MIT OpenCourseWare
http://ocw.mit.edu

MAS. 160 / MAS. 510 / MAS. 511 Signals, Systems and Information for Media Technology Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
\square
MAS160: Signals, Systems \& Information for Media Technology
Problem Set 7

Instructor : V. Michael Bove, Jr.

Problem 1: z-Transforms, Poles, and Zeros

Determine the z-transforms of the following signals. Sketch the corresponding pole-zero patterns.
(a) $x[n]=\delta[n-5]$
(b) $x[n]=n u[n]$
(c) $x[n]=\left(-\frac{1}{3}\right)^{n} u[n]$
(d) $x[n]=\left(a^{n}+a^{-n}\right) u[n], a$ real
(e) $x[n]=\left(n a^{n} \cos \omega_{0} n\right) u[n], a$ real
(f) $x[n]=\left(\frac{1}{2}\right)^{n}(u[n-1]-u[n-10])$

Problem 2: z-Transform Properties

Given $x[n]$ below, use the properties of the z-transform to derive the transform of the following signals.

$$
x[n] \rightarrow X(z)=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
$$

(a) $x[n-3]$
(b) $x[n] * \delta[n-3]$
(c) $x[n]-x[n-1]$
(d) $x[n] *(\delta[n]-\delta[n-1])$
(e) $5 x[n-1]+4\left(-\frac{1}{3}\right)^{n} u[n]$

Problem 3: Relating pole-zero plots to frequency- and impulseresponse

(a) DSP First 8.16
(b) DSP First 8.17

Problem 4: DSP First Lab 10

Items to be turned in:
(a) Answers to questions from C.10.4.
(b) Answers to questions from C.10.5.
(c) Plots and answers to questions from C.10.6.

