection, and an amplitude rolloff for the set expressed as some fraction per octave (linear,
so don’t roll off to negative). Since the partials and rolloff fraction can affect the pitch
following, some experimentation will be useful: try 4 or 5 partials with .6 rolloff as an initial
setting; raise to 10 or 12 partials with rolloff .75 for complex timbres like the bassoon (weak
fundamental). Computation time is dependent on the number of partials sought; the maximum
number is 16.

iodd (optional) - if non-zero, employ only odd partials in the above set (e.g. inptls of 4 would
employ partials 1,3,5,7). This improves the tracking of some instruments like the clarinet. The
default value is 0 (employ all partials).

iconfs (optional) - number of confirmations required for the pitch tracker to jump an octave, pro-
rated for fractions of an octave (i.e. the value 12 implies a semitone change needs 1 confirmation
(two hits) at the spectrum generating iprd). This parameter limits spurious pitch analyses such as
octave errors. A value of 0 means no confirmations required; the default value is 10.

interp (optional) - if non-zero, interpolate each output signal (koct, ksmp) between incoming
wsig frames. The default value is 0 (repeat the signal values between frames).

ifprd (optional) - if non-zero, display the internally computed spectrum of candidate
fundamentals. The default value is 0 (no display).

iwtflg (optional) - wait flag. If non-zero, hold each display until released by the user. The
default value is 0 (no wait).

PERFORMANCE

At note initialization this unit creates a template of inptls harmonically related partials (odd
partials if iodd non-zero) with amplitude rolloff to the fraction irolloff per octave. At each new
frame of wsig, the spectrum is cross-correlated with this template to provide an internal spectrum
of candidate fundamentals (optionally displayed). A likely pitch/amp pair (koct, kamp, in
decimal octave and summed idbout form) is then estimated. koct varies from the previous koct
by no more than plus or minus kvar decimal octave units; it is also guaranteed to lie within the
hard limit range ilo - ihi (decimal octave low and high pitch). kvar can be dynamic, e.g. onset

- 90 -

amp dependent. Pitch resolution uses the originating spectrum ifrqs bins/octave, with further
parabolic interpolation between adjacent bins. Settings of root magnitude, ifrqs = 24, iq = 15
should capture all the inflections of interest. Between frames, the output is either repeated or
interpolated at the K-rate.

Example:

 a1,a2 ins ; read a stereo clarinet input
 krms rms a1, 20 ; find a monaural rms value
 kvar = 0.6 + krms / 8000 ; & use to gate the pitch variance
 wsig spectrum a1, .01, 7, 24, 15, 0, 3 ; get a 7-oct spectrum, 24 bins/oct
 specdisp wsig, .2 ; display this, and now estimate
 koct,ka specptrk wsig, kvar, 7.0, 10, 9, 20, 4, .7, 1, 5, 1, .2 ; the pch and amp
 aosc oscil ka * ka * 10, cpsoct(koct), 2 ; & generate a new tone with these
 koct = (koct < 7.0 ? 7.0 : koct) ; replace non pitch with low C
 display koct - 7.0, .25, 20 ; & display the pitch track
 display ka, .25, 20 ; plus the summed root mag
 outs a1, aosc ; output 1 original and 1 new track

- 91 -

 ksum specsum wsig[, interp]
 specdisp wsig, iprd[, iwtflg]

INITIALIZATION

interp (optional) - if non-zero, interpolate the output signal ksum between incoming wsig frames.
The default value is 0 (repeat the signal values between frames).

iwtflg (optional) - wait flag. If non-zero, hold each display until released by the user. The
default value is 0 (no wait).

PERFORMANCE

specsum - sum the magnitudes across all (iocts * ifrqs) channels of the incoming spectrum. At
each new frame of wsig, the idbout coded magnitudes are arithmetically summed and released as
a scalar ksum signal. Although such simple summing of dB or root magnitude values is not fully
meaningful, these can be taken as very simple substitutes for the simultaneous masking and
energy summation that occurs in mammalian hearing, and can thus serve as a moment to moment
measure of perceived loudness, especially if temporal energy integration has also been modeled
(see specfilt). Between frames, the output is either repeated or interpolated at the K-rate.

specdisp - display the magnitude values of spectrum wsig every iprd seconds (rounded to some
integral number of wsig's originating iprd).

- 92 -

SENSING & CONTROL

 midiout* kamp, koct, iampsens, ibendrng, ichan

Create a midi output stream based on amplitude and pitch patterns.

INITIALIZATION

iampsens - sensitivity to amplitude regrowth (0 - 1). When an amp has fallen below this fraction
of its maximum, a regain of half the loss will trigger a new event. Typically about .6; a 0 will
disable this feature.

ibendrng - range of pitch-bend (in semitones) by which a note may be varied without requiring a
new event. Typical values are 2 and 12 semitones (both up and down). 0 will inhibit pitch-
bend.

ichan - midi channel number (1 - 16) which will be encoded in each generated midi event.

PERFORMANCE

This unit takes amplitude and decimal-octave pitch data and converts them into a sequence of
midi commands whose ultimate destination is set by flag -G. The amplitude is conveyed directly
as midi velocity, and the oct data is converted to an appropriate midi note number. The two
input signals may be derived in any manner, but are most conveniently supplied by specptrk.

A midi note-on event requires two things: an amplitude that has reached a local peak, and a non-
zero koct value. These values then become the velocity and equivalent note-number of a note-on
event. If ibendrng is non-zero, an accompanying pitch-bend command is also generated.

A note-off will occur when either kamp or koct becomes zero. It will also occur if pitch-bend is
off and the incoming koct requires a different note number, in which case the note-off will be
followed by a new note-on with revised velocity and pitch.

A note-off is also issued when kamp falls below the iampsens fraction of its maximum then
regains half the loss, thus making way for a new note-on when the gain reaches a local peak.
This will track rapid events (like flutter tonguing) with a series of note-off / note-on pairs.

If pitch-bend is enabled, any change in the koct value of an active note will induce a new pitch-
bend command on each control period. To avoid unnecessary detail, set the krate low, or keep
the koct value quantized (as in specptrk with no k-period interpolation).

Mapping kamp values to midi velocity raises a difficult issue, since the inverse is not defined in
the midi spec. (Csound simply allows users to define velocity-to-amplitude via tables, see
ampmidi.) The literal use of kamp as velocity in midiout implies not only that kamp is
truncatable (0 - 127), but is already velocity-meaningful. Convenient forms of compressed-
range amplitude data are decibels and root magnitude, both of which are optionally provided by
specptrk.

Example:

 a1 in ; from audio input
 w1 spectrum a1, .02, 7, 24, 12, 1, 3 ; get spectrum in root-mag,

- 93 -

 koct, kamp specptrk w1, 1, 6.3, 8.9, 7.5, 10, 7, .7, 0, 3, 0 ; pitch track &
 midiout kamp, koct, 0, 2, 1 ; make midi events, with pitch-bend

- 94 -

 ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak,
 istartempo, ifn[, idisprd, itweek]

Estimate the tempo of beat patterns in a control signal.

INITIALIZATION

iprd - period between analyses (in seconds). Typically about .02 seconds.

imindur - minimum duration (in seconds) to serve as a unit of tempo. Typically about .2
seconds.

imemdur - duration (in seconds) of the kin short-term memory buffer which will be scanned for
periodic patterns. Typically about 3 seconds.

ihp - half-power point (in cps) of a low-pass filter used to smooth input kin prior to other
processing. This will tend to suppress activity that moves much faster. Typically 2 cps.

ithresh - loudness threshold by which the low-passed kin is center-clipped before being placed in
the short-term buffer as tempo-relevant data. Typically at the noise floor of the incoming data.

ihtim - half-time (in seconds) of an internal forward-masking filter that masks new kin data in the
presence of recent, louder data. Typically about .005 seconds.

ixfdbak - proportion of this unit's anticipated value to be mixed with the incoming kin prior to all
processing. Typically about .3.

istartempo - initial tempo (in beats per minute). Typically 60.

ifn - table number of a stored function (drawn left-to-right) by which the short-term memory data
is attenuated over time.

idisprd (optional) - if non-zero, display the short-term past and future buffers every idisprd
seconds (normally a multiple of iprd). The default value is 0 (no display).

itweek (optional) - fine-tune adjust this unit so that it is stable when analyzing events controlled
by its own output. The default value is 1 (no change).

PERFORMANCE

tempest examines kin for amplitude periodicity, and estimates a current tempo. The input is first
low-pass filtered, then center-clipped, and the residue placed in a short-term memory buffer
(attenuated over time) where it is analyzed for periodicity using a form of autocorrelation. The
period, expressed as a tempo in beats per minute, is output as ktemp. The period is also used
internally to make predictions about future amplitude patterns, and these are placed in a buffer
adjacent to that of the input. The two adjacent buffers can be periodically displayed, and the
predicted values optionally mixed with the incoming signal to simulate expectation.

This unit is useful for sensing the metric implications of any k-signal (e.g. the RMS of an audio
signal, or the second derivative of a conducting gesture), before sending to a tempo statement.

Example:

ksum specsum wsignal, 1 ; sum the amps of a spectrum

- 95 -

ktemp tempest ksum, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ; and look for beats

- 96 -

 kx, ky xyin iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit]
 tempo ktempo, istartempo

Sense the cursor position in an input window. Apply tempo control to an uninterpreted score.

INITIALIZATION

iprd - period of cursor sensing (in seconds). Typically .1 seconds.

xmin, xmax, ymin, ymax - edge values for the x-y coordinates of a cursor in the input window.

ixinit, iyinit (optional) - initial x-y coordinates reported; the default values are 0,0. If these
values are not within the given min-max range, they will be coerced into that range.

istartempo - initial tempo (in beats per minute). Typically 60.

PERFORMANCE

xyin samples the cursor x-y position in an input window every iprd seconds. Output values are
repeated (not interpolated) at the K-rate, and remain fixed until a new change is registered in the
window. There may be any number of input windows. This unit is useful for Realtime control,
but continuous motion should be avoided if iprd is unusually small.

tempo allows the performance speed of Csound scored events to be controlled from within an
orchestra. It operates only in the presence of the csound -t flag. When that flag is set, scored
events will be performed from their uninterpreted p2 and p3 (beat) parameters, initially at the
given command-line tempo. When a tempo statement is activated in any instrument (ktempo >
0.), the operating tempo will be adjusted to ktempo beats per minute. There may be any number
of tempo statements in an orchestra, but coincident activation is best avoided.

Example:

 kx,ky xyin .05, 30, 0, 120, 0, 75 ; sample the cursor
 tempo kx, 75 ; and control the tempo of performance

- 97 -

 aramp iftime* idgrlvl, label[, idec, iris][, iprop]
 acum timegate* aramp, anew, acum

Sense realtime processor overload and modify the instrument complexity.

INITIALIZATION

idgrlvl - danger level (percentage), above which this unit will emit a rampout function, then
begin skipping opcodes up to label..

idec, iris (optional) - decay time and rise time (in seconds) of the generated ramping function
that precedes and follows skipping. The default time is .05 seconds.

iprop (optional) - proportion by which the skipped code was contributing to the accumulated
output. The default proportion is .5.

PERFORMANCE

These units allow a compute-intensive instrument to “lighten up” on sensing that audio synthesis
is falling behind realtime. The danger threshold is based on an internal running report of CPU
usage. If the CPU starts to fall behind (i.e. the dac buffer is being drained faster than it is being
replenished), an internal danger level is posted so that these units can take evasive action.

The two units are used as a pair, the target label of the first being the opcode that immediately
follows the second. When danger is sensed, iftime emits a brief ramp before beginning to jump.
During this period timegate uses the ramp values to modify the mix of new signal to previously
accumulated signal, so that when jumping begins it will be acoustically seamless. On sensing
that the danger is over, the two units begin the reverse process of reintroducing the ommited
signal.

This technique is a musically practical alternative to “voice stealing”. Instead of removing lines
from a polyphonic thread on overload, these units enable instruments to be rich when played
alone yet progressively thinner (more efficient) as the music itself thickens. It is known that the
human ear is not as sensitive to the timbral complexity of every voice in a thick texture, but it
can notice if a contrapuntal line has entirely disappeared. These units provide a way of dealing
with that.

Example:

 acum = a1 + a2
 aramp iftime 95, direct ; if we have the processor time
 a3 oscil kamp, icps3, ifn ; do one more oscil
 acum timegate aramp, a3, acum ; and fade it in or out
direct: out acum

- 98 -

SIGNAL INPUT & OUTPUT

a1 in
a1, a2 ins
a1, a2, a3, a4 inq
a1, a2, a3, a4, a5, a6 inh*
a1 soundin ifilcod[, iskptim][, iformat]
a1, a2 soundin ifilcod[, iskptim][, iformat]
a1, a2, a3, a4 soundin ifilcod[, iskptim][, iformat]

 out asig
 outs1 asig
 outs2 asig
 outs asig1, asig2
 outq1 asig
 outq2 asig
 outq3 asig
 outq4 asig
 outq asig1, asig2, asig3, asig4
 outh1* asig
 outh2* asig
 outh3* asig
 outh4* asig
 outh5* asig
 outh6* asig
 outh* asig1, asig2, asig3, asig4, asig5, asig6
 soundout* asig1, ifilcod[, iformat]
 soundouts* asig1, asig2, filcod[, iformat]

These units read/write audio data from/to an external device or stream.

INITIALIZATION

filcod - integer or character-string denoting the source soundfile name. A positive integer
denotes an indexed filename in the Orchestra (see strset); a negative integer denotes a file
soundin.filcod; a character-string (double quotes, spaces permitted) gives the filename itself. A
filename is optionally a full pathname. If not full path, the file is sought first in the current
directory, then in that given by the environment variable SSDIR (if defined) then by SFDIR. See
also GEN01.

iskptim (optional) - time in seconds of input sound to be skipped. The default value is 0.

iformat (optional) - specifies the audio data file format: 1 = 8-bit signed char (high-order 8 bits
of a 16-bit integer), 2 = 8-bit A-law bytes, 3 = 8-bit U-law bytes, 4 = 16-bit short integers, 5 =
32-bit long integers, 6 = 32-bit floats). If iformat = 0 it is taken from the soundfile header, and if
no header from the csound -o command flag. The default value is 0.

PERFORMANCE

in, ins, inq, inh - copy the current values from the standard audio input buffer. If the command-
line flag -i is set, sound is read continuously from the audio input stream (e.g. adc (microphone)
or a soundfile) into an internal buffer. Any number of these units can read freely from this
buffer.

- 99 -

soundin is functionally an audio generator that derives its signal from a pre-existing file. The
number of channels read in is controlled by the number of result cells, a1, a2, etc., which must
match that of the input file. A soundin unit opens this file whenever the host instrument is
initialized, then closes it again each time the instrument is turned off. There can be any number
of soundin units within a single instrument or orchestra; also, two or more of them can read
simultaneously from the same external file.

out, outs, outq, outh send audio samples to an accumulating output buffer (created at the
beginning of performance) which serves to collect the output of all active instruments before the
sound is written to disk. There can be any number of these output units in an instrument. The
type (mono, stereo, quad or hex) must agree with nchnls, but units can be chosen to direct sound
to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

soundout, soundouts will write audio output to an arbitrary file. There can be any number of
these in an orchestra, but they should not attempt writing to the same file.

- 100 -

 a1,a2 hostin*
 hostout* asig, iprd

Receive unsolicited audio from the host, or send same.

INITIALIZATION

iprd - period in seconds of writing sound to the host. Automatic minumum of 64 samples.

PERFORMANCE

hostin is designed to catch an audio stream sent by the host processor at any time, and to
incorporate it into a running Csound environment. There can be only one hostin opcode in an
orchestra, and the instrument containing it will be turned on and off as needed by special
commands from the host. The host may send up to eight streams simultaneously, each of which
will induce a separate instrument copy and activation pattern.

hostin always produces stereo output at the orchestra sampling rate. The host may send stereo,
or mono with a varying pan factor. It can also transmit in any sample format, and at any sample
rate, with each concurrent stream potentially different. hostin will automatically convert these
into audio streams suitable for Csound processing. The opcode is normally encased in a simple
instrument armed with appropriate effects-bus sends.

hostout will write the audio stream asig to the host.every iprd seconds.

Example:

 a1,a2 hostin ; catch any host audio
 gach1, garv1 mfxsend a1, .2, .5 ; send both channels
 gach2, garv2 mfxsend a2, .2, .5 ; to chorus and reverb
 outs a1, a2 ; plus direct out

- 101 -

 ar fxsend* asig, klevel
 a1[,a2,a3,a4] mfxsend* asig, ilvl1[, ilvl2, ilvl3, ilvl4]

 outs12* asig
 panouts* asig, kprop

Add a signal to one or more effects busses, or send it to the audio output channels.

INITIALIZATION

ilvl1,ilvl2,ilvl3,ilvl4 - weights for the respective effects-send operations. The number of weights
is variable up to 4, but it must agree with the number of output paths.

PERFORMANCE

These units offer an efficient means of sending a signal to special paths or to the output channels.
When an instrument needs to transmit data for effects processing it is common to add it into
global variables which act as effects send busses, the contents of which are first processed then
cleared to zero by the intended receiver. fxsend and mfxsend provide an efficient way of
sending weighted data on up to four effects busses simultaneously.

outs12 and panouts provide an efficient means of sending monaural data to stereo output
channels. While the first sends the full signal equally to both channels, the second sends just the
proportion kprop to channel 1 and (1 - kprop) to channel 2.

Example:

 garvb,gacho mfxsend asig, v1, v2 ; send to reverb and chorus
 panouts asig, v3 ; and pan the source as reqd

- 102 -

a1, a2, a3, a4 pan asig, kx, ky, ifn[, imode][, ioffset]

Distribute an audio signal amongst four channels with localization control.

INITIALIZATION

ifn - function table number of a stored pattern describing the amplitude growth in a speaker
channel as sound moves towards it from an adjacent speaker. Requires extended guard-point.

imode (optional) - mode of the kx, ky position values. 0 signifies raw index mode, 1 means the
inputs are normalized (0 - 1). The default value is 0.

ioffset (optional) - offset indicator for kx, ky. 0 infers the origin to be at channel 3 (left rear); 1
requests an axis shift to the quadraphonic center. The default value is 0.

PERFORMANCE

pan takes an input signal asig and distributes it amongst four outputs (essentially quad speakers)
according to the controls kx and ky. For normalized input (mode=1) and no offset, the four
output locations are in order: left-front at (0,1), right-front at (1,1), left-rear at the origin (0,0),
and right-rear at (1,0). In the notation (kx, ky), the coordinates kx and ky, each ranging 0 - 1, thus
control the 'rightness' and 'forwardness' of a sound location.

Movement between speakers is by amplitude variation, controlled by the stored function table
ifn. As kx goes from 0 to 1, the strength of the right-hand signals will grow from the left-most
table value to the right-most, while that of the left-hand signals will progress from the right-most
table value to the left-most. For a simple linear pan, the table might contain the linear function 0
- 1. A more correct pan that maintains constant power would be obtained by storing the first
quadrant of a sinusoid. Since pan will scale and truncate kx and ky in simple table lookup, a
medium-large table (say 8193) should be used.

kx, ky values are not restricted to 0 - 1. A circular motion passing through all four speakers
(enscribed) would have a diameter of root 2, and might be defined by a circle of radius R = root
1/2 with center at (.5,.5). kx, ky would then come from Rcos(angle), Rsin(angle), with an
implicit origin at (.5,.5) (i.e. ioffset = 1). Unscaled raw values operate similarly. Sounds can
thus be located anywhere in the polar or cartesian plane; points lying outside the speaker square
are projected correctly onto the square's perimeter as for a listener at the center.

Example:
 instr 1
 k1 phasor 1/p3 ; fraction of circle
 k2 tablei k1, 1, 1 ; sin of angle (sinusoid in f1)
 k3 tablei k1, 1, 1, .25, 1 ; cos of angle (sin offset 1/4 circle)
 a1 oscili 10000,440, 1 ; audio signal..
a1,a2,a3,a4 pan a1, k2/2, k3/2, 2, 1, 1 ; sent in a circle (f2=1st quad sin)
 outq a1, a2, a3, a4
 endin

- 103 -

k1 kread ifilname, iformat, iprd[, interp]
k1, k2 kread2 ifilname, iformat, iprd[, interp]
k1, k2, k3 kread3 ifilname, iformat, iprd[, interp]
k1, k2, k3, k4 kread4 ifilname, iformat, iprd[, interp]
 kdump ksig1, ifilname, iformat, iprd
 kdump2 ksig1, ksig2, ifilname, iformat, iprd
 kdump3 ksig1, ksig2, ksig3, ifilname, iformat, iprd
 kdump4 ksig1, ksig2, ksig3, ksig4, ifilname, iformat, iprd

Periodically read/write orchestra control-signal values to a named external file in a specific
format.

INITlALIZATION

ifilname - character string (in double quotes, spaces permitted) denoting the external file name.
May be either a full path name with target directory specified, or a simple filename to be found
or created within the current directory.

iformat - specifies the input and output data format: 1 = 8-bit signed character (high-order 8 bits
of a 16-bit integer), 4 = 16-bit short integers, 5 = 32-bit long integers, 6 = 32-bit floats, 7 =
ASCII long integers, 8 = ASCII floats (2 decimal places). Note that A-law and U-law output are
not available, and that all formats except the last two are binary. Note also that these input and
output files contain no header information, so the format must be explicit.

iprd - the period of ksig output in seconds, rounded to the nearest orchestra control period. A
value of 0 implies one control period (the enforced minimum), which will read/write frames to
the external file at the orchestra control rate.

interp (optional) - if non-zero, and iprd implies more than one control period, interpolate the k-
signals between the periodic reads from the external file. The default value is 0 (repeat each
signal between frames).

PERFORMANCE

These units allow up to four generated control signal values to be read or saved in a named
external file. The file contains no self-defining header information, but is a regularly sampled
time series, suitable for later input or analysis. There may be any number of kread units in an
instrument or orchestra, and they may read from the same or different files. There may be any
number of kdump units in an instrument or orchestra, but each must write to a different file.

Example:

knum = knum + 1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1 .995 ; estimate the tempo
koct,ka specptrk wsig, kvar, 7, 10, 8.5, 20, 6, .8 ; pitch & amp
 kdump4 knum, ktemp, cpsoct(koct), ka, "what_happened", 8, 0 ; & save them

- 104 -

SIGNAL DISPLAY

 print iarg[, iarg,...]
 display xsig, iprd[, inprds][, iwtflg]
 dispfft xsig, iprd, iwsiz[, iwtyp][, idbout][, iwtflg]

These units will print orchestra Init-values, or produce graphic display of orchestra control
signals and audio signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are
approximated in ascii characters.

INITlALIZATION

iprd - the period of display in seconds.

inprds (optional) - number of display periods retained in each display graph. A value of 2 or
more will provide a larger perspective of the signal motion. The default value is 1 (each graph
completely new).

iwsiz - size of the input window in samples. A window of iwsiz points will produce a Fourier
transform of iwsiz/2 points, spread linearly in frequency from 0 to sr/2. iwsiz must be a power of
2, with a minimum of 16 and a maximum of 4096. The windows are permitted to overlap.

iwtyp (optional) - window type. 0 = rectangular, 1 = hanning. The default value is 0
(rectangular).

idbout (optional) - units of output for the Fourier coefficients. 0 = magnitude, 1 = decibels. The
default is 0 (magnitude).

iwtflg (optional) - wait flag. If non-zero, each display is held until released by the user. The
default value is 0 (no wait).

PERFORMANCE

print - print the current value of the I-time arguments (or expressions) iarg at every I-pass
through the instrument.

display - display the audio or control signal xsig every iprd seconds, as an amplitude vs. time
graph.

dispfft - display the Fourier Transform of an audio or control signal (asig or ksig) every iprd
seconds using the Fast Fourier Transform method.

Example:

 k1 envlpx l, .03, p3, .05, l, .5, .0l ; generate a note envelope
 display k1, p3 ; and display entire shape

- 105 -

COSTING

 clkon* id
 clkoff* id

Start and stop an instrument segment timer.

INITIALIZATION

id - unique identifier (from 1 to 10) that associates each on-off pair.

PERFORMANCE

These units can be placed inside instruments to measure the amount of computation used by the
signal processing opcodes. They are placed before and after the opcode(s) to be measured; at
the conclusion of the performance Csound will list how many million instructions-per-second
(mips) were devoted to the units within each clock pair.

The mips count gives a good estimate of the cost of an instrument segment. The estimate is
statistical, based on the computation cycles consumed while that part of the instrument was
active, and the rating is independent of how many copies of the instrument were allocated, or
how often the instances were in fact active. The mips cost is independent of the speed of the
processor, but does give a sense of how those cycles are being spent. At a sampling rate of 32
KHz, simple opcodes like oscil and reson will be seen to cost about .25 mips, while more
complex ones like loscil will cost about .4. The heavy users like harmon, chorus and reverb
cost anything from .8 to 1.5 mips, while specptrk and harmon2 can cost 3 to 5 mips apiece.

Given a processor rated at 40 mips (e.g. the 21060), a simple instrument that costs .75 mips can
play about 50 voices simultaneously. (We leave a few mips for Csound overhead.) The most
expensive effects-processing units are best run in a single instrument, getting their data from
global effects busses.

clkon and clkoff units travel in pairs, with a unique id denoting the pairing. This means that the
pairs can be nested (one pair inside another) or overlapped (two ons then two offs), provided
only that the pairing is clear. Both parts of a pair must reside inside a single instrument block.

Example:

 instr 1, 2
 clkon 1 ; measure the loscil cost
 a1 loscil 1000, 440, 1, 256
 clkoff 1
 clkon 5 ; and then the filter cost
 a2 filter a1, 10000, .05, 2
 clkoff 5
 out a2
 endin

- 106 -

2. THE STANDARD NUMERIC SCORE

A score is a data file that provides information to an orchestra about its performance. Like an
orchestra file, a score file is made up of statements in a known format. The Csound orchestra
expects to be handed a score comprised mainly of ascii numeric characters. Although most
users will prefer a higher level score language such as provided by Cscore, Scot, or another
score-generating program, each resulting score must eventually appear in the format expected by
the orchestra. A Standard Numeric Score can be created and edited directly by the beginner
using standard text editors; indeed, some users continue to prefer it. The purpose of this section
is to describe this format in detail.

The basic format of a standard numeric score statement is:

 opcode p1 p2 p3 p4... ;comments

The opcode is a single character, always alphabetic. Legal opcodes are f, i, a, t, s, and e, the
meanings of which are described in the following pages. The opcode is normally the first
character of a line; leading spaces or tabs will be ignored. Spaces or tabs between the opcode
and p1 are optional.

p1, p2, p3, etc... are parameter fields (pfields). Each contains a floating point number
comprised of an optional sign, digits, and an optional decimal point. Expressions are not
permitted in Standard Score files. pfields are separated from each other by one or more spaces or
tabs, all but one space of which will be ignored.

Continuation lines are permitted. If the first printing character of a new scoreline is not an
opcode, that line will be regarded as a continuation of the pfields from the previous scoreline.

Comments are optional and are for the purpose of permitting the user to document his score file.
Comments always begin with a semicolon (;) and extend to the end of the line. Comments will
not affect the pfield continuation feature.

Blank lines or comment-only lines are legal (and will be ignored).

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s
statement. Before being read by the orchestra, a score is preprocessed one section at a time.
Each section is normally processed by 3 routines: Carry, Tempo, and Sort.

1. Carry - within a group of consecutive i statements whose p1 whole numbers correspond, any
pfield left empty will take its value from the same pfield of the preceding statement. An empty
pfield can be denoted by a single point (.) delimited by spaces. No point is required after the last
nonempty pfield. The output of Carry preprocessing will show the carried values explicitly. The
Carry Feature is not affected by intervening comments or blank lines; it is turned off only by a
non-i statement or by an i statement with unlike p1 whole number.

An additional feature is available for p2 alone. The symbol + in p2 will be given the value of p2
+ p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It is legal
only in p2.

- 107 -

E.g.: the statements
 i1 0 .5 100
 i . +
 i
 will result in
 i1 0 .5 100
 i1 .5 .5 100
 i1 1 .5 100

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce
input typing and will simplify later changes.

2. Tempo - this operation time warps a score section according to the information in a t
statement. The tempo operation converts p2 (and, for i statements, p3) from original beats into
real seconds, since those are the units required by the orchestra. After time warping, score files
will be seen to have orchestra-readable format demonstrated by the following:

 i p1 p2beats p2seconds p3beats p3seconds p4 p5

3. Sort - this routine sorts all action-time statements into chronological order by p2 value. It
also sorts coincident events into precedence order. Whenever an f statement and an i statement
have the same p2 value, the f statement will precede. Whenever two or more i statements have
the same p2 value, they will be sorted into ascending p1 value order. If they also have the same
p1 value, they will be sorted into ascending p3 value order. Score sorting is done section by
section (see s statement). Automatic sorting implies that score statements may appear in any
order within a section.

N.B. The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score
file, to produce a new file in orchestra-readable format (see the Tempo example). Processing can
be invoked either explicitly by the scsort command, or implicitly by csound which processes the
score before calling the orchestra. Source-format files and orchestra-readable files are both in
ascii character form, and may be either perused or further modified by standard text editors.
Userwritten routines can be used to modify score files before or after the above processes,
provided the final orchestra-readable statement format is not violated. Sections of different
formats can be sequentially batched; and sections of like format can be merged for automatic
sorting.

Next-P and Previous-P Symbols

At the close of any of the above operations, three additional score features are interpreted during
file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced
by the appropriate pfield value found on the next i statement (or previous i statement) that has
the same p1. For example, the symbol np7 will be replaced by the value found in p7 of the next
note that is to be played by this instrument. np and pp symbols are recursive and can reference
other np and pp symbols which can reference others, etc. References must eventually terminate
in a real number or a ramp symbol (see below). Closed loop references should be avoided. np
and pp symbols are illegal in p1,p2 and p3 (although they may reference these). np and pp
symbols may be Carried. np and pp references cannot cross a Section boundary. Any forward or
backward reference to a non-existent note-statement will be given the value zero.

- 108 -

E.g.: the statements
 i1 0 1 10 np4 pp5
 i1 1 1 20
 i1 1 1 30
 will result in
 i1 0 1 10 20 0
 i1 1 1 20 30 20
 i1 2 1 30 0 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it
to glissando or crescendo, for instance, toward the pitch or dynamic of some future event (which
may or may not be immediately adjacent). Note that while the Carry feature will propagate np
and pp through unsorted statements, the operation that interprets these symbols is acting on a
time-warped and fully sorted version of the score.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear
interpolation of a time-based ramp. Ramps are anchored at each end by the first real number
found in the same pfield of a preceding and following note played by the same instrument.

E.g.: the statements
 i1 0 1 100
 i1 1 1 <
 i1 2 1 <
 i1 3 1 400
 i1 4 1 <
 i1 5 1 0
 will result in
 i1 0 1 100
 i1 1 1 200
 i1 2 1 300
 i1 3 1 400
 i1 4 1 200
 i1 5 1 0

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol
(although they may be referenced by these). Ramp symbols are illegal in p1, p2 and p3. Ramp
symbols may be Carried. Note, however, that while the Carry feature will propagate ramp
symbols through unsorted statements, the operation that interprets these symbols is acting on a
time-warped and fully sorted version of the score. In fact, time-based linear interpolation is
based on warped score-time, so that a ramp which spans a group of accelerating notes will
remain linear with respect to strict chronological time.

- 109 -

F STATEMENT (or FUNCTION TABLE STATEMENT)

 f p1 p2 p3 p4 ...

This causes a GEN subroutine to place values in a stored function table for use by instruments.

PFIELDS

 p1 Table number (from 1 to 200) by which the stored function will be known.
 A negative number requests that the table be destroyed.

 p2 Action time of function generation (or destruction) in beats.

 p3 Size of function table (i.e. number of points).
 Must be a power of 2, or a power-of-2 plus 1 (see below).
 Maximum table size is 16777216 (2**24) points.

 p4 Number of the GEN routine to be called (see GEN ROUTINES).
 A negative value will cause rescaling to be omitted.

 p5 |
 p6 | Parameters whose meaning is determined by the particular GEN routine.
 . |
 . |

SPECIAL CONSIDERATIONS

Function tables are arrays of floating-point values. Arrays can be of any length in powers of 2;
space allocation always provides for 2**n points plus an additional guard point. The guard point
value, used during interpolated lookup, can be automatically set to reflect the table's purpose: If
size is an exact power of 2, the guard point will be a copy of the first point; this is appropriate for
interpolated wrap-around lookup as in oscili, etc., and should even be used for non-interpolating
oscil for safe consistency. If size is set to 2**n + 1, the guard point value automatically extends
the contour of table values; this is appropriate for single-scan functions such in envlpx, oscil1,
oscil1i, etc.

Table space is allocated in primary memory, along with instrument data space. The maximum
table number has a soft limit of 200; this can be extended if required.

An existing function table can be removed by an f statement containing a negative p1 and an
appropriate action time. A function table can also be removed by the generation of another table
with the same p1. Functions are not automatically erased at the end of a score section.

p2 action time is treated in the same way as in i statements with respect to sorting and
modification by t statements. If an f statement and an i statement have the same p2, the sorter
gives the f statement precedence so that the function table will be available during note
initialization.

An f 0 statement (zero p1, positive p2) may be used to create an action time with no associated
action. Such time markers are useful for padding out a score section (see s statement).

- 110 -

I STATEMENT (INSTRUMENT or NOTE STATEMENT)

 i p1 p2 p3 p4 ...

This statement calls for an instrument to be made active at a specific time and for a certain
duration. The parameter field values are passed to that instrument prior to its initialization, and
remain valid throughout its Performance.

PFIELDS

 p1 Instrument number (from 1 to 200), usually a non-negative integer.
 An optional fractional part can provide an additional tag for specifying
 ties between particular notes of consecutive clusters. A negative p1
 (including tag) can be used to turn off a particular ‘held’ note.

 p2 Starting time in arbitrary units called beats.

 p3 Duration time in beats (usually positive). A negative value will initiate a
 held note (see also ihold). A zero value will invoke an initialization pass
 without performance (see also instr).

 p4 |
 p5 | Parameters whose significance is determined by the instrument.
 . |
 . |

SPECIAL CONSIDERATIONS

Beats are evaluated as seconds, unless there is a t statement in this score section or a -t flag in
the command line.

Starting or action times are relative to the beginning of a section (see s statement), which is
assigned time 0.

Note statements within a section may be placed in any order. Before being sent to an orchestra,
unordered score statements must first be processed by Sorter, which will reorder them by
ascending p2 value. Notes with the same p2 value will be ordered by ascending p1; if the same
p1, then by ascending p3.

Notes may be stacked, i.e., a single instrument can perform any number of notes simultaneously.
(The necessary copies of the instrument's data space will be allocated dynamically by the
orchestra loader.) Each note will normally turn off when its p3 duration has expired, or on
receipt of a MIDI noteoff signal. An instrument can modify its own duration either by changing
its p3 value during note initialization, or by prolonging itself through the action of a linenr unit.

An instrument may be turned on and left to perform indefinitely either by giving it a negative p3
or by including an ihold in its I-time code. If a held note is active, an i statement with matching
p1 will not cause a new allocation but will take over the data space of the held note. The new
pfields (including p3) will now be in effect, and an I-time pass will be executed in which the
units can either be newly initialized or allowed to continue as required for a tied note (see
tigoto). A held note may be succeeded either by another held note or by a note of finite
duration. A held note will continue to perform across section endings (see s statement). It is
halted only by turnoff or by an i statement with negative matching p1 or by an e statement.

- 111 -

A STATEMENT (or ADVANCE STATEMENT)

 a p1 p2 p3

This causes score time to be advanced by a specified amount without producing sound samples.

PFIELDS

 p1 carries no meaning. Usually zero
 p2 Action time, in beats, at which advance is to begin.
 p3 Durational span (distance in beats) of time advance.

 p4 |
 p5 | These carry no meaning.
 .
 .

SPECIAL CONSIDERATIONS

This statement allows the beat count within a score section to be advanced without generating
intervening sound samples. This can be of use when a score section is incomplete (the beginning
or middle is missing) and the user does not wish to generate and listen to a lot of silence.

p2 action time and p3 distance are treated as in i statements, with respect to sorting and
modification by t statements.

An a statement will be temporarily inserted in the score by the Score Extract feature when the
extracted segment begins later than the start of a Section. The purpose of this is to preserve the
beat count and time count of the original score for the benefit of the peak amplitude messages
which are reported on the user console.

Whenever an a statement is encountered by a performing orchestra, its presence and effect will
be reported on the user's console.

- 112 -

T STATEMENT (TEMPO STATEMENT)

 t p1 p2 p3 p4 (unlimited)

This statement sets the tempo and specifies the accelerations and decelerations for the current
section. This is done by converting beats into seconds.

PFIELDS

 p1 must be zero
 p2 initial tempo in beats per minute
 p3, p5, p7, ... times in beats (in non-decreasing order)
 p4, p6, p8, ... tempi for the referenced beat times

SPECIAL CONSIDERATIONS

Time and Tempo-for-that-time are given as ordered couples that define points on a "tempo vs
time" graph. (The time-axis here is in beats so is not necessarily linear.) The beat-rate of a
Section can be thought of as a movement from point to point on that graph: motion between two
points of equal height signifies constant tempo, while motion between two points of unequal
height will cause an accelarando or ritardando accordingly. The graph can contain
discontinuities: two points given equal times but different tempi will cause an immediate tempo
change.

Motion between different tempos over non-zero time is inverse linear. That is, an accelerando
between two tempos M1 and M2 proceeds by linear interpolation of the single-beat durations
from 60/M1 to 60/M2.

The first tempo given must be for beat 0.

A tempo, once assigned, will remain in effect from that time-point unless influenced by a
succeeding tempo, i.e. the last specified tempo will be held to the end of the section.

A t statement applies only to the score section in which it appears. Only one t statement is
meaningful in a section; it can be placed anywhere within that section. If a score section
contains no t statement, then beats are interpreted as seconds (i.e. with an implicit t 0 60
statement).

N.B. If the csound command includes a -t flag, the interpreted tempo of all score t statements
will be overridden by the command-line tempo.

- 113 -

S STATEMENT

 s anything

The s statement marks the end of a section.

PFIELDS

All pfields are ignored.

SPECIAL CONSIDERATIONS

Sorting of the i, f and a statements by action time is done section by section.

Time warping for the t statement is done section by section.

All action times within a section are relative to its beginning. A section statement establishes a
new relative time of 0, but has no other reinitializing effects (e.g. stored function tables are
preserved across section boundaries).

A section is considered complete when all action times and finite durations have been satisfied
(i.e., the "length" of a section is determined by the last occurring action or turn-off). A section
can be extended by the use of an f 0 statement.

A section ending automatically invokes a Purge of inactive instrument and data spaces.

N.B. Since score statements are processed section by section, the amount of memory required
depends on the maximum number of score statements in a section. Memory allocation is
dynamic,
and the user will be informed as extra memory blocks are requested during score processing.

For the end of the final section of a score, the s statement is optional; the e statement may be
used instead.

- 114 -

E STATEMENT

 e anything

This statement may be used to mark the end of the last section of the score.

PFIELDS

All pfields are ignored.

SPECIAL CONSIDERATIONS

The e statement is contextually identical to an s statement. Additionally, the e statement
terminates all signal generation (including indefinite performance) and closes all input and
output files.

If an e statement occurs before the end of a score, all subsequent score lines will be ignored.

The e statement is optional in a score file yet to be sorted. If a score file has no e statement, then
Sort processing will supply one.

- 115 -

3. GEN ROUTINES

The GEN subroutines are function-drawing procedures called by f statements to construct stored
wavetables. They are available throughout orchestra performance, and can be invoked at any
point in the score as given by p2. p1 assigns a table number, and p3 the table size (see f
statement). p4 specifies the GEN routine to be called; each GEN routine will assign special
meaning to the pfield values that follow.

GEN01

This subroutine transfers data from a soundfile into a function table.

 f # time size 1 filcod skiptime format channel

size - number of points in the table. Ordinarily a power of 2 or a power-of-2 plus 1 (see f
statement); the maximum tablesize is 16777216 (2**24) points. If the source soundfile is of
type AIFF, allocation of table memory can be deferred by setting this parameter to 0; the size
allocated is then the number of points in the file (probably not a power-of-2), and the table is not
usable by normal oscillators, but it is usable by a loscil unit. An AIFF source can also be mono
or stereo.

filcod - integer or character-string denoting source soundfile name. A positive integer denotes an
indexed filename in the orchestra (see strset); a negative integer denotes the file soundin.filcod;
a character-string (double quotes, spaces permitted) gives the filename itself. A filename is
optionally a full pathname. If not full path, the file is sought first in the current directory, then in
that given by the environment variable SSDIR (if defined) then by SFDIR. See also soundin.

skiptime - begin reading at skiptime seconds into the file.

format - specifies the audio data-file format:
 1 - 8-bit signed character 4 - 16-bit short integers
 2 - 8-bit A-law bytes 5 - 32-bit long integers
 3 - 8-bit U-law bytes 6 - 32-bit floats
If format = 0 the sample format is taken from the soundfile header, or by default from the
csound -o command flag.

channel - read only a specific channel (1,2,3 or 4) from the file. A zero means read all channels.

Note:

Reading stops at end-of-file or when the table is full. Table locations not filled will contain
zeros. If p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value
of 1 after generation). A negative p4 will cause rescaling to be skipped.

Examples:

 f 1 0 8192 1 23 0 4 0
 f 2 0 0 -1 "trumpet A#5" 0 4 0

- 116 -

The tables are filled by reading all channels of 2 files, “soundin.23” and “trumpet A#5”,
expected in the current directory, SSDIR or SFDIR. The first table is pre-allocated; the second
is allocated dynamically, and its rescaling is inhibited.

- 117 -

GEN02

This subroutine transfers data from immediate pfields into a function table.

 f # time size 2 v1 v2 v3 . . .

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The maximum tablesize is 16777216 (2**24) points.

v1, v2, v3, ... - values to be copied directly into the table space. The number of values is limited
by the compile-time variable PMAX, which controls the maximum pfields (currently 150). The
values copied may include the table guard point; any table locations not filled will contain zeros.

Note:

If p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value of 1
after generation). A negative p4 will cause rescaling to be skipped.

Example:

 f 1 0 16 -2 0 1 2 3 4 5 6 7 8 9 10 11 0

This calls upon GEN02 to place 12 values plus an explicit wrap-around guard value into a table
of size next-highest power of 2. Rescaling is inhibited.

- 118 -

GEN03

This subroutine generates a stored function table by evaluating a polynomial in x over a fixed
interval and with specified coefficients.

 f # time size 3 xval1 xval2 c0 c1 c2 . . . cn

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement).

xval1, xval2 - left and right values of the x interval over which the polynomial is defined (xval1
< xval2). These will produce the 1st stored value and the (power-of-2 plus l)th stored value
respectively in the generated function table.

c0, c1, c2, ... cn - coefficients of the nth-order polynomial

 c0 + c1x + c2x2 + . . . + cnxn

Coefficients may be positive or negative real numbers; a zero denotes a missing term in the
polynomial. The coefficient list begins in p7, providing a current upper limit of 144 terms.

Note:

The defined segment [fn(xval1),fn(xval2)] is evenly distributed. Thus a 512-point table over the
interval [-1,1] will have its origin at location 257 (at the start of the 2nd half). Provided the
extended guard point is requested, both fn(-1) and fn(1) will exist in the table.

GEN03 is useful in conjunction with table or tablei for audio waveshaping (sound modification
by non-linear distortion). Coefficients to produce a particular formant from a sinusoidal lookup
index of known amplitude can be determined at preprocessing time using algorithms such as
Chebyshev formulae. See also GEN13.

Example:

 f 1 0 1025 3 -1 1 5 4 3 2 2 1

This calls GEN03 to fill a table with a 4th order polynomial function over the x-interval -1 to 1.
The origin will be at the offset position 512. The function is post-normalized.

- 119 -

GEN04

This subroutine generates a normalizing function by examining the contents of an existing table.

 f # time size 4 source# sourcemode

size - number of points in the table. Should be power-of-2 plus 1. Must not exceed (except by 1)
the size of the source table being examined; limited to just half that size if the sourcemode is of
type offset (see below).

source # - table number of stored function to be examined.

sourcemode - a coded value, specifying how the source table is to be scanned to obtain the
normalizing function. Zero indicates that the source is to be scanned from left to right. Non-
zero indicates that the source has a bipolar structure; scanning will begin at the mid-point and
progress outwards, looking at pairs of points equidistant from the center.

Note:

The normalizing function derives from the progressive absolute maxima of the source table
being scanned. The new table is created left-to-right, with stored values equal to 1/(absolute
maximum so far scanned). Stored values will thus begin with 1/(first value scanned), then get
progressively smaller as new maxima are encountered. For a source table which is normalized
(values <= 1), the derived values will range from 1/(first value scanned) down to 1. If the first
value scanned is zero, that inverse will be set to 1.

The normalizing function from GEN04 is not itself normalized.

GEN04 is useful for scaling a table-derived signal so that it has a consistent peak amplitude. A
particular application occurs in waveshaping when the carrier (or indexing) signal is less than
full amplitude.

Example:

 f 2 0 512 4 1 1

This creates a normalizing function for use in connection with the GEN03 table 1 example.
Midpoint bipolar offset is specified.

- 120 -

GEN05, GEN07

These subroutines are used to construct functions from segments of exponential curves (GEN05)
or straight lines (GEN07).

 f # time size 5 a n1 b n2 c . . .
 f # time size 7 a n1 b n2 c . . .

size - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

a, b, c, etc. - ordinate values, in odd-numbered pfields p5, p7, p9, . . . For GEN05 these must
be nonzero and must be alike in sign. No such restrictions exist for GEN07.

n1, n2, etc. - length of segment (no. of storage locations), in even-numbered pfields. Cannot be
negative, but a zero is meaningful for specifying discontinuous waveforms (e.g. in the example
below). The sum n1 + n2 + will normally equal size for fully specified functions. If the sum
is smaller, the function locations not included will be set to zero; if the sum is greater, only the
first size locations will be stored.

Note:

If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1 after
generation). A negative p4 will cause rescaling to be skipped.

Discrete-point linear interpolation implies an increase or decrease along a segment by equal
differences between adjacent locations; exponential interpolation implies that the progression is
by equal ratio. In both forms the interpolation from a to b is such as to assume that the value b
will be attained in the n + 1th location. For discontinuous functions, and for the segment
encompassing the end location, this value will not actually be reached, although it may
eventually appear as a result of final scaling.

Example:

 f 1 0 256 7 0 128 1 0 -1 128 0

This describes a single-cycle sawtooth whose discontinuity is mid-way in the stored function.

- 121 -

GEN06

This subroutine will generate a function comprised of segments of cubic polynomials, spanning
specified points just three at a time.

 f # time size 6 a n1 b n2 c n3 d . . .

size - number of points in the table. Must be a power off or power-of-2 plus 1 (see f statement).

a, c, e, ... - local maxima or minima of successive segments, depending on the relation of these
points to adjacent inflexions. May be either positive or negative.

b, d, f, ... - ordinate values of points of inflexion at the ends of successive curved segments.
May be positive or negative.

n1, n2, n3... - number of stored values between specified points. Cannot be negative, but a zero
is meaningful for specifying discontinuities. The sum n1 + n2 + ... will normally equal size for
fully specified functions. (for details, see GEN05).

Note:

GEN06 constructs a stored function from segments of cubic polynomial functions. Segments
link ordinate values in groups of 3: point of inflexion, maximum/minimum, point of inflexion.
The first complete segment encompasses b,c,d and has length n2 + n3, the next encompasses
d,e,f and has length n4 + n5, etc. The first segment (a,b with length n1) is partial with only one
inflexion; the last segment may be partial too. Although the inflexion points b,d,f ... each figure
in two segments (to the left and right), the slope of the two segments remains independent at that
common point (i.e. the 1st derivative will likely be discontinuous). When a,c,e... are alternately
maximum and minimum, the inflexion joins will be relatively smooth; for successive maxima or
successive minima the inflexions will be comb-like.

Example:

 f 1 0 65 6 0 16 .5 16 1 16 0 16 -1

This creates a curve running 0 to 1 to -1, with a minimum, maximum and minimum at these
values respectively. Inflexions are at .5 and 0, and are relatively smooth.

- 122 -

GEN08

This subroutine will generate a piecewise cubic spline curve, the smoothest possible through all
specified points.

 f # time size 8 a n1 b n2 c n3 d . . .

size - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

a, b, c ... - ordinate values of the function.

n1, n2, n3 ... - length of each segment measured in stored values. May not be zero, but may be
fractional. A particular segment may or may not actually store any values; stored values will be
generated at integral points from the beginning of the function. The sum n1 + n2 + ... will
normally equal size for fully specified functions.

Note:

GEN08 constructs a stored table from segments of cubic polynomial functions. Each segment
runs between two specified points but depends as well on their neighbors on each side.
Neighboring segments will agree in both value and slope at their common point. (The common
slope is that of a parabola through that point and its two neighbors). The slope at the two ends of
the function is constrained to be zero (flat).

Hint: to make a discontinuity in slope or value in the function as stored, arrange a series of
points in the interval between two stored values; likewise for a non-zero boundary slope.

Examples:

 f 1 0 65 8 0 16 0 16 1 16 0 16 0

This example creates a curve with a smooth hump in the middle, going briefly negative outside
the hump then flat at its ends.

 f 2 0 65 8 0 16 0 .1 0 15.9 1 15.9 0 .1 0 16 0

This example is similar, but does not go negative.

- 123 -

GEN09, GEN10, GEN19

These subroutines generate composite waveforms made up of weighted sums of simple
sinusoids. The specification of each contributing partial requires 3 pfields using GEN09, 1 using
GEN10, and 4 using GEN19.

 f # time size 9 pna stra phsa pnb strb phsb . . .
 f # time size 10 str1 str2 str3 str4
 f # time size 19 pna stra phsa dcoa pnb strb phsb dcob . . .

size - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

pna, pnb, etc. - partial no. (relative to a fundamental that would occupy size locations per cycle)
of sinusoid a, sinusoid b, etc. Must be positive, but need not be a whole number, i.e., non-
harmonic partials are permitted. Partials may be in any order.

stra, strb, etc. - strength of partials pna, pnb, etc. These are relative strengths, since the
composite waveform may be rescaled later. Negative values are permitted and imply a 180
degree phase shift.

phsa, phsb, etc. - initial phase of partials pna, pnb, etc., expressed in degrees.

dcoa, dcob, etc. - DC offset of partials pna, pnb, etc. This is applied after strength scaling, i.e.
a value of 2 will lift a 2-strength sinusoid from range [-2,2] to range [0,4] (before later
rescaling).

str1, str2, str3, etc. - relative strengths of the fixed harmonic partial numbers 1,2,3, etc.,
beginning in p5. Partials not required should be given a strength of zero.

Note:

These subroutines generate stored functions as sums of sinusoids of different frequencies. The
two major restrictions on GEN10—that the partials be harmonic and in phase—do not apply to
GEN09 or GEN19.

In each case the composite wave, once drawn, is then rescaled to unity if p4 was positive. A
negative p4 will cause rescaling to be skipped.

Examples:

 f 1 0 1024 9 1 3 0 3 1 0 9 .3333 180
 f 2 0 1024 19 .5 1 270 1

f 1 combines partials l, 3 and 9 in the relative strengths in which they are found in a square wave,
except that partial 9 is upside down. f 2 creates a rising sigmoid [0 - 2]. Both will be rescaled.

- 124 -

GEN11

This subroutine generates an additive set of cosine partials, in the manner of Csound generators
buzz and gbuzz.

 f # time size 11 nh lh r

size - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

nh - number of harmonics requested. Must be positive.

lh (optional) - lowest harmonic partial present. Can be positive, zero or negative. The set of
partials can begin at any partial number and proceeds upwards; if lh is negative, all partials
below zero will reflect in zero to produce positive partials without phase change (since cosine is
an even function), and will add constructively to any positive partials in the set. The default
value is 1.

r (optional) - multiplier in an amplitude coefficient series. This is a power series: if the lhth
partial has a strength coefficient of A the (lh + n)th partial will have a coefficient of A * r**n,
i.e. strength values trace an exponential curve. r may be positive, zero or negative, and is not
restricted to integers. The default value is 1.

Note:

This subroutine is a non-time-varying version of the csound buzz and gbuzz generators, and is
similarly useful as a complex sound source in subtractive synthesis. With lh and r present it
parallels gbuzz; with both absent or equal to 1 it reduces to the simpler buzz (i.e. nh equal-
strength harmonic partials beginning with the fundamental).

Sampling the stored waveform with an oscillator is more efficient than using dynamic buzz units.
However, the spectral content is invariant, and care is necessary lest the higher partials exceed
the Nyquist during sampling to produce foldover.

Examples:

 f 1 0 2049 11 4
 f 2 0 2049 11 4 1 1
 f 3 0 2049 -11 7 3 .5

The first two tables will contain identical band-limited pulse waves of four equal-strength
harmonic partials beginning with the fundamental. The third table will sum seven consecutive
harmonics, beginning with the third, and at progressively weaker strengths (1, .5, .25, .125 . . .).
It will not be post-normalized.

- 125 -

GEN12

This generates the log of a modified Bessel function of the second kind, order 0, suitable for use
in amplitude-modulated FM.

 f # time size -12 xint

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

xint - specifies the x interval [0 to +int] over which the function is defined.

Note:

This subroutine draws the natural log of a modified Bessel function of the second kind, order 0
(commonly written as I subscript 0), over the x-interval requested. The call should have
rescaling inhibited.

The function is useful as an amplitude scaling factor in cycle-synchronous amplitude-modulated
FM. (See Palamin & Palamin, J. Audio Eng. Soc., 36/9, Sept. 1988, pp.671-684.) The algorithm
is interesting because it permits the normally symmetric FM spectrum to be made asymmetric
around a frequency other than the carrier, and is thereby useful for formant positioning. By
using a table lookup index of I(r - 1/r), where I is the FM modulation index and r is an
exponential parameter affecting partial strengths, the Palamin algorithm becomes relatively
efficient, requiring only oscil's, table lookups, and a single exp call.

Example:

 f 1 0 2049 -12 20

This draws an unscaled ln(I0(x)) from 0 to 20.

- 126 -

GEN13, GEN14

These subroutines use Chebyshev coefficients to generate stored polynomial functions which,
under waveshaping, can be used to split a sinusoid into harmonic partials having a predefinable
spectrum.

 f # time size 13 xint xamp h0 h1 h2 . . . hn
 f # time size 14 xint xamp h0 h1 h2 . . . hn

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

xint - provides the left and right values [-xint, +xint] of the x interval over which the polynomial
is to be drawn. These subroutines both call GEN03 to draw their functions; the p5 value here is
therefor expanded to a negative-positive p5,p6 pair before GEN03 is actually called. The
normal value is 1.

xamp - amplitude scaling factor of the sinusoid input that is expected to produce the following
spectrum.

h0, h1, h2, hn - relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result
when a sinusoid of amplitude xamp * int(size/2)/xint is waveshaped using this function table.
These values thus describe a frequency spectrum associated with a particular factor xamp of the
input signal.

Note:

GEN13 is the function generator normally employed in standard waveshaping. It stores a
polynomial whose coefficients derive from the Chebyshev polynomials of the first kind, so that a
driving sinusoid of strength xamp will exhibit the specified spectrum at output. Note that the
evolution of this spectrum is generally not linear with varying xamp. However, it is bandlimited
(the only partials to appear will be those specified at generation time); and the partials will tend
to occur and to develop in ascending order (the lower partials dominating at low xamp, and the
spectral richness increasing for higher values of xamp). A negative hn value implies a 180
degree phase shift of that partial; the requested full-amplitude spectrum will not be affected by
this shift, although the evolution of several of its component partials may be. The pattern +,+,-,-
,+,+,... for h0,h1,h2... will minimize the normalization problem for low xamp values (see
above), but does not necessarily provide the smoothest pattern of evolution.

GEN14 stores a polynomial whose coefficients derive from Chebyshevs of the second kind.

Example:

 f 1 0 1025 13 1 1 0 5 0 3 0 1

This creates a function which, under waveshaping, will split a sinusoid into 3 odd-harmonic
partials of relative strength 5:3:1.

- 127 -

GEN15

This subroutine creates two tables of stored polynomial functions, suitable for use in phase
quadrature operations.

 f # time size 15 xint xamp h0 phs0 h1 phs1 h2 phs2 . . .

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

xint - provides the left and right values [-xint, +xint] of the x interval over which the polynomial
is to be drawn. This subroutine will eventually call GEN03 to draw both functions; this p5 value
is therefor expanded to a negative-positive p5, p6 pair before GEN03 is actually called. The
normal value is 1.

xamp - amplitude scaling factor of the sinusoid input that is expected to produce the following
spectrum.

h0, h1, h2, ... hn - relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result when
a sinusoid of amplitude xamp * int(size/2)/xint is waveshaped using this function table. These
values thus describe a frequency spectrum associated with a particular factor xamp of the input
signal.

phs0, phs1, ... - phase in degrees of desired harmonics h0, h1, ... when the two functions of
GEN15 are used with phase quadrature.

Note:

GEN15 creates two tables of equal size, labelled f # and f # + 1. Table # will contain a
Chebyshev function of the first kind, drawn using GEN03 with partial strengths h0cos(phs0),
h1cos(phs1), ... Table #+1 will contain a Chebyshev function of the 2nd kind by calling GEN14
with partials h1sin(phs1), h2sin(phs2),... (note the harmonic displacement). The two tables can
be used in conjunction in a waveshaping network that exploits phase quadrature.

- 128 -

GEN17

This subroutine creates a step function from given x-y pairs.

 f # time size 17 x1 a x2 b x3 c . . .

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

x1, x2, x3, etc. - x-ordinate values, in ascending order, 0 first.

a, b, c, etc. - y-values at those x-ordinates, held until the next x-ordinate.

This subroutine creates a step function of x-y pairs whose y-values are held to the right. The
right-most y-value is then held to the end of the table. The function is useful for mapping one set
of data values onto another, such as MIDI note numbers onto sampled sound ftable numbers
(see loscil).

Example:

 f 1 0 128 -17 0 1 12 2 24 3 36 4 48 5 60 6 72 7 84 8

This describes a step function with 8 successively increasing levels, each 12 locations wide
except the last which extends its value to the end of the table. Rescaling is inhibited. Indexing
into this table with a MIDI note-number would retrieve a different value every octave up to the
eighth, above which the value returned would remain the same.

GEN19

See GEN09, GEN10.

- 129 -

GEN20

This subroutine generates functions of different windows, suitable for spectrum analysis or
granular synthesis.

 f # time size 20 window max opt

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

window - window type requested, with the following meanings:

 1 Hamming
 2 Hanning
 3 Bartlett (triangle)
 4 Blackman (3 term)
 5 Blackman-Harris (4 term)
 6 Gaussian
 7 Kaiser
 8 Rectangle
 9 Sinc

max - maximum unscaled value. This is the absolute value at the peak point of the window,
provided the ftable is left unscaled (has a negative p4). If p4 is positive, or max is omitted, the
peak will be rescaled to 1.

opt - optional argument (0 - 10), used only by the Kaiser window to specify how ‘open’ the
window is: 0 produces a rectangular window, while a 10 results in a Hamming-like window.

- 130 -

GEN21

This generates tables of different random distributions, corresponding to noise generators.

 f # time size 21 distr range opt1 opt2

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

distr, range, opt1, opt2 - distribution, range and optional arguments, with the following
meanings:

 distr range opt1 opt2
 1 = Uniform
 2 = Linear range 1=pos, 2=bipolar
 3 = Exponential range 1=pos, 2=bipolar
 4 = Cauchy range 1=pos, 2=bipolar
 5 = Poisson lambda
 6 = Gaussian range
 7 = Weibull sigma tau
 8 = Beta range alpha beta

- 131 -

4. SCOT: A Score Translator

Scot is a language for describing scores in a fashion that parallels traditional music notation.
Scot is also the name of a program which translates scores written in this language into standard
numeric score format so that the score can be performed by Csound. The result of this
translation is placed in a file called score. A score file written in Scot (named file.sc, say) can be
sent through the translator by the command

 scot file.sc

The resulting numeric score can then be examined for errors, edited, or performed by typing

 csound file.orc score

Alternatively, the command

 csound file.orc -S file.sc

would combine both processes by informing Csound of the initial score format.

Internally, a Scot score has at least three parts: a section to define instrument names, a section to
define functions, and one or more actual score sections. It is generally advisable to keep score
sections short to facilitate finding errors. The overall layout of a Scot score has three main
sections:

 orchestra { }
 functions { }
 score { }

The last two sections may be repeated as many times as desired. The functions section is also
optional. Throughout this Scot document, bear in mind that you are free to break up each of
these divisions into as many lines as seem convenient, or to place a carriage return anywhere you
are allowed to insert a space, including before and after the curly brackets. Furthermore, you
may use as many spaces or tabs as you need to make the score easy to read. Scot imposes no
formatting restrictions except that numbers, instrument names, and keywords (for example,
orchestra) may not be broken with spaces. You may insert comments (such as measure
numbers) anywhere in the score by preceding them with a semicolon. A semicolon causes Scot
to ignore the rest of a line.

Orchestra Declaration Section

The orchestra section of a Scot score serves to designate instrument names for use within the
score. This is a matter of convenience, since an orchestra knows instruments only by numbers,
not names. If you declare three instruments, such as:

 orchestra { flute=1 cello=2 trumpet=3 }

Csound will neither know nor care what you have named the note lists. However, when you use
the name $flute, Scot will know you are referring to instr 1 in the orchestra, $cello will refer to
instr 2, and $trumpet will be instr 3. You may meaningfully skip numbers or give several
instruments the same number. It is up to you to make sure that your orchestra has the correct

- 132 -

instruments and that the association between these names and the instruments is what you intend.
There is no limit (or a very high one, at least) as to how many instruments you can declare.

Function Declaration Section

The major purpose of this division is to allow you to declare function tables for waveforms,
envelopes, etc. These functions are declared exactly as specified for Csound. In fact,
everything you type between the brackets in this section will be passed directly to the resulting
numeric score with no modification, so that mistakes will not be caught by the Scot program, but
rather by the subsequent performance. You can use this section to write notes for instruments
for which traditional pitch-rhythm notation is inappropriate. The most common example would
be turning on a reverb instrument. Instruments referenced in this way need not appear in the
Scot orchestra declaration. Here is a possible function declaration:

 functions {
 f1 0 256 10 1 0 .5 0 .3
 f2 0 256 7 0 64 1 64 .7 64 0
 i9 0 -1 3 ; this turns on instr 9
 }

Score Section

The Scot statements contained inside the braces of each score statement is translated into a
numeric score Section (q.v.). It is wise to keep score sections small, say seven or eight measures
of five voices at a time. This avoids overloading the system, and simplifies error checking.

The beginning of the score section is specified by typing:

 score {

Everything which follows until the braces are closed is within a single section. Within this
section you write measures of notes in traditional pitch and rhythm notation for any of the
instrument names listed in your orchestra declaration. These notes may carry additional
information such as slurs, ties and parameter fields. Let us now consider the format for notes
entered in a Scot score.

The first thing to do is name the instrument you want and the desired meter. For example, to
write some 4/4 measures for the cello, type:

 $cello
 !ti "4/4"

The dollar sign and exclamation point tell Scot a special declarator follows The time signature
declarator is optional; if present, Scot will check the number of beats in each measure for you.

Pitch and Rhythm

The two basic components of a note statement are the pitch and duration. Pitch is specified
using the alphabetic note name, and duration is specified using numeric characters. Duration is
indicated at the beginning of the note as a number representing the division of a whole beat.
You may always find the number specifying a given duration by thinking of how many times
that duration would fit in a 4/4 measure. Also, if the duration is followed by a dot (`.') it is
increased by 50%, exactly as in traditional notation. Some sample durations are listed below:

- 133 -

 whole note 1
 half note 2
 double dotted quarter 4..
 dotted quarter note 4.
 quarter note 4
 half note triplet 6
 eighth note 8
 eighth note triplet 12
 sixteenth note 16
 thirty-second note 32

Pitch is indicated next by first (optionally) specifying the register and then the note name,
followed by an accidental if desired. Normally, the "octave following" feature is in effect. This
feature causes any note named to lie within the interval of an augmented fourth of the previous
note, unless a new register is chosen. The first note you write will always be within a fourth of
middle c unless you choose a different register.

For example, if the first note of an instrument part is notated g flat, the scot program assigns the
pitch corresponding to the g flat below middle c. On the other hand, if the first note is f sharp,
the pitch assigned will be the f sharp above middle c. Changes of register are indicated by a
preceding apostrophe for each octave displacement upward or a preceding comma for each
octave displacement downward. Commas and apostrophes always displace the pitch by the
desired number of octaves starting from that note which is within an augmented fourth of the
previous pitch.

If you ever get lost, prefacing the pitch specification with an `=' returns the reference to middle c.
It is usually wise to use the equals sign in your first note statement and whenever you feel
uncertain as to what the current registration is. Let us now write two measures for the cello part,
the first starting in the octave below middle c and the second repeating but starting in the octave
above middle c:

 $cello
 !ti "4/4"
 4=g 4e 4d 4c/ 4='g 4e 4d 4c

As you can see, a slash indicates a new measure and we have chosen to use the dummy middle c
to indicate the new register. A more convenient way of notating these two measures would be to
type the following:

 $cello
 !ti "4/4"
 4=g e d c/ ''g e d c

You may observe in this example that the quarter note duration carries to the following notes
when the following durations are left unspecified. Also, two apostrophes indicate an upward
pitch displacement of two octaves from two g's below middle c, where the pitch would have
fallen without any modification. It is important to remember three things, then, when specifying
pitches:

1) Note pitches specified by letter name only (with or without accidental) will always fall
within an interval of a fourth from the preceding pitch.

2) These pitches can be octave displaced upward or downward by preceding the note letter
with the desired number of apostrophes or commas.

- 134 -

3) If you are unsure of the current register, you may begin the pitch component of the note
with an equals sign which acts as a dummy middle c.

The pitch may be modified by an accidental after the note name:

 n natural
 # sharp
 - (hyphen) flat
 ## double sharp
 -- (double hyphen) double flat

Accidentals are carried throughout the measure just as in traditional music notation. However,
an accidental specified within a measure will hold for that note in all registers, in contrast with
traditional notation. Therefore, make sure to specify n when you no longer want an accidental
applied to that pitch-class.

Pitches entered in the Scot score are translated into the appropriate octave point pitch-class value
and appear as parameter p5 in the numeric score output. This means you must design your
instruments to accept p5 as pitch.

Rests are notated just like notes but using the letter r instead of a pitch name. 4r therefore
indicates a quarter rest and 1r a whole rest. Durations carry from rest to rest or to following
pitches as mentioned above.

The tempo in beats per minute is specified in each section by choosing a single instrument part
and using tempo statements (e.g. t90) at the various points in the score as needed. A quarter note
is interpreted as a single beat, and tempi are interpolated between the intervening beats (see
score t statement).

Scot Example I

- 135 -

A Scot encoding of this score might appear as follows:

 ; A BASIC Tune
 orchestra { guitar=1 bass=2 }
 functions {
 f1 0 512 10 1 .5 .25 .126
 f2 0 256 7 1 120 1 8 0 128 1
 }
 score { ;section 1
 $guitar
 !ti "4/4"
 4=c 8d e- f r 4='c/
 8.b- 16a a- g g- f 4e- c/
 $bass
 2=,,c 'a-/
 g =,c/
 }
 score { ;section 2
 $guitar
 !ti "4/4"
 6='c r c 4..c## 16e- /
 6f r f 4..f## 16b /
 $bass
 4=,,c 'g, c 'g/
 2=a- g /
 }

The score resulting from this Scot notation is shown at the end of this chapter.

Groupettes

Duration numbers can have any integral value; for instance,

 !time "4/4"
 5cdefg/

would encode a measure of 5 in the time of 4 quarter notes. However, specification of arbitrary
rhythmic groupings in this way is at best awkward. Instead, arbitrary portions of the score
section may be enclosed in groupette brackets. The durations of all notes inside groupette
brackets will be multiplied by a fraction n/d, where the musical meaning is d in the time of n.
Assuming d and n here are integers, groupette brackets may take these several forms:

 {d:n: :} d in the time of n
 {d:: :} n will be the largest power of 2 less than d
 {: :} d=3, n=2 (normal triplets)

It can be seen that the second and third form are abbreviations for the more common kinds of
groupettes. (Observe the punctuation of each form carefully.) Groupettes may be nested to a
reasonable depth. Also, groupette factors apply only after the written duration is carried from
note to note. Thus, the following example is a correct specification for two measures of 6/8
time:

 !time "6/8" 8cde {4:3: fgab :} / crc 4.c /

- 136 -

The notes inside the groupette are 4 in the space of 3 8th notes, and the written-8th-note duration
carries normally into the next measure. This closely parallels the way groupette brackets and
note durations interact in standard notation.

Slurs and Ties

Now that you understand part writing in the Scot language, we can start discussing more
elaborate features. Immediately following the pitch specification of each note, one may indicate
a slur or a tie into the next note (assuming there is one), but not both simultaneously. The slur is
typed as a single underscore (`_') and a tie as a double underscore (`__'). Despite the surface
similarity, there is a substantial difference in the effect of these modifiers.

For purposes of Scot, tied notes are notes which, although comprised of several graphic symbols,
represent only a single musical event. (Tied notes are necessary in music notation for several
reasons, the most common being notes which span a measure line and notes with durations not
specifiable with a single symbol, such as quarter note tied to a sixteenth.) Notes which are tied
together are summed by duration and output by Scot as a single event. This means you cannot,
for example, change the parameters of a note in the middle of a tie (see below). Two or more
notes may be tied together, as in the following example, which plays an f# for eleven beats:

 !ti "4/4"
 1 f#__ / 1 f#__ / 2. f# 4r /

By contrast, slurred notes operate as distinct notes at the Csound level, and may be of arbitrary
pitch. The presence of a slur is reflected in parameter p4, but the slur has no other meaning
beyond the interpretation of p4 by your instrument. Since instrument design is beyond the scope
of this manual, it will suffice for now to explain that the Scot program gives sets p4 to one of
four values depending on the existence of a slur before and after the note in question. This
means Scot pays attention not only to the slur attached to a note, but whether the preceding note
specified a slur. The four possibilities are as follows, where the p4 values are taken to apply to
the note `d':

 4c d (no slur) p4 = 0
 4c d_ (slur after only) p4 = 1
 4c_ d (slur before only) p4 = 2
 4c_ d_ (before & after) p4 = 3

Parameters

The information contained in the Scot score notation we have considered so far is manifested in
the output score in parameters p1 through p5 in the following way:

 p1: instrument number
 p2: initialization time of instrument
 p3: duration
 p4: slur information
 p5: pitch information in octave point pitch-class notation

Any additional parameters you may want to enter are listed in brackets as the last part of a note
specification. These parameters start with p6 and are separated from each other with spaces.
Any parameters not specified for a particular note have their value carried from the most recently
specified value. You may choose to change some parameters and not others, in which case you
can type a dot (`.') for parameters whose values don't change, and new values for those that do.

- 137 -

Alternatively, the notation N:, where N is an integer, may be used to indicate that the following
parameter specifications apply to successive parameters starting with parameter N. For example:

 4e[15000 3 4 12:100 150] g_ d_[10000 . 5] c

Here, for the first two quarter notes p6, p7, p8, p12, and p13 respectively assume the values
15000, 3, 4, 100, and 150. The values of p9 through p11 are either unchanged, or implicitly zero
if they have never been specified in the current section. On the third quarter note, the value of
p6 is changed to 10000, and the value of p8 is changed to 5. All others are unchanged.

Normally, parameter values are treated as globals—that is, a value specification will carry to
successive notes if no new value is specified. However, if a parameter specification begins with
an apostrophe, the value applies locally to the current note only, and will not carry to successive
notes either horizontally or vertically (see divisi below).

Pfield Macros

Scot has a macro text substitution facility which operates only on the pfield specification text
within brackets. It allows control values to be specified symbolically rather than numerically.
Macro definitions appear inside brackets in the orchestra section. A single bracketed list of
macro definitions preceding the first instrument declaration defines macros which apply to all
instruments. An additional bracketed list of definitions may follow each instrument to specify
macros that apply to that particular instrument.

 orchestra {
 [pp=2000 p=4000 mp=7000 mf=10000 f=20000 ff=30000
 modi = 11: w = 1 x = 2 y = 3 z = 4
 vib = "10:1 " novib = "10:0 1"
]
 violin = 1 [pizz = " 20:1" arco = " 20:0"]
 serpent = 3 [ff = 25000 sfz = 'f sffz = 'ff]
 }
 score {
 $violin = 4c[mf modi z.y novib] d e a['f vib3] /
 8 b[pizz]c 4d[f] 2c[ff arco] /
 $serpent =, 4.c[mp modi y.x] 8b 2c /
 'g[f], c[ff] /
 }

As can be seen from this example, a macro definition consists of the macro name, which is a
string of alphabetic characters, followed by an equal sign, followed by the macro value. As
usual, spaces, tabs, and newlines may be used freely. The macro value may contain arbitrary
characters, and may be quoted if spacing characters need to be included.

When a macro name is encountered in bracketed pfield lists in a score section, that name is
replaced with the macro text with no additional punctuation supplied. The macro text may itself
invoke other macros, although it is a serious error for a macro to contain itself, directly or
indirectly. Since macro names are identified as strings of alphabetic characters, and no
additional spaces are provided when a macro is expanded, macros may easily perform such
concatenations as found in the first serpent note above, where the integer and fractional parts of a
single pfield are constructed. Also, a macro may do no more than define a symbolic pfield, as in
the definition of modi. The primary intention of macros is in fact not only to reduce the number
of characters required, but also to enable symbolic definitions of parameter numbers and
parameter values. For instance, a particular instrument's interpretation of the dynamic ff can be

- 138 -

changed merely by changing a macro value, rather than changing all occurrences of that
particular value in the score.

Divisi

Notes may be stacked on top of each other by using a back arrow (`<') between the notes of the
divisi. Each time Scot encounters a back arrow, it understands that the following note is to start
at the same time as the note to the left of the back arrow. Durations, accidentals and parameters
carry from left to right through the divisi. Each time these are given new values, the notes to the
right of the back arrows also take on the new values unless they are specified again.

When writing divisi you can stack compound events by enclosing them in parentheses. Also,
divisi which occur at the end of the measure must have the proper durations or the scot program
will mis-interpret the measure duration length.

Scot Example II

Scot encoding:

 orchestra { right=1 left=2 }
 functions { f1 0 256 10 1}
 score {
 $right !key "-b"
 ; since p5 is pitch, p7 is set to the pitch of next note
 !ti "2/4"
 !next p5 "p7" ;since p5 is pitch, p7 refers to pitch of next note
 !next p6 "p8" ;If p6 is vol, say, then p8 refers to vol of next note
 t90
 8r c[3 np5]<e<='g r c<f<a / t90 r d-<g<b r =c[5]<f<a__ /
 !ti "4/4"
 t80
 4d_<f__<(8a g__) 4c<(8fe)<4g 4.c<f<f 8r/

 $left !key "-b"
 !next p5 "p7"
 !next p6 "p8"
 !ti "2/4"
 8=,c[3 np5] r f r/ e r f r/
 !ti "4/4"
 2b_[5]<(4=,b_c) 4.a<f 8r/
 }

- 139 -

Notice in this example that tempo statements occurred in instrument `right' only. Also, all notes
had p6=3 until the third measure, at which point p6 took on the value 5 for all notes. The next
parameter option used is described in Additional Features. The output score is given at the end.

Additional Features

Several options can be included in any of the individual instrument parts within a section. A
sample statement follows the description of each option. The keyword which follows the `!' in
these statements may be abbreviated to the first two characters.

Key Signatures

Any desired key signature is specified by listing the accidentals as they occur in a key signature
statement. Thereafter, all notes of that instrument part are sharpened or flattened accordingly.
For example, for the key of D, type

 !key "#fc"

Accidental Following

Accidental following may be turned on or off as needed. When turned off, accidentals no longer
carry throughout the measure as in traditional notation. This convention is sometimes used in
contemporary scores.

 !accidentals "off"

Octave Following

Turning off octave following indicates that pitches stay in the same absolute octave register until
explicitly moved. An absolute octave starts at pitch c and ends at the b above it. The octave
middle-c-to-b is indicated with an equals sign (`=') and octave displacement is indicated with the
appropriate number of commas or apostrophes. These displacements are cummulative. For
example,

 !octaves "off"
 4='c g b 'c

starts at the c above middle c and ends at two c's above middle c.

Vertical Following

Turning off vertical following means that durations, register, and parameters only carry
horizontally from note to note and not vertically as described in the section on divisi.

 !vertical "off"

Transposition

Any instrument part can be transposed to another key by indicating the intervalic difference
between the notated key and the desired key. This difference is always taken with reference to
middle c - to transpose a whole step upward, for example, type

 !transpose "d"

- 140 -

This indicates that the part is transposed by the interval difference between middle c and d.

- 141 -

Next-value and Previous-value Parameteres

In order to play a note, it is sometimes necessary for an instrument to know what value one or
more parameters will have for the next note. For instance, an instrument might be designed
which glisses during the last portion of its performance (perhaps only when a slur is indicated)
from its written pitch to the pitch of the next note. This can only be done, of course, if the
instrument can know what the pitch of the next note will be.

The necessary information can be provided using next-value parameters. A next value parameter
might be declared by

 !next p5 "p6"

which is interpreted to mean that for the current instrument, p6 will contain the next note's p5
value. This holds true globally for all occurences of this instrument until further modifications.
If for any reason you wish to override this value, p6 may be filled in explicitly. This is
sometimes useful for the last note of a section, for which p6 will otherwise assume the p5 value
for the current note. The next-value feature is illustrated in the Scot example II.

The necessary information may also be provided using standard numeric score next-value
parameters. A parameter argument containing the symbol npx (where x is an integer) will
substitute parameter number x of the following note for that instrument. Similarly, the value of a
parameter occurring during the previous note may be referenced with the symbol ppx (where x is
an integer). Details of the next- and previous-value parameter feature may be found in the
Numeric Scores section.

Ramping

Pfields containing the symbol < will be replaced by values derived from linear interpolation of a
time-based ramp. Ramp endpoints are defined by the first real number found in the same pfield
of a preceding and following note played by the same instrument. Details of the ramping feature
are likewise found in the Numeric Scores section.

f0 Statements

In each score section, Scot automatically produces an f0 statement with a p2 equal to the ending
time of the last note or rest in the section. Thus, `dead time' at the end of a section for
reverberation decay or whatever purpose may be specified musically by rests in one or more
parts. See the eighth rest at the end of Scot example II and its output score shown below.

- 142 -

Output Scores

Output file score from Scot Example I.

 f1 0 512 10 1 .5 .25 .126
 f2 0 256 7 1 120 1 8 0 128 1
 i1.01 0 1 0 8.00
 i1.01 1 0.5 0 8.02
 i1.01 1.5 0.5 0 8.03
 i1.01 2 0.5 0 8.05
 i1.01 3 1 0 9.00
 i1.01 4 0.75 0 8.10
 i1.01 4.75 0.25 0 8.09
 i1.01 5 0.25 0 8.08
 i1.01 5.25 0.25 0 8.07
 i1.01 5.5 0.25 0 8.06
 i1.01 5.75 0.25 0 8.05
 i1.01 6 1 0 8.03
 i1.01 7 1 0 8.00
 i2.01 0 2 0 6.00
 i2.01 2 2 0 6.08
 i2.01 4 2 0 6.07
 i2.01 6 2 0 7.00
 t0 60
 f0 8
 s
 i1.01 0 0.6667 0 9.00
 i1.01 1.3333 0.6667 0 9.00
 i1.01 2 1.75 0 9.02
 i1.01 3.75 0.25 0 9.03
 i1.01 4 0.6667 0 9.05
 i1.01 5.3333 0.6667 0 9.05
 i1.01 6 1.75 0 9.07
 i1.01 7.75 0.25 0 9.09
 i2.01 0 1 0 6.00
 i2.01 1 1 0 6.07
 i2.01 2 1 0 6.00
 i2.01 3 1 0 6.07
 i2.01 4 2 0 7.08
 i2.01 6 2 0 7.07
 t0 60
 f0 8
 s

- 143 -

Output file score from Scot Example II.

 f1 0 256 10 1
 c r1 n 7 5
 c r1 n 8 6
 i1.01 0.5000 0.5000 0 8.00 3 8.00 3
 i1.02 0.5000 0.5000 0 8.04 3 8.05 3
 i1.03 0.5000 0.5000 0 8.07 3 8.09 3
 i1.01 1.5000 0.5000 0 8.00 3 8.01 3
 i1.02 1.5000 0.5000 0 8.05 3 8.07 3
 i1.03 1.5000 0.5000 0 8.09 3 8.10 3
 i1.01 2.5000 0.5000 0 8.01 3 8.00 5
 i1.02 2.5000 0.5000 0 8.07 3 8.05 5
 i1.03 2.5000 0.5000 0 8.10 3 8.09 5
 i1.01 3.5000 0.5000 0 8.00 5 8.02 5
 i1.02 3.5000 0.5000 0 8.05 5 8.05 5
 i1.01 4.0000 1.0000 1 8.02 5 8.00 5
 i1.03 3.5000 1.0000 0 8.09 5 8.07 5
 i1.01 5.0000 1.0000 2 8.00 5 8.00 5
 i1.02 4.0000 1.5000 0 8.05 5 8.04 5
 i1.02 5.5000 0.5000 0 8.04 5 8.05 5
 i1.03 4.5000 1.5000 0 8.07 5 8.05 5
 i1.01 6.0000 1.5000 0 8.00 5 8.00 5
 i1.02 6.0000 1.5000 0 8.05 5 8.05 5
 i1.03 6.0000 1.5000 0 8.05 5 8.05 5
 c r2 n 7 5
 c r2 n 8 6
 i2.01 0.0000 0.5000 0 7.00 3 7.05 3
 i2.01 1.0000 0.5000 0 7.05 3 7.04 3
 i2.01 2.0000 0.5000 0 7.04 3 7.05 3
 i2.01 3.0000 0.5000 0 7.05 3 7.10 5
 i2.01 4.0000 2.0000 1 7.10 5 7.09 5
 i2.02 4.0000 1.0000 1 6.10 5 7.00 5
 i2.02 5.0000 1.0000 2 7.00 5 7.05 5
 i2.01 6.0000 1.5000 2 7.09 5 7.09 5
 i2.02 6.0000 1.5000 0 7.05 5 7.05 5
 t0 60 0.0000 90.0000 2.0000 90.0000 4.0000 80.0000 4.0000 90.0000
 f0 8.0000
 s
 e

- 144 -

5. Running from MIDI Data

A Csound orchestra can be driven by MIDI data instead of an ascii score. It can even be driven
by both at the same time, provided the Orchestra contains both kinds of instruments. Instruments
suitable for MIDI activation are similar to score-driven instruments, and the conversion from one
to the other is not difficult.

There are three possible sources of MIDI data. Two of them send data in real-time (to be played
mmediately) and the other is a file in which time is encoded. These are: i

1. Realtime MIDI commands passed directly from a host program. This might be a MIDI
sequencer like Cakewalk, a computer game sending MIDI data, or a user program on the host
that generates MIDI data (see ontimer). Set up using the command line flag –RM.

2. Realtime MIDI commands coming from some external device. This might be a MIDI
keyboard or a MIDI controller, allowing live musicians to play Csound like a synthesizer.
Set up using the command line flag –K devname.

3. A disc-resident MIDI file. This is usually created by a sequencer program, then stored as a
binary file. The file contains all the information that a realtime source would normally send,
but time is encoded as delta-steps between non-simultaneous events. In this format, the real
time between events is a function of the current tempo, which can be varied. Use –M
filnam.

Instruments for all three sources share the common task of converting 8-bit integer MIDI data
into Csound’s floating-point data format. Since MIDI encoding often forces musical data into an
unnatural scaling (e.g. amplitude is transmitted as a 7-bit key velocity, with no set standard for
what that means), the conversion must include scaling or re-mapping by the receiving
instrument. The tasks include the following:

 MIDI source data form Computational form needed

 key velocity 7-bit non-linear amplitude for linear mixing
 pitch 7-bit note number cycles per second
 pitch bend amount 14-bit controller value resultant cps value
 sound patch needed 7-bit program number assigned instrument number
 attack-decay shaping presumed in the patch want something more variable
 stereo panning 7-bit parameter value fraction to each audio channel
The translations are done using Csound’s MIDI converters such as notnum, veloc, cpsmidi.
Most of these opcodes offer an optional linear mapping range, onto which the raw 7-bit MIDI
data will be mapped on arrival. Events requiring different sounds are sent on different MIDI
channels, and each channel first relays a program number (denoting the desired patch), followed
by the events for that patch and any control information specific to those events. It is up to the
Csound instrument to trap this data and re-interpret it.

Conventional Csound operation

The relation between a MIDI channel, its patch program, and the Csound instrument that will
handle the events is declared by the Orchestra header statement:

 massign channel-number, instrument-number

This statement does two things. First, it sets up a MIDI channel of that number, ready to receive
any channel-specific MIDI data such as controller values or event commands; second, it
essentially pre-assigns a program (sound patch) to this channel, by saying that the instrument
will produce the sound that will be needed. If more than one sound patch is desired on this

- 145 -

channel, the distinction can be relayed via a controller value, which the instrument can use at
each note onset to redirect its synthesis. Also, for any given sound patch, the incoming notnum
can be used for pitch-dependent synthesis, such as reading from pitch-dependent sample tables.

A MIDI instrument with this kind of two-way table sensing might look like:

 if1 ftgen 1, 0, 0, 1, “lopiano.aif” ; preload sound samples
 if2 ftgen 2, 0, 0, 1, “hipiano.aif”
 if3 ftgen 3, 0, 0, 1, “locello.aif”
 if4 ftgen 4, 0, 0, 1, “hicello.aif”
 massign 1, 5 ; send chnl 1 events to instr 5
 ctrlinit 1, 20, 0 ; init chnl 1 controller 20 to 0

 instr 5
 inote notnum
 icps cpsmidi ; remap the midi data
 iamp veloc 0, 2000
 ictrl midictrl 20 ; use ctrl 20 value
 ifn = (ictrl == 0 ? 1 : 3) ; to choose a timbre
 ihiflg = (inote < 60 ? 0 : 1) ; lo or hi sample ?
 kamp linenr iamp, 0, .1 ; envlp with .1 sec release
 asig loscil kamp, icps, ifn + hiflg ; read the sound sample
 out asig
 endin

Extended Csound operation

The MIDI resources are considerably broadened for Extended Csound. The relation between
patch programs and instruments is made via pgminit and vprogs, and the program change (now
sent as a MIDI command) will automatically select the right instrument and invoke an array of
program-relevant data. This greatly simplifies and speeds up the run-time instrument body.

 ipn1 ftload “lopiano.aif” ; preload with auto
numbering
 ipn2 ftload “hipiano.aif”
 icel1 ftload “locello.aif”
 icel2 ftload “hicello.aif”
 ipno ftsplit 2, 2, 0, ipn1, 60, ipn2 ; set up the keyboard splits
 icel ftsplit 2, 2, 0, icel1, 60, icel2
 pgminit 1, ipno ; and create two programs
 pgminit 43, icel ; containing them

 instr 5
 vprogs 1, 43 ; assoc these progs with instr 5
 ifn mtsplit v1 ; for each prog, get the split data
 iamp veloc 0, 2000
 kamp linenr iamp, 0, .1
 asig loscil kamp, icps, ifn ; & read that sound sample
 out asig
 endin
Moreover, if the soundfiles and programs referenced above are known to Extended Csound as

embers of its General Midi Set, the top 8 lines can be replaced by a single statement: m
 autopgms

- 146 -

Also, with this statement in the Orchestra header, an instrument block is now able to access any
of the other programs in the General Midi Set, so this instrument could now be expanded to:

- 147 -

 autopgms ; access the GM sample set

instr 5
 vprogs 1, 5, 27, 43, 69 ; assoc ALL these progs with instr 5
 ifn mtsplit v1 ; for each prog, get the split data
 iamp veloc 0, 2000
 kamp linenr iamp, 0, .1
 asig loscil kamp, icps, ifn ; & read that sound sample
 out asig
 endin

Now whenever any one of the above programs is first invoked (usually with a program change)
the soundfiles for that timber are immediately loaded, along with additional information that can
be accessed by the v-array (v1, v2, …). The General Midi Set is varied in structure. Some
members are multi-sampled as above, some are single sounds that do not have split points; still
others belong to a drum set, which has an independent program numbering scheme. These all
require different kinds of instrument profiles, and the reader is referred to the Example
Orchestras visible through the Csound Launcher (see Appendix 6, Extended Csound on your
PC).

Loading samples from the hard drive, however, takes a non-trivial amount of time, and the
requesting entity (host commands, live performer, or midifile) must be willing to wait that long
before sending the first note-on command. If not, there will be a delay while the loading task is
completed, and the accumulated first few notes will all appear to be skipped (they will actually
happen in zero time). There are two alternatives to this: preloading and Midifile preprocessing.

Preloading by request list

If the set of expected program changes is known, these can be identified to Extended Csound
while the executable is being launched, and the required sounds will be loaded as part of
Orchestra initialization. The expected program numbers are listed in a file ‘preprogs.nn’, where
the suffix nn is specified in the command-line preload flag –P nn.

The preprogs file is ascii, with a simple format (in pgminit notation) and a concluding ‘e’:

 pgm1.bn pgm2.bn pgm3.bn ….. dpgm1.ch (drumkey1 drumkey2 …) … e

Example: 1 5 27.08 43 d1.10 (42 45) d9.26 (47 49) e

Preloading will happen before the host MIDI or external MIDI ports are attached, and before any
Midifile is opened. The console message ‘Orchestra now loaded and running on DSP’ is the
signal that play can begin. Program changes subsequently requested will happen without the
delay of loading more samples.

Preloading by Midifile preprocessing

If the performance is from a Midifile to which we have prior access, we can pre-process the file
and automatically insert the same information as above, tailored to just those programs actually
needed. If the Midifile expects to send its MIDI data through multiple ports (i.e., it uses more
than 16 MIDI channels), we can induce Csound to handle this with virtual ports.

midicvt is a standalone program for converting standard midi files from Format 1 to Format 0.
Although Format 1 (where tracks are laid end to end) is the preferred format for authoring, this
format contains duplicate delta timing data in each of its tracks and depends on a track merging

- 148 -

program to put the events in chronological order during performance. A Format 0 file consists of
a single track, with all the Format 1 data now merged into performance order. This is the
Format required by Csound.

Format conversion can be very fast, although in requiring multiple pointers into a Format 1
source it is either space hungry or I/O intensive. Also, modern sequencers often demand more
than one port, to overcome the 16-channel limit of the midi spec. Csound has a way of
simulating multiple ports, and this is applied during format conversion. The Csound utility to
do this is invoked by

 midicvt filnamein filnameout -pB{trka, trkb, ...} -pC{trkp, trkq, ... }

where -pB, -pC ... refer to ports B, C, .., and trka,trkb .. are the associated track numbers.

Port data is not required for a single port (portA) file. However, since port information is not
part of the midi spec, nor readily evident in the file, the association of tracks with other ports
must be made specific. On conversion to Format 0, the port information is imbedded in the
Csound midi file by the use of virtual port coding. Csound can respond to up to 6 virtual ports
(or 96 MIDI channels) within a single Format 0 file. This means that during performance
Csound does not open multiple input files to handle multiple ports in the source. Moreover,
having virtual port data within a single merged Format 0 file means that the delta-time
information is not duplicated. Obviously, this is a custom Format 0 file, playable by other
systems only with certain errors.

midicvt also sends to Csound other information critical to smooth and simplified performance.
When a program change arises during performance, it assumes that the data for that program
(sampled sounds and other control information) is already present. It can be, provided the user
has developed an orchestra that preloads all the files, keyboard split points, etc. ahead of time.
But as described under autopgms in the orchestra section, this means the orchestra is tailored to
a single midi file, or at least to some generic set of files. A major purpose of the unit vprogs is
to allow automatic invocation of the correct sampled data and control information at each
program change.

Consequently, during format conversion midicvt makes an intial look-ahead pass over the
midifile to extract information that a Csound orchestra should be aware of before starting its
performance. The information is encoded in a proprietary Csound sysex, placed near the head
of the midi file prior to channel controller settings. It includes information such as which
drumset keys will be used by which channel, and what program changes can be expected. If
autopgms is present, the Orchestra will preload all the data needed, and set up an internal
pointer system that permits smooth program changes and smooth context switching between
relevant control data.

This customized Format 0 file enables a Csound Orchestra to focus on continuous realtime audio
processing with minimum interruption. Its only additional concern then is the handling of
unscheduled event data, such as might stem from concurrent vocal or keyboard input. This is an
ideal performance situation to be in.

- 149 -

Appendix 1: The Soundfile Utility Programs

The Csound Utilities are soundfile preprocessing programs that return information on a
soundfile or create some analyzed version of it for use by certain Csound generators. Though
different in goals, they share a common soundfile access mechanism and are describable as a set.
The Soundfile Utility programs can be invoked in two equivalent forms:

 csound -U utilname [flags] filenames . . .
 utilname [flags] filenames . . .

In the first, the utility is invoked as part of the Csound executable, while in the second it is called
as a standalone program. The second is smaller by about 200K, but the two forms are identical
in function. The first is convenient in not requiring the maintenance and use of several
independent programs—one program does all. When using this form, a -U flag detected in the
command line will cause all subsequent flags and names to be interpreted as per the named
utility; i.e. Csound generation will not occur, and the program will terminate at the end of utility
processing.

Directories. Filenames are of two kinds, source soundfiles and resultant analysis files. Each has
a hierarchical naming convention, influenced by the directory from which the Utility is invoked.
Source soundfiles with a full pathname (begins with dot (.), slash (/), or for ThinkC includes a
colon (:)), will be sought only in the directory named. Soundfiles without a path will be sought
first in the current directory, then in the directory named by the SSDIR environment variable (if
defined), then in the directory named by SFDIR. An unsuccessful search will return a "cannot
open" error.

Resultant analysis files are written into the current directory, or to the named directory if a path
is included. It is tidy to keep analysis files separate from sound files, usually in a separate
directory known to the SADIR variable. Analysis is conveniently run from within the SADIR
directory. When an analysis file is later invoked by a Csound generator (adsyn, lpread, pvoc) it
is sought first in the current directory, then in the directory defined by SADIR.

Soundfile Formats. Csound can read and write audio files in a variety of formats. Write
formats are described by Csound command flags. On reading, the format is automatically
determined from the soundfile header, and the data automatically converted to floating-point
during internal processing. When Csound is installed on a host with local soundfile conventions
(SUN, NeXT, Macintosh) it may conditionally include local packaging code which creates
soundfiles not portable to other hosts. However, Csound on any host can always generate and
read AIFF and WAV files, which are thus portable formats. Sampled sound libraries are
typically AIFF, and the variable SSDIR usually points to a directory of such sounds. If defined,
the SSDIR directory is in the search path during soundfile access. Note that some AIFF sampled
sounds have an audio looping feature for sustained performance; the analysis programs will
traverse any loop segment once only.

For soundfiles without headers, an SR value may be supplied by a command flag (or its default).
If both header and flag are present, the flag value will over-ride.

When sound is accessed by the audio Analysis programs (below), only a single channel is read.
For stereo or quad files, the default is channel one; alternate channels may be obtained on
request.

- 150 -

SNDINFO - get basic information about one or more soundfiles.

 csound -U sndinfo soundfilenames . . .
o

r sndinfo soundfilenames . . .

sndinfo will attempt to find each named file, open it for reading, read in the soundfile header,
then print a report on the basic information it finds. The order of search across soundfile
directories is as described above. If the file is of type AIFF or WAV, some further details are
listed first.

Example:

 csound -U sndinfo test Bosendorfer/"BOSEN mf A0 st" foo foo2

where the environment variables SFDIR = /u/bv/sound, and SSDIR = /so/bv/Samples, might
produce the following:

 util SNDINFO:

 /u/bv/sound/test:
 srate 22050, monaural, 16 bit shorts, 1.10 seconds
 headersiz 1024, datasiz 48500 (24250 sample frames)

/so/bv/Samples/Bosendorfer/BOSEN mf A0 st: AIFF, 197586 stereo samples, base Frq
261.6 (midi 60), gain 0 db, sustnLp: mode 1, 121642 to 197454, relesLp: mode 0
 AIFF soundfile, looping with modes 1, 0
 srate 44100, stereo, 16 bit shorts, 4.48 seconds
 headersiz 402, datasiz 790344 (197586 sample frames)

 /u/bv/sound/foo:
 no recognizable soundfile header

 /u/bv/sound/foo2:
 couldn't find

- 151 -

HETRO - hetrodyne filter analysis for the Csound adsyn generator.

 csound -U hetro [flags] infilename outfilename
or hetro [flags] infilename outfilename

hetro takes an input soundfile, decomposes it into component sinusoids, and outputs a
description of the components in the form of breakpoint amplitude and frequency tracks.
Analysis is conditioned by the control flags below. A space is optional between flag and value.

-s<srate> sampling rate of the audio input file. This will over-ride the srate of the soundfile

header, which otherwise applies. If neither is present, the default is 10000. Note
that for adsyn synthesis the srate of the source file and the generating orchestra
need not be the same.

-c<channel> channel number sought. The default is 1.

-b<begin> beginning time (in seconds) of the audio segment to be analyzed. The default is

0.0

-d<duration> duration (in seconds) of the audio segment to be analyzed. The default of 0.0

means to the end of the file. Maximum length is 32.766 seconds.

-f<begfreq> estimated starting frequency of the fundamental, necessary to initialize the filter

analysis. The default is 100 (cps).

-h<partials> number of harmonic partials sought in the audio file. Default is 10, maximum 50.

-M<maxamp> maximum amplitude summed across all concurrent tracks. The default is 32767.

-m<minamp> amplitude threshold below which a single pair of amplitude/frequency tracks is

considered dormant and will not contribute to output summation. Typical values:
128 (48 db down from full scale), 64 (54 db down), 32 (60 db down), 0 (no
thresholding). The default threshold is 64 (54 db down).

-n<brkpts> initial number of analysis breakpoints in each amplitude and frequency track,

prior to thresholding (-m) and linear breakpoint consolidation. The initial points
are spread evenly over the duration. The default is 256.

-l<cutfreq> substitute a 3rd order Butterworth low-pass filter with cutoff frequency cutfreq (in

cps), in place of the default averaging comb filter. The default is 0 (don't use).

Example:

 hetro -s44100 -b.5 -d2.5 -h16 -M24000 audiofile.test adsynfile7

This will analyze 2.5 seconds of channel 1 of a file "audiofile.test", recorded at 44.1 KHz,
beginning .5 seconds from the start, and place the result in a file "adsynfile7". We request just
the first 16 harmonics of the sound, with 256 initial breakpoint values per amplitude or
frequency track, and a peak summation amplitude of 24000. The fundamental is estimated to
begin at 100 Hz. Amplitude thresholding is at 54 db down. The Butterworth LPF is not enabled.

- 152 -

File format

The output file contains time-sequenced amplitude and frequency values for each partial of an
additive complex audio source. The information is in the form of breakpoints (time, value, time,
value,) using 16-bit integers in the range 0 - 32767. Time is given in milliseconds, and
frequency in Hertz (cps). The breakpoint data is exclusively non-negative, and the values -1 and
-2 uniquely signify the start of new amplitude and frequency tracks. A track is terminated by the
value 32767. Before being written out, each track is data-reduced by amplitude thresholding and
linear breakpoint consolidation.

A component partial is defined by two breakpoint sets: an amplitude set, and a frequency set.
Within a composite file these sets may appear in any order (amplitude, frequency, amplitude;
or amplitude, amplitude..., then frequency, frequency,...). During adsyn resynthesis the sets are
automatically paired (amplitude, frequency) from the order in which they were found. There
should be an equal number of each.

A legal adsyn control file could have following format:

-1 time1 value1 ... timeK valueK 32767 ; amplitude breakpoints for partial 1
-2 time1 value1 ... timeL valueL 32767 ; frequency breakpoints for partial 1
-1 time1 value1 ... timeM valueM 32767 ; amplitude breakpoints for partial 2
-2 time1 value1 ... timeN valueN 32767 ; frequency breakpoints for partial 2
-2 time1 value1
-2 time1 value1 ; pairable tracks for partials 3 and 4
-1 time1 value1
-1 time2 value1

- 153 -

LPANAL - linear predictive analysis for the Csound lp generators

 csound -U lpanal [flags] infilename outfilename
or lpanal [flags] infilename outfilename

lpanal performs both lpc and pitch-tracking analysis on a soundfile to produce a time-ordered
sequence of frames of control information suitable for Csound resynthesis. Analysis is
conditioned by the control flags below. A space is optional between the flag and its value.

-s<srate> sampling rate of the audio input file. This will over-ride the srate of the soundfile

header, which otherwise applies. If neither is present, the default is 10000.

-c<channel> channel number sought. The default is 1.

-b<begin> beginning time (in seconds) of the audio segment to be analyzed. The default is
0.0

-d<duration> duration (in seconds) of the audio segment to be analyzed. The default of 0.0
means to the end of the file.

-p<npoles> number of poles for analysis. The default is 34, the maximum 50.

-h<hopsize> hopsize (in samples) between frames of analysis. This determines the number of
frames per second (srate/hopsize) in the output control file. The analysis
framesize = hopsize*2 samples. If hopsize is small & npoles large (e.g.hopsize <
5*npoles) the filters produced can be unstable. The default is 200, the maximum
500.

-C<string> text for the comments field of the lpfile header. The default is the null string.

-P<mincps> lowest frequency (in cps) of pitch tracking. -P0 means no pitch tracking.

-Q<maxcps> highest frequency (in cps) of pitch tracking. The narrower the pitch range, the
more accurate the pitch estimate. The defaults are -P70, -Q200.

-v<verbosity> level of terminal information during analysis. 0 = none, 1 = verbose, 2 = debug.
The default is 0.

Example:
 lpanal -p26 -d2.5 -P100 -Q400 audiofile.test lpfil26

will analyze the first 2.5 seconds of file "audiofile.test", producing srate/200 frames per second,
each containing 26-pole filter coefficients and a pitch estimate between 100 and 400 Hertz.
Output will be placed in "lpfil26" in the current directory.

File format

Output is a file comprised of an identifiable header plus a set of frames of floating point analysis
data. Each frame contains four values of pitch and gain information, followed by npoles filter
coefficients. The file is readable by Csound's lpread.

 lpanal is an extensive modification of Paul Lanksy's lpc analysis programs.

- 154 -

- 155 -

PVANAL - Fourier analysis for the Csound pvoc generator

 csound -U pvanal [flags] infilename outfilename
or pvanal [flags] infilename outfilename

pvanal converts a soundfile into a series of short-time Fourier transform (STFT) frames at
regular timepoints (a frequency-domain representation). The output file can be used by pvoc to
generate audio fragments based on the original sample, with timescales and pitches arbitrarily
and dynamically modified. Analysis is conditioned by the flags below. A space is optional
between the flag and its argument.

-s<srate> sampling rate of the audio input file. This will over-ride the srate of the soundfile
header, which otherwise applies. If neither is present, the default is 10000.

-c<channel> channel number sought. The default is 1.

-b<begin> beginning time (in seconds) of the audio segment to be analyzed. The default is
0.0

-d<duration> duration (in seconds) of the audio segment to be analyzed. The default of 0.0
means to the end of the file.

-n<frmsiz> STFT frame size, the number of samples in each Fourier analysis frame. Must be
a power of two, in the range 16 to 16384. For clean results, a frame must be
larger than the longest pitch period of the sample. However, very long frames
result in temporal “smearing” or reverberation. The bandwidth of each STFT bin
is determined by sampling rate / frame size. The default framesize is the smallest
power of two that corresponds to more than 20 milliseconds of the source (e.g.
256 points at 10 kHz sampling, giving a 25.6 ms frame).

-w<windfact> Window overlap factor. This controls the number of Fourier transform frames per
second. Csound's pvoc will interpolate between frames, but too few frames will
generate audible distortion; too many frames will result in a huge analysis file. A
good compromise for windfact is 4, meaning that each input point occurs in 4
output windows, or conversely that the offset between successive STFT frames is
framesize/4. The default value is 4. Do not use this flag with -h.

-h<hopsize> STFT frame offset. Converse of above, specifying the increment in samples
between successive frames of analysis (see also lpanal). Do not use with -w.

Example:
 pvanal asound pvfile

will analyze the soundfile "asound" using the default frmsiz and windfact to produce the file
"pvfile" suitable for use with pvoc.

Files
 The output file has a special pvoc header containing details of the source audio file, the
analysis frame rate and overlap. Frames of analysis data are stored as float, with the magnitude
and 'frequency' (in Hz) for the first N/2 + 1 Fourier bins of each frame in turn. 'Frequency'
encodes the phase increment in such a way that for strong harmonics it gives a good indication
of the true frequency. For low amplitude or rapidly moving harmonics it is less meaningful. The
analysis prints total number of frames, and frames completed on every 20th.

Author: Dan Ellis, dpwe@media.mit.edu

- 156 -

Appendix 2: CSCORE

Cscore is a program for generating and manipulating numeric score files. It comprises a number
of function subprograms, called into operation by a user-written control program, and can be
invoked either as a standalone score preprocessor, or as part of the Csound run-time system:

 cscore scorefilein > scorefileout
or csound -C [otherflags] orchname scorename

The available function programs augment the C language library functions; they can read either
standard or pre-sorted score files, can massage and expand the data in various ways, then make
it available for performance by a Csound orchestra.

The user-written control program is also in C, and is compiled and linked to the function
programs (or the entire Csound) by the user. It is not essential to know the C language well to
write this program, since the function calls have a simple syntax, and are powerful enough to do
most of the complicated work. Additional power can come from C later as the need arises.

Events, Lists, and Operations

An event in Cscore is equivalent to one statement of a standard numeric score or time-warped
score (see any score.srt), stored internally in time-warped format. It is either created in-line, or
read in from an existing score file (either format). Its main components are an opcode and an
array of pfield values. It is stored somewhere in memory, organized by a structure that starts as
follows:

 typedef struct {
 CSHDR h; /* space-managing header */
 long op; /* opcode—t, w, f, i, a, s or e */
 long pcnt; /* number of pfields p1, p2, p3 ... */
 long strlen; /* length of optional string argument */
 char *strarg; /* address of optional string argument */
 float p2orig; /* unwarped p2, p3 */
 float p3orig;
 float offtim; /* storage used during performance */
 float p[1]; /* array of pfields p0, p1, p2 ... */
 } EVENT;

Any function subprogram that creates, reads, or copies an event will return a pointer to the
storage structure holding the event data. The event pointer can be used to access any component
of the structure, in the form of e->op or e->p[n]. Each newly stored event will give rise to a
new pointer, and a sequence of new events will generate a sequence of distinct pointers that must
themselves be stored. Groups of event pointers are stored in an event list, which has its own
structure:

 typedef struct {
 CSHDR h;
 int nslots; /* max events in this event list */
 int nevents; /* number of events present */
 EVENT *e[1]; /* array of event pointers e0, e1, e2.. */
 } EVLIST;

- 157 -

Any function that creates or modifies a list will return a pointer to the new list. The list pointer
can be used to access any of its component event pointers, in the form of a->e[n]. Event
pointers and list pointers are thus primary tools for manipulating the data of a score file.

- 158 -

Pointers and lists of pointers can be copied and reordered without modifying the data values they
refer to. This means that notes and phrases can be copied and manipulated from a high level of
control. Alternatively, the data within an event or group of events can be modified without
changing the event or list pointers. The Cscore function subprograms enable scores to be
created and manipulated in this way.

In the following summary of Cscore function calls, some simple naming conventions are used:

 the symbols e, f are pointers to events (notes);
 the symbols a, b are pointers to lists (arrays) of such events;
 the letters ev at the end of a function name signify operation on an event;
 the letter l at the start of a function name signifies operation on a list.
 the symbol fp is a score input stream file pointer (FILE *);

 calling syntax description

 e = createv(n); create a blank event with n pfields
 int n;
 e = defev("..."); defines an event as per the character string ...
 e = copyev(f); make a new copy of event f
 e = getev(); read the next event in the score input file
 putev(e); write event e to the score output file
 putstr("..."); write the string-defined event to score output

 a = lcreat(n); create an empty event list with n slots
 int n;
 a = lappev(a,e); append event e to list a
 a = lappstrev(a,"..."); append a string-defined event to list a;
 a = lcopy(b); copy the list b (but not the events)
 a = lcopyev(b); copy the events of b, making a new list
 a = lget(); read all events from score input, up to next s or e
 a = lgetnext(nbeats); read next nbeats beats from score input
 float nbeats;
 a = lgetuntil(beatno); read all events from score input up to beat beatno
 float beatno;
 a = lsepf(b); separate the f statements from list b into list a
 a = lseptwf(b); separate the t,w & f statements from list b into list a
 a = lcat(a,b); concatenate (append) the list b onto the list a
 lsort(a); sort the list a into chronological order by p[2]
 a = lxins(b,"..."); extract notes of instruments ... (no new events)
 a = lxtimev(b,from,to); extract notes of time-span, creating new events
 float from, to;
 lput(a); write the events of list a to the score output file
 lplay(a); send events of list a to the Csound orchestra for
 immediate performance (or print events if no orchestra)
 relev(e); release the space of event e
 lrel(a); release the space of list a (but not the events)
 lrelev(a); release the events of list a, and the list space

 fp = getcurfp(); get the currently active input scorefile pointer
 (initially finds the command-line input scorefile pointer)
 fp = filopen("filename"); open another input scorefile (maximum of 5)
 setcurfp(fp); make fp the currently active scorefile pointer
 filclose(fp); close the scorefile relating to FILE *fp

- 159 -

Writing a Control program.

The general format for a control program is:

 #include "cscore.h"
 cscore()
 {
 /* VARIABLE DECLARATIONS */

 /* PROGRAM BODY */
 }

The include statement will define the event and list structures for the program. The following C
program will read from a standard numeric score, up to (but not including) the first s or e
statement, then write that data (unaltered) as output.

 #include "cscore.h"
 cscore()
 {
 EVLIST *a; /* a is allowed to point to an event list */

 a = lget(); /* read events in, return the list pointer */
 lput(a); /* write these events out (unchanged) */
 putstr("e"); /* write the string e to output */
 }

After execution of lget(), the variable a points to a list of event addresses, each of which points
to a stored event. We have used that same pointer to enable another list function (lput) to access
and write out all of the events that were read. If we now define another symbol e to be an event
pointer, then the statement

 e = a->e[4];

will set it to the contents of the 4th slot in the evlist structure. The contents is a pointer to an
event, which is itself comprised of an array of parameter field values. Thus the term e->p[5] will
mean the value of parameter field 5 of the 4th event in the evlist denoted by a. The program
below will multiply the value of that pfield by 2 before writing it out.

 #include "cscore.h"
 cscore()
 {
 EVENT *e; /* a pointer to an event */
 EVLIST *a;

 a = lget(); /* read a score as a list of events */
 e = a->e[4]; /* point to event 4 in event list a */
 e->p[5] *= 2; /* find pfield 5, multiply its value by 2 */
 lput(a); /* write out the list of events */
 putstr("e"); /* add a "score end" statement */
 }

- 160 -

Now consider the following score, in which p[5] contains frequency in cps.

 f 1 0 257 10 1
 f 2 0 257 7 0 300 1 212 .8
 i 1 1 3 0 440 10000
 i 1 4 3 0 256 10000
 i 1 7 3 0 880 10000
 e

If this score were given to the preceding main program, the resulting output would look like this:

 f 1 0 257 10 1
 f 2 0 257 7 0 300 1 212 .8
 i 1 1 3 0 440 10000
 i 1 4 3 0 512 10000 ; p[5] has become 512 instead of 256.
 i 1 7 3 0 880 10000
 e

Note that the 4th event is in fact the second note of the score. So far we have not distinguished
between notes and function table setup in a numeric score. Both can be classed as events. Also
note that our 4th event has been stored in e[4] of the structure. For compatibility with Csound
pfield notation, we will ignore p[0] and e[0] of the event and list structures, storing p1 in p[1],
event 1 in e[1], etc. The Cscore functions all adopt this convention.

As an extension to the above, we could decide to use a and e to examine each of the events in the
list. Note that e has not preserved the numeral 4, but the contents of that slot. To inspect p5 of
the previous listed event we need only redefine e with the assignment

 e = a->e[3];

More generally, if we declare a new variable f to be a pointer to a pointer to an event, the
statement

 f = &a->e[4];

will set f to the address of the fourth event in the event list a, and *f will signify the contents of
the slot, namely the event pointer itself. The expression

 (*f)->p[5],

like e->p[5], signifies the fifth pfield of the selected event. However, we can advance to the
next slot in the evlist by advancing the pointer f. In C this is denoted by f++.

In the following program we will use the same input score. This time we will separate the ftable
statements from the note statements. We will next write the three note-events stored in the list a,
then create a second score section consisting of the original pitch set and a transposed version of
itself. This will bring about an octave doubling.

By pointing the variable f to the first note-event and incrementing f inside a while block which
iterates n times (the number of events in the list), one statement can be made to act upon the
same pfield of each successive event.

- 161 -

 #include "cscore.h"
 cscore()
 {
 EVENT *e,**f; /* declarations. see pp.8-9 in the */
 EVLIST *a,*b; /* C language programming manual */
 int n;

 a = lget(); /* read score into event list "a" */
 b = lsepf(a); /* separate f statements */
 lput(b); /* write f statements out to score */
 lrelev(b); /* and release the spaces used */
 e = defev("t 0 120"); /* define event for tempo statement */
 putev(e); /* write tempo statement to score */
 lput(a); /* write the notes */
 putstr("s"); /* section end */
 putev(e); /* write tempo statement again */
 b = lcopyev(a); /* make a copy of the notes in "a" */
 n = b->nevents; /* and get the number present */
 f = &a->e[1];
 while (n--) /* iterate the following line n times: */
 (*f++)->p[5] *= .5; /* transpose pitch down one octave */
 a = lcat(b,a); /* now add these notes to original pitches */
 lput(a);
 putstr("e");
 }

The output of this program is:

 f 1 0 257 10 1
 f 2 0 257 7 0 300 1 212 .8
 t 0 120
 i 1 1 3 0 440 10000
 i 1 4 3 0 256 10000
 i 1 7 3 0 880 10000
 s
 t 0 120
 i 1 1 3 0 440 10000
 i 1 4 3 0 256 10000
 i 1 7 3 0 880 10000
 i 1 1 3 0 220 10000
 i 1 4 3 0 128 10000
 i 1 7 3 0 440 10000
 e

Next we extend the above program by using the while statement to look at p[5] and p[6]. In the
original score p[6] denotes amplitude. To create a diminuendo in the added lower octave, which
is independent from the original set of notes, a variable called dim will be used.

 #include "cscore.h"
 cscore()
 {
 EVENT *e,**f;
 EVLIST *a,*b;
 int n, dim; /* declare two integer variables */

- 162 -

 a = lget();
 b = lsepf(a);
 lput(b);
 lrelev(b);
 e = defev("t 0 120");
 putev(e);
 lput(a);
 putstr("s");
 putev(e); /* write out another tempo statement */
 b = lcopyev(a);
 n = b->nevents;
 dim = 0; /* initialize dim to 0 */
 f = &a->e[1];
 while (n--){
 (*f)->p[6] -= dim; /* subtract current value of dim */
 (*f++)->p[5] *= .5; /* transpose, move f to next event */
 dim += 2000; /* increase dim for each note */
 }
 a = lcat(b,a);
 lput(a);
 putstr("e");
 }

The increment of f in the above programs has depended on certain precedence rules of C.
Although this keeps the code tight, the practice can be dangerous for beginners. Incrementing
may alternately be written as a separate statement to make it more clear.

 while (n--){
 (*f)->p[6] -= dim;
 (*f)->p[5] *= .5;
 dim += 2000;
 f++;
 }

Using the same input score again, the output from this program is:

 f 1 0 257 10 1
 f 2 0 257 7 0 300 1 212 .8
 t 0 120
 i 1 1 3 0 440 10000
 i 1 4 3 0 256 10000
 i 1 7 3 0 880 10000
 s
 t 0 120
 i 1 1 3 0 440 10000 ; Three original notes at
 i 1 4 3 0 256 10000 ; beats 1,4 and 7 with no dim.
 i 1 7 3 0 880 10000
 i 1 1 3 0 220 10000 ; three notes transposed down one octave
 i 1 4 3 0 128 8000 ; also at beats 1,4 and 7 with dim.
 i 1 7 3 0 440 6000
 e

- 163 -

In the following program the same three-note sequence will be repeated at various time intervals.
The starting time of each group is determined by the values of the array cue. This time the dim
will occur for each group of notes rather than each note. Note the position of the statement
which increments the variable dim outside the inner while block.

 #include "cscore.h"

 int cue[3]={0,10,17}; /* declare an array of 3 integers */

 cscore()
 {
 EVENT *e, **f;
 EVLIST *a, *b;
 int n, dim, cuecount, holdn; /* declare new variables */

 a = lget();
 b = lsepf(a);
 lput(b);
 lrelev(b);
 e = defev("t 0 120");
 putev(e);
 n = a->nevents;
 holdn = n; /* hold the value of "n" to reset below */
 cuecount = 0; /* initilize cuecount to "0" */
 dim = 0;
 while (cuecount <= 2) { /* count 3 iterations of inner "while" */
 f = &a->e[1]; /* reset pointer to first event of list "a" */
 n = holdn; /* reset value of "n" to original note count */
 while (n--) {
 (*f)->p[6] -= dim;
 (*f)->p[2] += cue[cuecount]; /* add values of cue */
 f++;
 }
 printf("; diagnostic: cue = %d\n", cue[cuecount]);
 cuecount++;
 dim += 2000;
 lput(a);
 }
 putstr("e");
 }

Here the inner while block looks at the events of list a (the notes) and the outer while block
looks at each repetition of the events of list a (the pitch group repetitions). This program also
demonstrates a useful trouble-shooting device with the printf function. The semi-colon is first in
the character string to produce a comment statement in the resulting score file. In this case the
value of cue is being printed in the output to insure that the program is taking the proper array
member at the proper time. When output data is wrong or error messages are encountered, the
printf function can help to pinpoint the problem.

Using the identical input file, the C program above will generate:

 f 1 0 257 10 1
 f 2 0 257 7 0 300 1 212 .8
 t 0 120

- 164 -

 ; diagnostic: cue = 0
 i 1 1 3 0 440 10000
 i 1 4 3 0 256 10000
 i 1 7 3 0 880 10000

 ; diagnostic: cue = 10
 i 1 11 3 0 440 8000
 i 1 14 3 0 256 8000
 i 1 17 3 0 880 8000

 ; diagnostic: cue = 17
 i 1 28 3 0 440 4000
 i 1 31 3 0 256 4000
 i 1 34 3 0 880 4000
 e

More advanced examples.

The following program demonstrates reading from two different input files. The idea is to
switch between two 2-section scores, and write out the interleaved sections to a single output
file.

 #include "cscore.h" /* CSCORE_SWITCH.C */

 cscore() /* callable from either csound or standalone cscore */
 {
 EVLIST *a, *b;
 FILE *fp1, *fp2; /* declare two scorefile stream pointers */

 fp1 = getcurfp(); /* this is the command-line score */
 fp2 = filopen("score2.srt"); /* this is an additional score file */

 a = lget(); /* read section from score 1 */
 lput(a); /* write it out as is */
 putstr("s");
 setcurfp(fp2);
 b = lget(); /* read section from score 2 */
 lput(b); /* write it out as is */
 putstr("s");

 lrelev(a); /* optional to reclaim space */
 lrelev(b);

 setcurfp(fp1);
 a = lget(); /* read next section from score 1 */
 lput(a); /* write it out */
 putstr("s");
 setcurfp(fp2);
 b = lget(); /* read next sect from score 2 */
 lput(b); / * write it out */
 putstr("e");
 }

- 165 -

Finally, we show how to take a literal, uninterpreted score file and imbue it with some expressive
timing changes. The theory of composer-related metric pulses has been investigated at length by
Manfred Clynes, and the following is in the spirit of his work. The strategy here is to first create
an array of new onset times for every possible sixteenth-note onset, then to index into it so as to
adjust the start and duration of each note of the input score to the interpreted time-points. This
also shows how a Csound orchestra can be invoked repeatedly from a run-time score generator.

 #include "cscore.h" /* CSCORE_PULSE.C */
 /* program to apply interpretive durational pulse to */
 /* an existing score in 3/4 time, first beats on 0, 3, 6 ... */
 static float four[4] = { 1.05, 0.97, 1.03, 0.95 }; /* pulse width for 4's*/
 static float three[3] = { 1.03, 1.05, .92 }; /* pulse width for 3's*/

 cscore() /* callable from either csound or standalone cscore */
 {
 EVLIST *a, *b;
 register EVENT *e, **ep;
 float pulse16[4*4*4*4*3*4]; /* 16th-note array, 3/4 time, 256 measures */
 float acc16, acc1,inc1, acc3,inc3, acc12,inc12, acc48,inc48, acc192,inc192;
 register float *p = pulse16;
 register int n16, n1, n3, n12, n48, n192;

 /* fill the array with interpreted ontimes */
 for (acc192=0.,n192=0; n192<4; acc192+=192.*inc192,n192++)
 for (acc48=acc192,inc192=four[n192],n48=0; n48<4; acc48+=48.*inc48,n48++)
 for (acc12=acc48,inc48=inc192*four[n48],n12=0;n12<4;
 acc12+=12.*inc12,n12++)
 for (acc3=acc12,inc12=inc48*four[n12],n3=0; n3<4; acc3+=3.*inc3,n3++)
 for (acc1=acc3,inc3=inc12*four[n3],n1=0; n1<3; acc1+=inc1,n1++)
 for (acc16=acc1,inc1=inc3*three[n1],n16=0; n16<4;
 acc16+=.25*inc1*four[n16],n16++)
 *p++ = acc16;

 /* for (p = pulse16, n1 = 48; n1--; p += 4) /* show vals & diffs */
 /* printf("%g %g %g %g %g %g %g %g\n", *p, *(p+1), *(p+2), *(p+3),
 /* *(p+1)-*p, *(p+2)-*(p+1), *(p+3)-*(p+2), *(p+4)-*(p+3)); */

 a = lget(); /* read sect from tempo-warped score */
 b = lseptwf(a); /* separate warp & fn statements */
 lplay(b); /* and send these to performance */

 a = lappstrev(a, "s"); /* append a sect statement to note list */
 lplay(a); /* play the note-list without interpretation */

 for (ep = &a->e[1], n1 = a->nevents; n1--;) { /* now pulse-modifiy it */
 e = *ep++;
 if (e->op == 'i') {
 e->p[2] = pulse16[(int)(4. * e->p2orig)];
 e->p[3] = pulse16[(int)(4. * (e->p2orig + e->p3orig))] - e->p[2];
 }
 }
 lplay(a); /* now play modified list */
 }

- 166 -

As stated above, the input files to Cscore may be in original or time-warped and pre-sorted form;
this modality will be preserved (section by section) in reading, processing and writing scores.
Standalone processing will most often use unwarped sources and create unwarped new files.
When running from within Csound the input score will arrive already warped and sorted, and can
thus be sent directly (normally section by section) to the orchestra.

A list of events can be conveyed to a Csound orchestra using lplay. There may be any number
of lplay calls in a Cscore program. Each list so conveyed can be either time-warped or not, but
each list must be in strict p2-chronological order (either from presorting or using lsort). If there
is no lplay in a cscore module run from within Csound, all events written out (via putev, putstr
or lput) constitute a new score, which will be sent initially to scsort then to the Csound orchestra
for performance. These can be examined in the files 'cscore.out' and 'cscore.srt'.

A standalone cscore program will normally use the put commands to write into its output file. If
a standalone cscore program contains lplay, the events thus intended for performance will
instead be printed on the console.

A note list sent by lplay for performance should be temporally distinct from subsequent note
lists. No note-end should extend past the next list's start time, since lplay will complete each list
before starting the next (i.e. like a Section marker that doesn't reset local time to zero). This is
important when using lgetnext() or lgetuntil() to fetch and process score segments prior to
performance.

Compiling a Cscore program

A Cscore program can be invoked either as a Standalone program or as part of Csound:

 cscore scorename > outfilename
or csound -C [otherflags] orchname scorename

To create a standalone program, write a cscore.c program as shown above and test compile it
with 'cc cscore.c'. If the compiler cannot find "cscore.h", try using -I/usr/local/include, or just
copy the cscore.h module from the Csound source directory into your own. There will still be
unresolved references, so you must now link your program with certain Csound I/O modules. If
your Csound installation has created a libcscore.a, you can type

 cc -o cscore cscore.c -lcscore

Else set an environment variable to a Csound directory containing the already compiled modules,
and invoke them explicitly:

 setenv CSOUND /ti/u/bv/csound
 cc -o cscore cscore.c $CSOUND/cscoremain.o $CSOUND/cscorefns.o \
 $CSOUND/rdscor.o $CSOUND/memalloc.o

The resulting executable can be applied to an input scorefilein by typing:

 cscore scorefilein > scorefileout

To operate from csound, first proceed as above then link your program to a complete set of
Csound modules. If your Csound installation has created a libcsound.a, you can do this by
typing

 cc -o mycsound cscore.c -lcsound -lX11 -lm (X11 if your installation included it)

- 167 -

Else copy *.c, *.h and Makefile from the Csound source directory, replace cscore.c by your own,
then run 'make csound'. The resulting executable is your own special csound, usable as above.
The -C flag will invoke your cscore program after the input score is sorted into 'score.srt'. With
no lplay, the subsequent stages of processing can be seen in the files 'cscore.out' and 'cscore.srt'.

- 168 -

Appendix 3: An Instrument Design Tutorial
by

Richard Boulanger
Berklee College of Music

Csound instruments are created in an “orchestra” file, and the list of notes to play is written in a
separate “score” file. Both are created using a standard word processor. When you run Csound
on a specific orchestra and score, the score is sorted and ordered in time, the orchestra is
translated and loaded, the wavetables are computed and filled, and then the score is performed.
The score drives the orchestra by telling the specific instruments when and for how long to play,
and what parameters to use during the course of each note event.

Unlike today’s commercial hardware synthesizers, which have a limited set of oscillators,
envelope generators, filters, and a fixed number of ways in which these can be interconnected,
Csound's power is virtually unlimited. If you want an instrument with hundreds of oscillators,
envelope generators, and filters, you just type them in. More important is the freedom to
interconnect the modules, and to interrelate the parameters which control them. Like acoustic
instruments, Csound instruments can exhibit a sensitivity to the musical context, and display a
level of “musical intelligence” to which hardware synthesizers can only aspire.

Since the intent of this tutorial is to familiarize the novice with the syntax of the language, we
will design several simple instruments. You will find many instruments of the sophistication
described above in various Csound directories, and a study of these will reveal Csound's real
power.

The Csound orchestra file has two main parts:
 1. the “header” section - defining sample rate, control rate, and number of output channels.
 2. the “instrument” section - in which the instruments are designed.

The Header Section: A Csound orchestra generates signals at two rates - an audio sample rate
and a control sample rate. Each can represent signals with frequencies no higher than half that
rate, but the distinction between audio signals and sub-audio control signals is useful since it
allows slower moving signals to require less compute time. In the header below, we have
specified a sample rate of 16kHz, a control rate of 1kHz, and then calculated the number of
samples in each control period using the formula: ksmps = sr / kr.

 sr = 16000
 kr = 1000
 ksmps = 16
 nchnls = 1

In Csound orchestras and scores, spacing is arbitrary. It is important to be consistent in laying
out your files, and you can use spaces to help this. In the Tutorial Instruments shown below you
will see we have adopted one convention. The reader can choose his or her own.

The Instrument Section: All instruments are numbered and are referenced thus in the score.
Csound instruments are similar to patches on a hardware synthesizer. Each instrument consists
of a set of “unit generators,” or software “modules,” which are “patched” together with “i/o”
blocks — i, k, or a variables. Unlike a hardware module, a software module has a number of
variable "arguments" which the user sets to determine its behavior. The four types of variables
are:

 setup only
 i-rate variables, changed at the note rate

- 169 -

 k-rate variables, changed at the control signal rate
 a-rate variables, changed at the audio signal rate

Orchestra Statements: Each statement occupies a single line and has the same basic format:

 result action arguments

To include an oscillator in our orchestra, you might specify it as follows:

 a1 oscil 10000, 440, 1

The three "arguments" for this oscillator set its amplitude (10000), its frequency (440Hz), and its
waveshape (1). The output is put in i/o block "a1." This output symbol is significant in
prescribing the rate at which the oscillator should generate output—here the audio rate. We
could have named the result anything (e.g. "asig") as long as it began with the letter "a".

Comments: To include text in the orchestra or score which will not be interpreted by the
program, precede it with a semicolon. This allows you to fully comment your code. On each
line, any text which follows a semicolon will be ignored by the orchestra and score translators.

Tutorial Instruments

Toot 1: Play One Note

For this and all instrument examples below, there exist orchestra and score files in the Csound
subdirectory tutorfiles that the user can run to soundtest each feature introduced. The
instrument code shown below is actually preceded by an orchestra header section similar to that
above. If you run this on a high-speed computer, each example will likely run in realtime.
During playback (realtime or otherwise) the audio rate may be modified to suit the local d-a
converters.

The first orchestra file, called toot1.orc, contains a single instrument which uses an oscil unit to
play a 440Hz sine wave (defined by f1 in the score) at an amplitude of 10000.

 instr 1
 a1 oscil 10000, 440, 1
 out a1
 endin

Run this with its corresponding score file, toot1.sco :

 f1 0 4096 10 1 ; use "gen1" to compute a sine wave
 i1 0 4 ; run "instr 1" from time 0 for 4 seconds
 e ; indicate the "end" of the score

Toot 2: “P-Fields”

The first instrument was not interesting because it could play only one note at one amplitude
level. We can make things more interesting by allowing the pitch and amplitude to be defined
by parameters in the score. Each column in the score constitutes a parameter field (p-field),
numbered from the left. The first three parameter fields of the i-statement have a reserved
function:

- 170 -

 p1 = instrument number
 p2 = start time
 p3 = duration

All other parameter fields are determined by the way the sound designer defines his instrument.
In the instrument below, the oscillator's amplitude argument is replaced by p4 and the frequency
argument by p5. Now we can change these values at i-time, i.e. with each note in the score. The
orchestra and score files now look like:

 instr 2
 a1 oscil p4, p5, 1 ; p4=amp
 out a1 ; p5=freq
 endin

 f1 0 4096 10 1 ; sine wave
; instrument start duration amp(p4) freq(p5)
 i2 0 1 2000 880
 i2 1.5 1 4000 440
 i2 3 1 8000 220
 i2 4.5 1 16000 110
 i2 6 1 32000 55
 e

Toot 3: Envelopes

Although in the second instrument we could control and vary the overall amplitude from note to
note, it would be more musical if we could contour the loudness during the course of each note.
To do this we'll need to employ an additional unit generator linen, which the Csound reference
manual defines as follows:

 kr linen kamp, irise, idur, idec
 ar linen xamp, irise, idur, idec

linen is a signal modifier, capable of computing its output at either control or audio rates. Since
we plan to use it to modify the amplitude envelope of the oscillator, we'll choose the latter
version. Three of linen's arguments expect i-rate variables. The fourth expects in one instance a
k-rate variable (or anything slower), and in the other an x-variable (meaning a-rate or anything
slower). Our linen we will get its amp from p4.

The output of the linen (k1) is patched into the kamp argument of an oscil. This applies an
envelope to the oscil. The orchestra and score files now appear as:

 instr 3
 k1 linen p4, p6, p3, p7 ; p4=amp
 a1 oscil k1, p5, 1 ; p5=freq
 out a1 ; p6=attack time
 endin ; p7=release time

 f1 0 4096 10 1 ; sine wave
; instr start duration amp(p4) freq(p5) attack(p6) release(p7)
 i3 0 1 10000 440 .05 .7
 i3 1.5 1 10000 440 .9 .1
 i3 3 1 5000 880 .02 .99

- 171 -

 i3 4.5 1 5000 880 .7 .01
 i3 6 2 20000 220 .5 .5
e

- 172 -

Toot 4: Chorusing

Next we'll animate the basic sound by mixing it with two slightly detuned copies of itself. We'll
employ Csound's "cpspch" value converter which will allow us to specify the pitches by octave
and pitch-class rather than by frequency, and we'll use the "ampdb" converter to specify loudness
in dB rather than linearly.

Since we are adding the outputs of three oscillators, each with the same amplitude envelope,
we'll scale the amplitude before we mix them. Both “iscale” and “inote” are arbitrary names to
make the design a bit easier to read. Each is an i-rate variable, evaluated when the instrument is
initialized.

 instr 4 ; toot4.orc
 iamp = ampdb(p4) ; convert decibels to linear amp
 iscale = iamp * .333 ; scale the amp at initialization
 inote = cpspch(p5) ; convert “octave.pitch” to cps
 k1 linen iscale, p6, p3, p7 ; p4=amp
 a3 oscil k1, inote*.996, 1 ; p5=freq
 a2 oscil k1, inote*1.004, 1 ; p6=attack time
 a1 oscil k1, inote, 1 ; p7=release time
 a1 = a1 + a2 + a3
 out a1
 endin

 f1 0 4096 10 1 ; sine wave
; instr start duration amp(p4) freq(p5) attack(p6) release(p7)
 i4 0 1 75 8.04 .1 .7
 i4 1 1 70 8.02 .07 .6
 i4 2 1 75 8.00 .05 .5
 i4 3 1 70 8.02 .05 .4
 i4 4 1 85 8.04 .1 .5
 i4 5 1 80 8.04 .05 .5
 i4 6 2 90 8.04 .03 1
e

Toot 5: Vibrato

To add some delayed vibrato to our chorusing instrument we use another oscillator for the
vibrato and a line segment generator, linseg, as a means of controlling the delay. linseg is a k-
rate or a-rate signal generator which traces a series of straight line segments between any
number of specified points. The Csound manual describes it as:

 kr linseg ia, idur1, ib[, idur2, ic[...]]
 ar linseg ia, idur1, ib[, idur2, ic[...]]

Since we intend to use this to slowly scale the amount of signal coming from our vibrato
oscillator, we'll choose the k-rate version. The i-rate variables: ia, ib, ic, etc., are the values for
the points. The i-rate variables: idur1, idur2, idur3, etc., set the duration, in seconds, between
segments.

- 173 -

 instr 5 ; toot5.orc
 irel = .01 ; set vibrato release time
 idel1 = p3 * p10 ; calculate initial delay (% of dur)
 isus = p3 - (idel1+ irel) ; calculate remaining duration
 iamp = ampdb(p4)
 iscale = iamp * .333 ; p4=amp
 inote = cpspch(p5) ; p5=freq
 k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
 k2 oscil k3, p8, 1 ; p7=release time
 k1 linen iscale, p6, p3, p7 ; p8=vib rate
 a3 oscil k1, inote*.995+k2, 1 ; p9=vib depth
 a2 oscil k1, inote*1.005+k2, 1 ; p10=vib delay (0-1)
 a1 oscil k1, inote+k2, 1
 out a1+a2+a3
 endin

 f 1 0 4096 10 1
 ; ins strt dur amp frq atk rel vibrt vibdpth vibdel
 i5 0 3 86 10.00 .1 .7 7 6 .4
 i5 4 3 86 10.02 1 .2 6 6 .4
 i5 8 4 86 10.04 2 1 5 6 .4
 e

Toot 6: Gens

The first character in a score statement is an opcode, determining an action request; the
remaining data consists of numeric parameter fields (p-fields) to be used by that action. So far
we have been dealing with two different opcodes in our score: f and i. I-statements, or note
statements, invoke the p1 instrument at time p2 and turn it off after p3 seconds; all remaining p-
fields are passed to the instrument.

F-statements, or lines with an opcode of f, invoke function-drawing subroutines called GENS.
In Csound there are currently seventeen gen routines which fill wavetables in a variety of ways.
For example, GEN01 transfers data from a soundfile; GEN07 allows you to construct functions
from segments of straight lines; and GEN10, which we’ve been using in our scores so far,
generates composite waveforms made up of a weighted sum of simple sinusoids. We have
named the function “f1,” invoked it at time 0, defined it to contain 512 points, and instructed
GEN10 to fill that wavetable with a single sinusoid whose amplitude is 1. GEN10 can in fact be
used to approximate a variety of other waveforms, as illustrated by the following:

 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

For the opcode f, the first four p-fields are interpreted as follows:

 p1 - table number - In the orchestra, you reference this table by its number.
 p2 - creation time - The time at which the function is generated.
 p3 - table size - Number of points in table - must be a power of 2, or that plus 1.
 p4 - generating subroutine - Which of the 17 GENS will you employ.
 p5 -> p? - meaning determined by the particular GEN subroutine.

- 174 -

In the instrument and score below, we have added three additional functions to the score, and
modified the orchestra so that the instrument can call them via p11.

 instr 6 ; toot6.orc
 ifunc = p11 ; select basic waveform
 irel = .01 ; set vibrato release
 idel1 = p3 * p10 ; calculate initial delay
 isus = p3 - (idel + irel) ; calculate remaining dur
 iamp = ampdb(p4)
 iscale = iamp * .333 ; p4=amp
 inote = cpspch(p5) ; p5=freq
 k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
 k2 oscil k3, p8, 1 ; p7=release time
 k1 linen iscale, p6, p3, p7 ; p8=vib rate
 a3 oscil k1, inote*.999+k2, ifunc ; p9=vib depth
 a2 oscil k1, inote*1.001+k2, ifunc ; p10=vib delay (0-1)
 a1 oscil k1, inote+k2, ifunc
 out a1 + a2 + a3
 endin

 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse
; ins strt dur amp frq atk rel vibrt vibdpth vibdel waveform(f)
 i6 0 2 86 8.00 .03 .7 6 9 .8 1
 i6 3 2 86 8.02 .03 .7 6 9 .8 2
 i6 6 2 86 8.04 .03 .7 6 9 .8 3
 i6 9 3 86 8.05 .03 .7 6 9 .8 4
e

Toot 7: Crossfade

Now we will add the ability to do a linear crossfade between any two of our four basic
waveforms. We will employ our delayed vibrato scheme to regulate the speed of the crossfade.

 instr 7 ; toot7.orc
 ifunc1 = p11 ; initial waveform
 ifunc2 = p12 ; crossfade waveform
 ifad1 = p3 * p13 ; calculate initial fade
 ifad2 = p3 - ifad1 ; calculate remaining dur
 irel = .01 ; set vibrato release
 idel1 = p3 * p10 ; calculate initial delay
 isus = p3 - (idel1+ irel) ; calculate remaining dur
 iamp = ampdb(p4)
 iscale = iamp * .166 ; p4=amp
 inote = cpspch(p5) ; p5=freq
 k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
 k2 oscil k3, p8, 1 ; p7=release time
 k1 linen iscale, p6, p3, p7 ; p8=vib rate
 a6 oscil k1, inote*.998+k2, ifunc2 ; p9=vib depth
 a5 oscil k1, inote*1.002+k2, ifunc2 ; p10=vib delay (0-1)
 a4 oscil k1, inote+k2, ifunc2 ; p11=initial wave

- 175 -

 a3 oscil k1, inote*.997+k2, ifunc1 ; p12=cross wave
 a2 oscil k1, inote*1.003+k2, ifunc1 ; p13=fade time
 a1 oscil k1, inote+k2, ifunc1
 kfade linseg 1, ifad1, 0, ifad2, 1
 afunc1 = kfade * (a1+a2+a3)
 afunc2 = (1 - kfade) * (a4+a5+a6)
 out afunc1 + afunc2
 endin

 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse
; ins strt dur amp frq atk rel vibrt vbdpt vibdel startwave endwave crosstime
 i7 0 5 96 8.07 .03 .1 5 6 .99 1 2 .1
 i7 6 5 96 8.09 .03 .1 5 6 .99 1 3 .1
 i7 12 8 96 8.07 .03 .1 5 6 .99 1 4 .1

Toot 8: Soundin

Now instead of continuing to enhance the same instrument, let us design a totally different one.
We'll read a soundfile into the orchestra, apply an amplitude envelope to it, and add some reverb.
To do this we will employ Csound's soundin and reverb generators. The first is described as:

 a1 soundin ifilcod[, iskiptime][, iformat]

soundin derives its signal from a pre-existing file. ifilcod is either the filename in double quotes,
or an integer suffix (.n) to the name "soundin". Thus the file "soundin.5" could be referenced
either by the quoted name or by the integer 5. To read from 500ms into this file we might say:

 a1 soundin "soundin.5", .5

The Csound reverb generator is actually composed of four parallel comb filters plus two allpass
filters in series. Although we could design a variant of our own using these same primitives, the
preset reverb is convenient, and simulates a natural room response via internal parameter values.
Only two arguments are required—the input (asig) and the reverb time (krvt).

 ar reverb asig, krvt

The soundfile instrument with artificial envelope and a reverb (included directly) is as follows:

 instr 8 ; toot8.orc
 idur = p3
 iamp = p4
 iskiptime = p5
 iattack = p6
 irelease = p7
 irvbtime = p8
 irvbgain = p9
 kamp linen iamp, iattack, idur, irelease
 asig soundin "soundin.aiff", iskiptime
 arampsig = kamp * asig
 aeffect reverb asig, irvbtime
 arvbreturn = aeffect * irvbgain
 out arampsig + arvbreturn
 endin

- 176 -

; ins strt dur amp skip atk rel rvbtime rvbgain
 i8 0 1 .3 0 .03 .1 1.5 .2
 i8 2 1 .3 0 .1 .1 1.3 .2
 i8 3.5 2.25 .3 0 .5 .1 2.1 .2
 i8 4.5 2.25 .3 0 .01 .1 1.1 .2
 i8 5 2.25 .3 .1 .01 .1 1.1 .1
e

Toot 9: Global Stereo Reverb

In the previous example you may have noticed the soundin source being "cut off" at ends of
notes, because the reverb was inside the instrument itself. It is better to create a companion
instrument, a global reverb instrument, to which the source signal can be sent. Let's also make
this stereo.

Variables are named cells which store numbers. In Csound, they can be either local or global,
are available continuously, and can be updated at one of four rates—setup, i-rate, k-rate, or a-
rate.

Local Variables (which begin with the letters p, i, k, or a) are private to a particular instrument.
They cannot be read from, or written to, by any other instrument.

Global Variables are cells which are accessible by all instruments. Three of the same four
variable types are supported (i, k, and a), but these letters are preceded by the letter g to identify
them as “global.” Global variables are used for “broadcasting” general values, for
communicating between instruments, and for sending sound from one instrument to another.

The reverb instr99 below receives input from instr9 via the global a-rate variable garvbsig.
Since instr9 adds into this global, several copies of instr9 can do this without losing any data.
The addition requires garvbsig to be cleared before each k-rate pass through any active
instruments. This is accomplished first with an init statement in the orchestra header, giving the
reverb instrument a higher number than any other (instruments are performed in numerical
order), and then clearing garvbsig within instr99 once its data has been placed into the reverb.

 sr = 18900 ; toot9.orc
 kr = 945
 ksmps = 20
 nchnls = 2 ; stereo
 garvbsig init 0 ; make zero at orch init time

 instr 9
 idur = p3
 iamp = p4
 iskiptime = p5
 iattack = p6
 irelease = p7
 ibalance = p8 ; panning: 1=left, .5=center, 0=right
 irvbgain = p9
 kamp linen iamp, iattack, idur, irelease
 asig soundin "soundin.aiff", iskiptime
 arampsig = kamp * asig
 outs arampsig * ibalance, arampsig * (1 - ibalance)

- 177 -

 garvbsig = garvbsig + arampsig * irvbgain
 endin
 instr 99 ; global reverb
 irvbtime = p4
 asig reverb garvbsig, irvbtime ; put global signal into reverb
 outs asig, asig
 garvbsig = 0 ; then clear it
 endin

In the score we turn the global reverb on at time 0 and keep it on until irvbtime after the last note.

; ins strt dur rvbtime ; toot9.sco
 i99 0 9.85 2.6
; ins strt dur amp skip atk rel balance(0-1) rvbsend
 i9 0 1 .5 0 .02 .1 1 .2
 i9 2 2 .5 0 .03 .1 0 .3
 i9 3.5 2.25 .5 0 .9 .1 .5 .1
 i9 4.5 2.25 .5 0 1.2 .1 0 .2
 i9 5 2.25 .5 0 .2 .1 1 .3
e

Toot 10: Filtered Noise

The following instrument uses the Csound rand unit to produce noise, and a reson unit to filter
it. The bandwidth of reson will be set at i-time, but its center frequency will be swept via a line
unit through a wide range of frequencies during each note. We add reverb as above.

 nchnls = 2
 garvbsig init 0

 instr 10 ; toot10.orc
 iattack = .01
 irelease = .2
 iwhite = 10000
 idur = p3
 iamp = p4
 isweepstart = p5
 isweepend = p6
 ibandwidth = p7
 ibalance = p8 ; pan: 1 = left, .5 = center, 0 = right
 irvbgain = p9
 kamp linen iamp, iattack, idur, irelease
 ksweep line isweepstart, idur, isweepend
 asig rand iwhite
 afilt reson asig, ksweep, ibandwidth
 arampsig = kamp * afilt
 outs arampsig * ibalance, arampsig * (1 - ibalance)
 garvbsig = garvbsig + arampsig * irvbgain
 endin

 instr 100
 irvbtime = p4
 asig reverb garvbsig, irvbtime
 outs asig, asig

- 178 -

 garvbsig = 0
 endin

; ins strt dur rvbtime ; toot10.sco
 i100 0 15 1.1
 i100 15 10 5

; ins strt dur amp stswp ndswp bndwth balance(0-1) rvbsend
 i10 0 2 .05 5000 500 20 .5 .1
 i10 3 1 .05 1500 5000 30 .5 .1
 i10 5 2 .05 850 1100 40 .5 .1
 i10 8 2 .05 1100 8000 50 .5 .1
 i10 8 .5 .05 5000 1000 30 .5 .2
 i10 9 .5 .05 1000 8000 40 .5 .1
 i10 11 .5 .05 500 2100 50 .4 .2
 i10 12 .5 .05 2100 1220 75 .6 .1
 i10 13 .5 .05 1700 3500 100 .5 .2
 i10 15 5 .01 8000 800 60 .5 .15
e

Toot 11: Carry, Tempo & Sort

We now use a plucked string instrument to explore some of Csound's score preprocessing
capabilities. Since the focus here is on the score, the instrument is presented without
explanation.

 instr 11
 asig1 pluck ampdb(p4)/2, p5, p5, 0, 1
 asig2 pluck ampdb(p4)/2, p5 * 1.003, p5 * 1.003, 0, 1
 out asig1+asig2
 endin

The score can be divided into time-ordered sections by the S statement. Prior to performance,
each section is processed by three routines: Carry, Tempo, and Sort. The score toot11.sco has
multiple sections containing each of the examples below, in both of the forms listed.

The Carry feature allows a dot (“.”) in a p-field to indicate that the value is the same as above,
provided the instrument is the same. Thus the following two examples are identical:

; ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i11 1 . . 300 | i11 1 1 90 300
 i11 2 . . 400 | i11 2 1 90 400

A special form of the carry feature applies to p2 only. A "+" in p2 will be given the value of
p2+p3 from the previous i statement. The "+" can also be carried with a dot:

 ; ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i . + . . 300 | i11 1 1 90 300
 i 500 | i11 2 1 90 500

The carrying dot may be omitted when there are no more explicit pfields on that line:

; ins start dur amp freq | ; ins start dur amp freq

- 179 -

 i11 0 1 90 200 | i11 0 1 90 200
 i11 + 2 | i11 1 2 90 200
 i11 | i11 3 2 90 200
 A variant of the carry feature is Ramping, which substitutes a sequence of linearly interpolated
values for a ramp symbol (<) spanning any two values of a pfield. Ramps work only on
consecutive calls to the same instrument, and they cannot be applied to the first three p-fields.

; ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i . + . < < | i11 1 1 85 300
 i . . . < 400 | i11 2 1 80 400
 i . . . < < | i11 3 1 75 300
 i . . 4 70 200 | i11 4 4 70 200

Tempo. The unit of time in a Csound score is the beat—normally one beat per second. This can
be modified by a Tempo Statement, which enables the score to be arbitrarily time-warped.
Beats are converted to their equivalent in seconds during score pre-processing of each Section.
In the absence of a Tempo statement in any Section, the following tempo statement is inserted:

 t 0 60

It means that at beat 0 the tempo of the Csound beat is 60 (1 beat per second). To hear the
Section at twice the speed, we have two options: 1) cut all p2 and p3 in half and adjust the start
times, or 2) insert the statement t 0 120 within the Section.

The Tempo statement can also be used to move between different tempi during the score, thus
enabling ritardandi and accelerandi. Changes are linear by beat size (see the Csound manual).
The following statement will cause the score to begin at tempo 120, slow to tempo 80 by beat 4,
then accelerate to 220 by beat 7:

 t 0 120 4 80 7 220

The following will produce identical soundfiles:
 t 0 120 ; Double-time via Tempo
; ins start dur amp freq | ; ins start dur amp freq
 i11 0 .5 90 200 | i11 0 1 90 200
 i . + . < < | i . + . < <
 i . . . < 400 | i . . . < 400
 i . . . < < | i . . . < <
 i . . 2 70 200 | i . . 4 70 200

The following includes an accelerando and ritard. It should be noted, however, that the ramping
feature is applied after time-warping, and is thus proportional to elapsed chronological time.
While this is perfect for amplitude ramps, frequency ramps will not result in harmonically related
pitches during tempo changes. The frequencies needed here are thus made explicit.

 t 0 60 4 400 8 60 ; Time-warping via Tempo
 ; ins start dur amp freq
 i11 0 1 70 200
 i . + . < 500
 i . . . 90 800
 i . . . < 500
 i . . . 70 200
 i . . . 90 1000
 i . . . < 600

- 180 -

 i . . . 70 200
 i . . 8 90 100

Three additional score features are extremely useful in Csound. The s statement was used
above to divide a score into Sections for individual pre-processing. Since each s statement
establishes a new relative time of 0, and all actions within a section are relative to that, it is
convenient to develop the score one section at a time, then link the sections into a whole later.

Suppose we wish to combine the six above examples (call them toot11a - toot11f) into one score.
One way is to start with toot11a.sco, calculate its total duration and add that value to every
starting time of toot11b.sco, then add the composite duration to the start times of toot11c.sco,
etc. Alternatively, we could insert an s statement between each of the sections and run the entire
score. The file toot11.sco, which contains a sequence of all of the above score examples, did just
that.

The f0 statement, which creates an "action time" with no associated action, is useful in
extending the duration of a section. Two seconds of silence are added to the first two sections
below.

; ins start dur amp freq ; toot11g.sco
 i11 0 2 90 100
 f 0 4 ; The f0 Statement
 s ; The Section Statement
 i11 0 1 90 800
 i . + . . 400
 i 100
 f 0 5
 s
 i11 0 4 90 50
 e

Sort. During preprocessing of a score section, all action-time statements are sorted into
chronological order by p2 value. This means that notes can be entered in any order, that you can
merge files, or work on instruments as temporarily separate sections, then have them sorted
automatically when you run Csound on the file.

The file below contains excerpts from this section of the rehearsal chapter and from instr6 of the
tutorial, and combines them as follows:

; ins start dur amp freq ; toot11h.sco
 i11 0 1 70 100 ; Score Sorting
 i . + . < <
 i . . . < <
 i . . . 90 800
 i . . . < <
 i . . . < <
 i . . . 70 100
 i . . . 90 1000
 i . . . < <
 i . . . < <
 i . . . < <
 i . . . 70 <
 i . . 8 90 50

- 181 -

 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

; ins strt dur amp frq atk rel vibrt vibdpth vibdel waveform
 i6 0 2 86 9.00 .03 .1 6 5 .4 1
 i6 2 2 86 9.02 .03 .1 6 5 .4 2
 i6 4 2 86 9.04 .03 .1 6 5 .4 3
 i6 6 4 86 9.05 .05 .1 6 5 .4 4

Toot 12: Tables & Labels

This is by far our most complex instrument. In it we have designed the ability to store pitches in
a table and then index them in three different ways: 1) directly, 2) via an lfo, and 3) randomly.
As a means of switching between these three methods, we will use Csound's program control
statements and logical and conditional operations.

 instr 12
 iseed = p8
 iamp = ampdb(p4)
 kdirect = p5
 imeth = p6
 ilforate = p7 ; lfo and random index rate
 itab = 2
 itablesize = 8

 if (imeth == 1) igoto direct
 if (imeth == 2) kgoto lfo
 if (imeth == 3) kgoto random

 direct: kpitch table kdirect, itab ; index "f2" via p5
 kgoto contin

 lfo: kindex phasor ilforate
 kpitch table kindex * itablesize, itab
 kgoto contin

 random: kindex randh int(7), ilforate, iseed
 kpitch table abs(kindex), itab

 contin: kamp linseg 0, p3 * .1, iamp, p3 * .9, 0 ; amp envelope
 asig oscil kamp, cpspch(kpitch), 1 ; audio osc
 out asig
 endin

 f1 0 2048 10 1 ; Sine
 f2 0 8 -2 8.00 8.02 8.04 8.05 8.07 8.09 8.11 9.00 ; cpspch C major scale

; method 1 - direct index of table values
; ins start dur amp index method lforate rndseed
 i12 0 .5 86 7 1 0 0
 i12 .5 .5 86 6 1 0

- 182 -

 i12 1 .5 86 5 1 0
 i12 1.5 .5 86 4 1 0
 i12 2 .5 86 3 1 0
 i12 2.5 .5 86 2 1 0
 i12 3 .5 86 1 1 0
 i12 3.5 .5 86 0 1 0
 i12 4 .5 86 0 1 0
 i12 4.5 .5 86 2 1 0
 i12 5 .5 86 4 1 0
 i12 5.5 2.5 86 7 1 0
s

; method 2 - lfo index of table values
; ins start dur amp index method lforate rndseed
 i12 0 2 86 0 2 1 0
 i12 3 2 86 0 2 2
 i12 6 2 86 0 2 4
 i12 9 2 86 0 2 8
 i12 12 2 86 0 2 16
s

; method 3 - random index of table values
; ins start dur amp index method rndrate rndseed
 i12 0 2 86 0 3 2 .1
 i12 3 2 86 0 3 3 .2
 i12 6 2 86 0 3 4 .3
 i12 9 2 86 0 3 7 .4
 i12 12 2 86 0 3 11 .5
 i12 15 2 86 0 3 18 .6
 i12 18 2 86 0 3 29 .7
 i12 21 2 86 0 3 47 .8
 i12 24 2 86 0 3 76 .9
 i12 27 2 86 0 3 123 .9
 i12 30 5 86 0 3 199 .1

Toot 13: Spectral Fusion

For our final instrument, we will employ three unique synthesis methods—Physical Modeling,
Formant-Wave Synthesis, and Non-linear Distortion. Three of Csound's most powerful unit
generators—pluck, fof, and foscil, make this complex task a fairly simple one. The Reference
Manual describes these as follows:

 a1 pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]

pluck simulates the sound of naturally decaying plucked strings by filling a cyclic decay buffer
with noise and then smoothing it over time according to one of several methods. The unit is
based on the Karplus-Strong algorithm.

 a2 fof xamp, xfund, xform, koct, kband, kris, kdur kdec,
 iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]

fof simulates the sound of the male voice by producing a set of harmonically related partials (a
formant region) whose spectral envelope can be controlled over time. It is a special form of
granular synthesis, based on the CHANT program from IRCAM by Xavier Rodet et al.

 a1 foscil xamp, kcps, kcar, kmod, kndx, ifn [, iphs]

- 183 -

foscil is a composite unit which banks two oscillators in a simple FM configuration, wherein the
audio-rate output of one (the "modulator") is used to modulate the frequency input of another
(the "carrier.")

The plan for our instrument is to have the plucked string attack dissolve into an FM sustain
which transforms into a vocal release. The orchestra and score are as follows:

 instr 13 ; toot13.orc
 iamp = ampdb(p4) / 2 ; amplitude, scaled for two sources
 ipluckamp = p6 ; % of total amp, 1=dB amp as in p4
 ipluckdur = p7*p3 ; % of total dur, 1=entire dur of note
 ipluckoff = p3 - ipluckdur
 ifmamp = p8 ; % of total amp, 1=dB amp as in p4
 ifmrise = p9*p3 ; % of total dur, 1=entire dur of note
 ifmdec = p10*p3 ; % of total duration
 ifmoff = p3 - (ifmrise + ifmdec)
 index = p11
 ivibdepth = p12
 ivibrate = p13
 iformantamp = p14 ; % of total amp, 1=dB amp as in p4
 iformantrise = p15*p3 ; % of total dur, 1=entire dur of note
 iformantdec = p3 - iformantrise

 kpluck linseg ipluckamp, ipluckdur, 0, ipluckoff, 0
 apluck1 pluck iamp, p5, p5, 0, 1
 apluck2 pluck iamp, p5*1.003, p5*1.003, 0, 1
 apluck = kpluck * (apluck1+apluck2)

 kfm linseg 0, ifmrise, ifmamp, ifmdec, 0, ifmoff, 0
 kndx = kfm * index
 afm1 foscil iamp, p5, 1, 2, kndx, 1
 afm2 foscil iamp, p5*1.003, 1.003, 2.003, kndx, 1
 afm = kfm * (afm1+afm2)

 kfrmnt linseg 0, iformantrise, iformantamp, iformantdec, 0
 kvib oscil ivibdepth,ivibrate,1
 afrmnt1 fof iamp, p5+kvib, 650, 0, 40, .003, .017, .007, 4, 1, 2, p3
 afrmnt2 fof iamp, (p5*1.001)+kvib*.009, 650, 0, 40, .003,.017,.007, 10,1,2,p3
 aformnt = kfrmnt * (afrmnt1+afrmnt2)

 out apluck + afm + aformnt
 endin

f1 0 8192 10 1 ; sine wave
f2 0 2048 19 .5 1 270 1 ; sigmoid rise

;ins st dr mp frq plkmp plkdr fmp fmris fmdec indx vbdp vbrt frmp fris
 i13 0 5 80 200 .8 .3 .7 .2 .35 8 1 5 3 .5
 i13 + 8 80 100 . .4 .7 .35 .35 7 1 6 3 .7
 i13 . 13 80 50 . .3 .7 .2 .4 6 1 4 3 .6

- 184 -

When Things Sound Wrong

When you design your own Csound instruments you may occasionally be surprised by the
results. There will be times when you've computed a file for hours and your playback is just
silence, while at other times you may get error messages which prevent the score from running,
or you may hang the computer and nothing happens at all.

In general, Csound has a comprehensive error-checking facility that reports to your console at
various stages of your run: at score sorting, orchestra translation, initializing each call of every
instrument, and during performance. However, if your error was syntactically permissable, or it
generated only a warning message, Csound could faithfully give you results you don't expect.
Here is a list of the things you might check in your score and orchestra files:
 1. You typed the letter l instead of the number 1
 2. You forgot to precede your comment with a semi-colon
 3. You forgot an opcode or a required parameter
 4. Your amplitudes are not loud enough or they are too loud
 5. Your frequencies are not in the audio range - 20Hz to 20kHz
 6. You placed the value of one parameter in the p-field of another
 7. You left out some crucial information like a function definition
 8. You didn't meet the Gen specifications

Suggestions for Further Study

Csound is such a powerful tool that we have touched on only a few of its many features and uses.
You are encouraged to take apart the instruments in this chapter, rebuild them, modify them, and
integrate the features of one into the design of another. To understand their capabilities you
should compose short etudes with each. You may be surprised to find yourself merging these
little studies into the fabric of your first Csound compositions.

The directory 'morefiles' contains examples of the classical designs of Risset and Chowning.
Detailed discussions of these instruments can be found in Charles Dodge's and Thomas Jerse's
Computer Music textbook. This text is the key to getting the most out of these instrumental
models and their innovative approaches to signal processing. Also recommended are the designs
of Russell Pinkston. They demonstrate techniques for legato phrasing, portamento, random
vibrato, and random sequence generation. His instrument representing Dx7 OpCode™
Editor/Librarian patches is a model for bringing many wonderful sounds into your orchestra.

Nothing will increase your understanding more than actually Making Music with Csound. The
best way to discover the full capability of these tools is to create your own music with them. As
you negotiate the new and uncharted terrain you will make many discoveries. It is my hope that
through Csound you discover as much about music as I have, and that this experience brings you
great personal satisfaction and joy.

Richard Boulanger - March 1991 - Boston, Massachusetts - USA

- 185 -

Appendix 4: An FOF Synthesis Tutorial
by

J.M.Clarke
University of Huddersfield

The fof synthesis generator in Csound has more parameter fields than other modules. To help
the user become familiar with these parameters this tutorial will take a simple orchestra file
using just one fof unit-generator and demonstrate the effect of each parameter in turn. To
produce a good vocal imitation, or a sound of similar sophistication, an orchestra containing five
or more fof generators is required and other refinements (use of random variation of pitch etc.)
must be made. The sounds produced in these initial explorations will be much simpler and
consequently less interesting but they will help to show clearly the basic elements of fof
synthesis. This tutorial assumes a basic working knowledge of Csound itself. The specification
of the fof unit-generator (as found in the main Csound manual) is:

ar fof xamp xfund xform koct kband kris kdur kdec iolaps ifna ifnb itotdur [iphs]
[ifmode]

where xamp, xfund, xform can receive any rate (constant, control or audio)
 koct, kband, kdris, kdur, kdec can receive only constants or control rates
 iolaps, ifna, ifnb, itotdur must be given a fixed value at initialization
 [iphs][ifmode] are optional, defaulting to 0.

The following orchestra contains a simple instrument we will use for exploring each parameter
in turn. On the faster machines (DECstation, SparcStation, SGI Indigo) it will run in real time.

 sr = 22050
 kr = 441
 ksmps = 50
 instr 1
a1 fof 15000, 200, 650, 0, 40, .003, .02, .007, 5, 1, 2, p3
 out a1
 endin

I t should be run with the following score:
f1 0 4096 10 1
f2 0 1024 19 .5 .5 270 .5
i1 0 3
e

The result is very basic. This is not surprising since we have created only one formant region (a
vocal imitation would need at least five) and have no vibrato or random variation of the
parameters. By varying one parameter at a time we will help the reader learn how the unit-
generator works. Each of the following "variations" starts from the model. Parameters not
specified remain as given.

x amp = amplitude
The first input parameter controls the amplitude of the generator. At present our model uses a
onstant amplitude, this can be changed so that the amplitude varies according to a line function: c

a2 linseg 0, p3*.3, 20000, p3*.4, 15000, p3*.3, 0
a1 fof a2,(as before)...

- 186 -

The amplitude of a fof generator needs care. xamp does not necessarily indicate the maximum
output, which can also depend on the rise pattern, bandwidth, and the presence of any
"overlaps".

xfund = fundamental frequency

This parameter controls the pitch of the fundamental of the unit generator. Starting again from
the original model this example demonstrates an exaggerated vibrato:

a2 oscil 20, 5, 1
a1 fof 15000, 200+a2, etc........

fof synthesis produces a rapid succession of (normally) overlapping excitations or granules.
The fundamental is in fact the speed at which new excitations are formed and if the fundamental
is very low these excitations are heard as separate granules. In this case the fundamental is not
so much a pitch as a pulse speed. The possibility of moving between pitch and pulse, between
timbre and granular texture is one of the most interesting aspects of fof. For a simple
demonstration try the following variation. It will be especially clear if the score note is
lengthened to about 10 seconds.

a2 expseg 5, p3*.8, 200, p3*.2, 150
a1 fof 15000, a2 etc........

koct = octaviation coefficient

Skipping a parameter, we come to an unusual means of controlling the fundamental: octaviation.
This parameter is normally set to 0. For each unit increase in koct the fundamental pitch will
drop by one octave. The change of pitch is not by the normal means of glissando, but by
gradually fading out alternate excitations (leaving half the original number). Try the following
(again with the longer note duration):

k1 linseg 0, p3*.1, 0, p3*.8, 6, p3*.1, 6
a1 fof 15000, 200, 650, k1 etc.........

This produces a drop of six octaves; if the note is sufficiently long you should be able to hear
the fading out of alternate excitations towards the end.

xform = formant frequency; ifmode = formant mode (0 = striated, non-0 = smooth)

The spectral output of a fof unit-generator resembles that of an impulse generator filtered by a
band pass filter. It is a set of partials above a fundamental xfund with a spectral peak at the
formant frequency xform. Motion of the formant can be implemented in two ways. If ifmode =
0, data sent to xform has effect only at the start of a new excitation. That is, each excitation gets
the current value of this parameter at the time of creation and holds it until the excitation ends.
Successive overlapping excitations can have different formant frequencies, creating a richly
varied sound. This is the mode of the original CHANT program. If ifmode is non-zero, the
frequency of each excitation varies continuously with xform. This allows glissandi of the
formant frequency. To demonstrate these differences we take a very low fundamental so that the
granules can be heard separately and the formant frequency is audible not as the center
frequency of a "band" but as a pitch in its own right. Compare the following in which only
ifmode is changed:

- 187 -

a2 line 400, p3, 800
a1 fof 15000, 5, a2, 0, 1, .003, .5, .1, 3, 1, 2, p3, 0, 0

a2 line 400, p3, 800
a1 fof 15000, 5, a2, 0, 1, .003, .5, .1, 3, 1, 2, p3, 0, 1

In the first case the formant frequency moves by step at the start of each excitation, whereas in
the second it changes smoothly. A more subtle difference is perceived with higher fundamental
frequencies. (Note that the later fof parameters were changed in this example to lengthen the
excitations so that their pitch could be heard easily.)

xform also permits frequency modulation of the formant frequency. Applying FM to an already
complex sound can lead to strange results, but here is a simple example:

acarr line 400, p3, 800
index = 2.0
imodfr = 400
idev = index * imodfr
amodsig oscil idev, imodfr, 1
a1 fof 15000, 5, acarr+amodsig, 0, 1, .003, .5, .1, 3, 1, 2, p3, 0, 1

kband = formant bandwidth
kris, kdur, kdec = risetime, duration and decaytime (in seconds) of the excitation envelope

These parameters control the shape and length of fof granules. They are shaped in three
segments: a rise, a middle decay, and a terminating decay. For very low fundamentals these are
perceived as an amplitude envelope, but with higher fundamentals (above 30 Hz) the granules
merge together and these parameters effect the timbre of the sound. Note that these four
parameters influence a new granule only at the time of its initialization and are fixed for its
duration; later changes will affect only subsequent granules. We begin our examination with low
frequencies.

k1 line .003, p3, .1 ; kris
a1 fof 15000, 2, 300, 0, 0, k1, .5, .1, 2, 1, 2, p3

Run this with a note length of 10 seconds. Notice how the attack of the envelope of the granules
lengthens. The shape of this attack is determined by the forward shape of ifnb (here a sigmoid).

Now try changing kband:

k1 linseg 0, p3, 10 ; kband
a1 fof 15000, 2, 300, 0, k1, .003, .5, .1, 2, 1, 2, p3

Following its rise, an excitation has a built-in exponential decay and kband determines its rate.
The bigger kband the steeper the decay; zero means no decay. In the above example the
successive granules had increasingly fast decays.

k1 linseg .3, p3, .003
a1 fof 15000, 2, 300, 0, 0, .003, .4, k1, 2, 1, 2, p3

This demonstrates the operation of kdec. Because an exponential decay never reaches zero it
must be terminated gracefully. kdur is the overall duration (in seconds from the start of the
excitation), and kdec is the length of the terminating decay. In the above example the

- 188 -

terminating decay starts very early in the first granules and then becomes progressively later.
Note that kband is set to zero so that only the terminating decay is evident.

In the next example the start time of the termination remains constant, but its length gets shorter:

k1 expon .3, p3, .003
a1 fof 15000, 2, 300, 0, 0, .003, .01 + k1, k1, 2, 1, 2, p3

It may be surprising to find that for higher fundamentals the local envelope determines the
spectral shape of the sound. Electronic and computer music has often shown how features of
music we normally consider independent (such as pitch, timbre, rhythm) are in fact different
aspects of the same thing. In general, the longer the local envelope segment the narrower the
band of partials around that frequency. kband determines the bandwidth of the formant region at
-6dB, and kris controls the skirtwidth at -40dB. Increasing kband increases the local envelope's
exponential decay rate, thus shortening it and increasing the -6dbB spectral region. Increasing
kris (the envelope attack time) inversely makes the -40dB spectral region smaller.

The next example changes first the bandwidth then the skirtwidth. You should be able to hear
the difference.

k1 linseg 100, p3/4, 0, p3/4, 100, p3/2, 100 ; kband
k2 linseg .003, p3/2, .003, p3/4, .01, p3/4, .003 ; kris
a1 fof 15000, 100, 440, 0, k1, k2, .02, .007, 3, 1, 2, p3

[In the first half of the note kris remains constant while kband broadens then narrows again. In
the second half, kband is fixed while kris lengthens (narrowing the spectrum) then returns again
.]

Note that kdur and kdec don't really shape the spectrum, they simply tidy up the decay so as to
prevent unwanted discontinuities which would distort the sound. For vocal imitations these
parameters are typically set at .017 and .007 and left unchanged. With high ("soprano")
fundamentals it is possible to shorten these values and save computation time (reduce overlaps).

iolaps = number of overlap spaces

Granules are created at the rate of the fundamental frequency, and new granules are often created
before earlier ones have finished, resulting in overlaps. The number of overlaps at any one time
is given by xfund * kdur. For a typical bass note the calculation might be 200 * .018 = 3.6, and
for a soprano note 660 * .015 = 9.9. fof needs at least this number (rounded up) of spaces in
which to operate. The number can be over-estimated at no computation cost, and at only a small
space cost. If there are insufficient overlap spaces during operation, the note will terminate.

ifna, ifnb = stored function tables

Identification numbers of two function tables (see the fof entry in the manual proper).

itotdur = total duration within which all granules in a note must be completed

So that incomplete granules are not cut off at the end of a note fof will not create new granules if
they will not be completed by the time specified. Normally given the value "p3" (the note
length), this parameter can be changed for special effect; fof will output zero after time itotdur.

iphs = initial phase (optional, defaulting to 0).

- 189 -

Specifies the initial phase of the fundamental. Normally zero, but giving different fof generators
different initial phases can be helpful in avoiding "zeros" in the spectrum.

- 190 -

Appendix 5: A CSOUND QUICK REFERENCE

VALUE CONVERTERS

 int(x) (init- or control-rate arg only)
 frac(x) " "
 dbamp(x) " "
 i(x) (control-rate arg only)
 abs(x) (no rate restriction)
 exp(x) "
 log(x) "
 sqrt(x) "
 sin(x) "
 cos(x) "
 ampdb(x) "
 twopwr(x)* (init- or control-rate args only)

 rnd(x) (init- or control-rate only)
 birnd(x) " "
 ftlen(x) (init-rate arg only)
 ftlptim(x)* "

PITCH CONVERTERS

 octnot(pch)* (init- or control-rate arg only)
 cpsnot(pch)* " "
 octpch(pch) " "
 pchoct(oct) " "
 cpspch(pch) " "
 octcps(cps) " "
 cpsoct(oct) (no rate restriction)

GENERAL CONTROL

 igoto label
 tigoto label
 kgoto label
 goto label
 if ia R ib igoto label
 if ka R kb kgoto label
 if ia R ib goto label
 timout istrt, idur, label
 reinit label
 rigoto label
 rireturn
 turnon insno[, itime]
 ihold
 turnoff
 maxalloc* imax[, imethod]

- 191 -

STRING SET, PRESET and PROGRAM SET VARIABLES

 strset ndx, string
 pset con1, con2, ...
 vset* con1, con2, ...
 gvset* con1, con2, ...
 vdim* con1
 pgminit* pgm.bn, ival1[, ival2,ival150]
 dpgminit* dpgm.ch, ival1[, ival2,ival150]
 vprogs * pgmno1[, pgmno2, ...pgmno32]
 dvprogs* dpgmno1[, dpgmno2, ...dpgmno32]
 dpkeys* dpgm.ch, ikey1, ikey2,
 dpexclus* dpgm.ch, ikey1, ikey2,
 inexclus* ctrlno, ins1, ins2, ins3,
 autopgms*
 auto_sf2*
 auto_dls*

MIDI CONTROLLERS and CONVERTERS

 massign ichnl, insno
 ctrlinit ichnl, ictlno1, ival1[, ctrlno2, ival2[, ictlno3, ... ival32]]
 pctrlinit* pgm.bn, ictlno1, ival1[, ictlno2, ival2[, ictlno3, ... ival32]]
 dpctrlinit* dpgm.ch, ictlno1, ival1[, ictlno2, ival2[, ictlno3, ... ival32]]

 uctrlmap* ictlno[, ilow, ihigh]
 dsctrlmap* iparm[, ilow, ihigh]

 ival midictrl ictlno[, ilow, ihigh]
 kval midictrl ictlno[, ilow, ihigh]
 ival chanctrl ichnl, ictlno[, ilow, ihigh]
 kval chanctrl ichnl, ictlno[, ilow, ihigh]
 ival dsctrl* iparm

 ival miditran idist
 ival veloc [ilow, ihigh]
 inot notnum
 inot notnumb [isens]
 knot notnumb [isens]
 icps cpsmidi
 icps cpsmidib [isens]
 kcps cpsmidib [isens]
 ioct octmidi
 ioct octmidib [isens]
 koct octmidib [isens]
 ipch pchmidi
 ipch pchmidib [isens]
 kpch pchmidib [isens]
 iamp ampmidi iscal[, ifn]
 kaft polyaft [ilow, ihigh]
 kaft aftouch [ilow, ihigh]
 ibnd pchbend [ilow, ihigh]
 kbnd pchbend [ilow, ihigh]
 veloffs*

- 192 -

VALUE SELECTORS and SPLITTERS

 ival mselect* iscal, index, ival0, ival1[, ival2, … ival15]
 kval mselect* kscal, index, kval0, kval1[, kval2, … kval15]

 id ftsplit* isets, jsize, i1j1, i1j2, ..,i2j1,i2j2, ..,i3j1, ..[,isets2, jsize2,
…]

i1,i2,i3,...i10 mtsplit* [id, ilay]

FTABLES

 iafno ftgen ifno, itime, isize, igen, iarga[, iargb, ...iargz]
 iafno ftload* ifilnam[, iskiptime, iformat, ichnl, inorm]
 iafno ftstep* ix1, ia, ix2, ib[, ix3, ic, ...], ixn
 ftscale* ifno, iscale

MACROS

 macro* name
 endm*

SIGNAL GENERATORS

 kr line ia, idur1, ib
 ar line ia, idur1, ib
 kr expon ia, idur1, ib
 ar expon ia, idur1, ib
 kr linseg ia, idur1, ib[, idur2, ic[...]]
 ar linseg ia, idur1, ib[, idur2, ic[...]]
 kr linsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
 ar linsegr ia, idur1, ib[, idur2, icI...]], irel, iz
 kr linseg4* ia, idur1, ib, idur2, ic, idur3, id, idur4, ie [, imode, itmap,

ilvlvel, iatvel, iktrk]
 kr linseg4r* ia, idur1, ib, idur2, ic, idur3, id, idur4, ie, irel, iz[, irind,

imode, itmap, ilvlvel, iatvel, iktrk, irelmod]
 kr expseg ia, idur1, ib[, idur2, ic[...]]
 ar expseg ia, idur1, ib[, idur2, ic[...]]
 kr expsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
 ar expsegr ia, idur1, ib[, idur2, icI...]], irel, iz
 kr dexponr* ival, idel, idecrat, irel
 ar dexponr* ival, idel, idecrat, irel
 kr adsr* iris, idec, isus, irel, ibas, ipeak[, iconv][, irind][, ioff]
 ar adsr* iris, idec, isus, irel, ibas, ipeak[, iconv][, irind][, ioff]
 kr dahdsr* idel, iris, ihold, idec, isus, irel, ibas, ipeak[, iconv]

[, irind][, ioff]

 kr phasor kcps[, iphs]
 ar phasor xcps[, iphs]
 ir table indx, ifn[, ixmode][, ixoff][, iwrap]
 ir tablei indx, ifn[, ixmode][, ixoff][, iwrap]
 kr table kndx, ifn[, ixmode][, ixoff][, iwrap]
 kr tablei kndx, ifn[, ixmode][, ixoff][, iwrap]
 ar table andx, ifn[, ixmode][, ixoff][, iwrap]
 ar tablei andx, ifn[, ixmode][, ixoff][, iwrap]

- 193 -

 ir dtable* indx, ifn
 kr oscil1 idel, kamp, idur, ifn
 kr oscil1i idel, kamp, idur, ifn
 ar oscil1 idel, xamp, idur, ifn
 ar oscil1i idel, xamp, idur, ifn
 ar osciln kamp, ifrq, ifn, itimes

 kr lfo* kcps, ifn[, idel, iphs]
 kr oscil kamp, kcps, ifn[, iphs]
 kr oscili kamp, kcps, ifn[, iphs]
 ar oscil xamp, xcps, ifn[, iphs]
 ar oscili xamp, xcps, ifn[, iphs]
 ar foscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs]
 ar foscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs]
 ar coscil* xamp, kcps, kcents, ifn[, iphs]
 ar1 [,ar2] loscil xamp, kcps, ifn[, ibas][, imod1,ibeg1,iend1]
 [, imod2,ibeg2,iend2]

ar doscil* xamp, ifn[, iautoff]
 ar doscilp* kamp, kcps, ifno[, ibas, iautoff]
 ar loscil1* kamp, kcps, ifno[, ibas]
 a1,a2 loscil2* kamp, kcps, ifno[, ibas]

 ar poscil* kamp, kcps, kfrac[, iphs]
 ar buzz xamp, xcps, knh, ifn[, iphs]
 ar gbuzz xamp, xcps, knh, kih, kr, ifn[, iphs]

 ar adsyn kamod, kfmod, ksmod, ifilcod
 ar pvoc ktimpnt, kfmod, ifilcod[, ispecwp]
 ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec,
 iolaps, ifna, ifnb, itotdur[, iphs][, ifmode]
 ar harmon asig, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, imode,
 iminfrq, iprd
 ar harmon2* asig, koct, kfrq1, kfrq2, icpsmode, ilowest
 ar harmon3* asig, koct, kfrq1, kfrq2, kfrq3, icpsmode, ilowest
 ar harmon4* asig, koct, kfrq1, kfrq2, kfrq3, kfrq4, icpsmode, ilowest
 ar grain xamp, xcps, xdens, kampdev, kcpsdev, kgdur,
 igfn, iwfn, imaxdur
 ar pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]
 ar pluck2* ifrq, iamp, ipickup, ipluck, iaw0, iawPi, aamp

 kr rand xamp[, iseed]
 kr randh kamp, kcps[, iseed]
 kr randi kamp, kcps[, iseed]
 ar rand xamp[, iseed]
 ar randh xamp, xcps[, iseed]
 ar randi xamp, xcps[, iseed]
 xr linrand krange[, ipol]
 xr exprand krange[, ipol]
 xr cauchy kalpha[, ipol]
 xr poisson klambda
 xr gauss krange
 xr weibull ksigma, ktau
 xr beta krange, kalpha, kbeta

- 194 -

SIGNAL MODIFIERS

 kr linen kamp, irise, idur, idec
 ar linen xamp, irise, idur, idec
 kr linenr kamp, irise, idec[, irind]
 ar linenr xamp, irise, idec[, irind]
 kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]
 ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]
 kr envlpxr kamp, irise, idec, ifn, iatss, iatdec[, ixmod]
 ar envlpxr xamp, irise, idec, ifn, iatss, iatdec[, ixmod]

 kr port ksig, ihtim[, isig]
 ar tone asig, khp[, istor]
 ar atone asig, khp[, istor]
 ar reson asig, kcf, kbw[, iscl, istor]
 ar areson asig, kcf, kbw[, iscl, istor]
 ar filter1* asig, kfreq, kdamp, imode[, istor]
 ar filter2* asig, kfreq, kdamp, imode[, istor]
 ar filter4* asig, kfc1, kfc2, imode[, istor]
 ar butterhp asig, kcps[, istor]
 ar butterlp asig, kcps[, istor]
 ar butterbp asig, kcf, kbw[, istor]
 ar butterbr asig, kcf, kbw[, istor]

krmsr,krmso,kerr,kcps lpread ktimpnt, ifilcod[, inpoles][, ifrmrate]
 ar lpreson asig
 ar lpfreson asig, kfrqratio

 ar cross* acar, amod, kdepth, kvol, ilocut, ihicut

 kr rms asig[, ihp, istor]
 nr gain asig, krms[, ihp, istor]
 ar balance asig, acomp[, ihp, istor]
 ar dbgain * asig, kdb[, iatktim, istor]
 ar compress* aasig,acsig,kthresh,khiknee,kloknee,kratio,katt,krel,ilook
 ar distort* asig, kdist, ifn[, ihp, istor]

 kr downsamp asig[, iwlen]
 ar upsamp ksig
 ar interp ksig[, iatktim, istor]
 kr integ ksig[, istor]
 ar integ asig[, istor]
 kr diff ksig[, istor]
 ar diff asig[, istor]
 kr samphold xsig, kgate[, ival, ivstor]
 ar samphold asig, xgate[, ival, ivstor]
 ar octup* asig, isegtim
 ar octdown* asig, isegtim

 ar delayr idlt[, istor]
 delayw asig
 ar delay asig, idlt[, istor]
 ar delay1 asig[, istor]

- 195 -

 ar vdelay asig, xdlt, imaxdlt[, istor]
 ar deltap kdlt
 ar deltapi xdlt

 ar comb asig, krvt, ilpt[, istor]
 ar alpass asig, krvt, ilpt[, istor]
 ar reverb asig, krvt[, istor]
 ar reverb2 asig, krvt, khfabs[, istor]
 a1,a2 lrghall32* asig
 a1,a2 lrghall44* asig

 ar chorus1* asig, krat1,krat2,krat3, idel1,idel2,idel3,
 ipred, idpth, ifdbk, ifsin
 a1,a2 chorus2* asig, krat1,krat2,krat3,krat4, idel1,idel2,idel3,idel4,
 ipred, idpth, ifdbk, ifsin
 a1,a2 chorus3* asig, krat1,krat2,krat3,krat4, idel1,idel2,idel3,idel4,
 ipred, idpth, ifdbk, ifsin
 a1 flange1* asig, krate, idel, ifdbk, ifn
 a1,a2 flange2* asig, krate, idel, ideff, ifdbk, ifn

OPERATIONS USING SPECTRAL DATA TYPES

 wsig spectrum xsig, iprd, iocts, ifrqs, iq[, ihann, idbout, idisprd, idsines]
 wsig specaddm wsig1, wsig2[, imul2]
 wsig specdiff wsigin
 wsig specscal wsigin, ifscale, ifthresh
 wsig spechist wsigin
 wsig specfilt wsigin, ifhtim
 koct, kamp specptrk wsig, kvar, ilo, ihi, istrt, idbthresh, inptls, irolloff[, iodd,
 iconfs, interp, ifprd, iwtflg]
 ksum specsum wsig[, interp]
 specdisp wsig, iprd[, iwtflg]

SENSING & CONTROL

 midiout* kamp, koct, iampsens, ibendrng, ichan
 ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak,
 istartempo, ifn[, idisprd, itweek]

 kx, ky xyin iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit]
 tempo ktempo, istartempo

 aramp iftime* idgrlvl, label[, idec, iris][, iprop]
 acum timegate* aramp, anew, acum

- 196 -

SIGNAL INPUT & OUTPUT

 a1 in
 a1, a2 ins
 a1, a2, a3, a4 inq
 a1, a2, a3, a4, a5, a6 inh*
 a1[, a2][, a3, a4] soundin ifilcod[, iskptim][, iformat]

 out asig
 outs1 asig
 outs2 asig
 outs asig1, asig2
 outq1 asig
 outq2 asig
 outq3 asig
 outq4 asig
 outq asig1, asig2, asig3, asig4
 outh1* asig
 outh2* asig
 outh3* asig
 outh4* asig
 outh5* asig
 outh6* asig
 outh* asig1, asig2, asig3, asig4, asig5, asig6
 soundout* asig1, ifilcod[, iformat]
 soundouts* asig1, asig2, ifilcod[, iformat]

 a1, a2 hostin*
 hostout* asig, iprd

 ar fxsend* asig, klevel
 a1[, a2, a3, a4] mfxsend* asig, ilvl1[, ilvl2, ilvl3, ilvl4]
 outs12* asig
 panouts* asig, kprop

 a1, a2, a3, a4 pan asig, kx, ky, ifn[, imode][, ioffset]

 k1 kread ifilname, iformat, iprd[, interp]
 k1, k2 kread2 ifilname, iformat, iprd[, interp]
 k1, k2, k3 kread3 ifilname, iformat, iprd[, interp]
 k1, k2, k3, k4 kread4 ifilname, iformat, iprd[, interp]
 kdump ksig, ifilname, iformat, iprd
 kdump2 ksig1, ksig2, ifilname, iformat, iprd
 kdump3 ksig1, ksig2, ksig3, ifilname, iformat, iprd
 kdump4 ksig1, ksig2, ksig3, ksig4, ifilname, iformat, iprd

SIGNAL DISPLAY

 print iarg[, iarg,...]
 display xsig, iprd[, inprds][, iwtflg]
 dispfft xsig, iprd, iwsiz[, iwtyp][, idbout][, iwtflg]

- 197 -

COSTING

 clkon* id
 clkoff* id

GEN ROUTINES

 f # time size 1 filcod skiptime format channel
 f # time size 2 v1 v2 v3 . . .
 f # time size 3 xval1 xval2 c0 c1 c2 . . . cn
 f # time size 4 source # sourcemode
 f # time size 5 a n1 b n2 c . . .
 f # time size 7 a n1 b n2 c . . .
 f # time size 6 a n1 b n2 c n3 d . . .
 f # time size 8 a n1 b n2 c n3 d . . .
 f # time size 9 pna stra phsa pnb strb phsb . . .
 f # time size 10 str1 str2 str3 str4
 f # time size 19 pna stra phsa dcoa pnb strb phsb dcob . . .
 f # time size 11 nh lh r
 f # time size 12 xint
 f # time size 13 xint xamp h0 h1 h2 . . . hn
 f # time size 14 xint xamp h0 h1 h2 . . . hn
 f # time size 15 xint xamp h0 phs0 h1 phs1 h2 phs2 . . .
 f # time size 17 x1 a x2 b x3 c . . .
 f # time size 20 window max opt
 f # time size 21 distr range opt1 opt2

- 198 -

	PART TWO: THE CSOUND ENGINE
	Barry Vercoe MIT Media Lab 2008
	CONTENTS
	Toot 2: “P-Fields”
	Toot 3: Envelopes
	 Toot 4: Chorusing
	Toot 5: Vibrato
	Toot 6: Gens
	Toot 7: Crossfade
	Toot 8: Soundin
	Toot 9: Global Stereo Reverb
	Toot 10: Filtered Noise
	Toot 11: Carry, Tempo & Sort
	Toot 12: Tables & Labels
	Toot 13: Spectral Fusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

